JPH11339843A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH11339843A
JPH11339843A JP10144470A JP14447098A JPH11339843A JP H11339843 A JPH11339843 A JP H11339843A JP 10144470 A JP10144470 A JP 10144470A JP 14447098 A JP14447098 A JP 14447098A JP H11339843 A JPH11339843 A JP H11339843A
Authority
JP
Japan
Prior art keywords
positive electrode
paste
active material
electrode plate
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10144470A
Other languages
Japanese (ja)
Inventor
Takeo Sakamoto
剛生 坂本
Yukio Yoshiyama
行男 吉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10144470A priority Critical patent/JPH11339843A/en
Publication of JPH11339843A publication Critical patent/JPH11339843A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve the utilization factor of a positive electrode active material when a paste positive electrode having a thickness within a specific range is used by holding a specific % of the injected electrolyte weight with the paste positive electrode, holding the specific % of the injected electrolyte weight with a paste negative electrode, and setting a porosity of the active material layer of the paste positive electrode to a specific %. SOLUTION: The injected electrolyte weight of 16.5-24.0 wt.% is held by a paste positive electrode having the thickness of 4.0 mm or above, and 10.5-18.0 wt.% of the injected electrolyte weight is held by a paste negative electrode. The porosity of the active material layer of the paste positive electrode is set to 58-60%. The moisture content of a paste active material is changed to change the porosity of the positive electrode, and the porosity of the chemically formed active material is made 55, 58, 60, 61% respectively. A chemically unformed positive electrode is obtained after aging and drying. A high-capacity battery can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はペースト式正極板、
ペースト式負極板及びリテーナを用いる長寿命タイプの
密閉形鉛蓄電池の高容量化に関するものである。
TECHNICAL FIELD The present invention relates to a paste type positive electrode plate,
The present invention relates to increasing the capacity of a long-life type sealed lead-acid battery using a paste-type negative electrode plate and a retainer.

【0002】[0002]

【従来の技術】近年、密閉形鉛蓄電池の長寿命化が、き
わめて強く要求されている。そして、各種の改良によっ
て、密閉形鉛蓄電池の寿命はそれを用いる機械や設備の
寿命と同等のレベルまで向上している。なお、密閉形鉛
蓄電池に使用されている正極板及び負極板は、鉛合金か
らなる格子体にペースト状の活物質を充填して作製す
る、ペースト式極板を用いるのが一般的である。これら
のペースト式極板をリテーナを介し、多数枚積層して電
極群を作製し、それを電槽内に組み込んだ後に、電槽化
成をして密閉形鉛蓄電池を製造している。
2. Description of the Related Art In recent years, there has been an extremely strong demand for extending the life of sealed lead-acid batteries. The life of the sealed lead-acid battery has been improved to the same level as the life of machines and equipment using the battery by various improvements. In addition, as the positive electrode plate and the negative electrode plate used in the sealed lead-acid battery, a paste-type electrode plate is generally used, which is manufactured by filling a grid-like body of a lead alloy with a paste-like active material. A large number of these paste-type electrode plates are laminated via a retainer to produce an electrode group, which is assembled in a battery case, and then formed into a battery case to manufacture a sealed lead-acid battery.

【0003】これらの長寿命タイプの密閉形鉛蓄電池に
おいても、最近では高容量化が強く要求されている。な
お、長寿命タイプの密閉形鉛蓄電池において、放電容量
は電解液中の硫酸イオンの拡散性に強く依存している。
そして、長寿命タイプの密閉形鉛蓄電池は、正極板が4
mm以上と厚いため、極板の内部まで硫酸イオンが拡散
しにくく、活物質の利用率が低いという問題点があっ
た。そこで、長寿命タイプの密閉形鉛蓄電池を高容量化
する手段として活物質層の多孔質化、極板の薄板化、高
比重の電解液の使用などの検討が行われてきた。しかし
ながら、これらの方法を用いると密閉形鉛蓄電池の寿命
が短くなるという問題点があった。
In these long-life sealed lead-acid batteries, a high capacity has recently been strongly demanded. In a long-life sealed lead-acid battery, the discharge capacity strongly depends on the diffusion of sulfate ions in the electrolyte.
A long-life sealed lead-acid battery has four positive plates.
mm or more, the sulfate ions hardly diffuse into the inside of the electrode plate, and there is a problem that the utilization rate of the active material is low. Therefore, as means for increasing the capacity of a long-life sealed lead-acid battery, studies have been made on making the active material layer porous, making the electrode plate thinner, and using an electrolyte having a high specific gravity. However, when these methods are used, there is a problem that the life of the sealed lead-acid battery is shortened.

【0004】一方、電解液保持体であるリテーナを厚く
して、より多くの電解液を保持させ、多量の硫酸イオン
を電極に供給する試みもされている。しかしながら、こ
の方法を用いると、正極板及び負極板間の距離が長くな
るために内部抵抗が増加し、その結果、電池の放電電圧
が低下するという欠点があった。
On the other hand, attempts have been made to increase the thickness of a retainer, which is an electrolyte holder, to hold more electrolyte and supply a large amount of sulfate ions to the electrode. However, when this method is used, the distance between the positive electrode plate and the negative electrode plate becomes longer, so that the internal resistance increases. As a result, there is a disadvantage that the discharge voltage of the battery decreases.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、正極
板の厚みが4mm以上のペースト式極板を用いた長寿命
タイプの密閉形鉛蓄電池において、正極活物質の利用率
を向上させることである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the utilization rate of a positive electrode active material in a long life type sealed lead-acid battery using a paste type electrode plate having a positive electrode plate having a thickness of 4 mm or more. It is.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、第一の発明では、厚みが4.0mm以上のペースト
式正極板を用いた密閉形鉛蓄電池において、注液した電
解液重量の16.5〜24.0wt.%を前記ペースト
式正極板に保持し、かつ注液した電解液重量の10.5
〜18.0wt.%をペースト式負極板に保持すること
を特徴とし、第二の発明では、前記ペースト式正極板の
活物質層の多孔度が58〜60%であることを特徴とす
る。
Means for Solving the Problems In order to solve the above problems, in the first invention, in a sealed lead-acid battery using a paste-type positive electrode plate having a thickness of 4.0 mm or more, the weight of the injected electrolyte is reduced. 16.5 to 24.0 wt. % Was held on the paste-type positive electrode plate, and 10.5% of the weight of the injected electrolyte solution.
~ 18.0 wt. % Of the active material layer of the paste-type positive electrode plate is 58 to 60%.

【0007】[0007]

【発明の実施の形態】1.正極 正極用格子体として、鉛−カルシウム−スズ合金からな
るW140×L240×T4.2(mm)又はW140×L240×T5.5(mm)の
2種類の格子体を作製した。次に、一酸化鉛を主成分と
し金属鉛を約25wt.%含む鉛粉、希硫酸、水とを練
合してペ−スト状活物質を作製する。前記した厚みが
4.2mmの格子体(T4.2mm)には、化成後の活物質重
量で460gとなるペ−スト状活物質を、厚みが5.5mm
の格子体(T5.5mm)には化成後の活物質重量で600gとな
るペ−スト状活物質をそれぞれ充填し、従来から用いて
いる手法で熟成・乾燥を経て未化成正極板とした。また
正極板の多孔度を変化させるためにペースト状活物質中
の水分量を変化させ、化成後の活物質の多孔度がそれぞ
れ55、58、60、61%になるようにした。そして、従来か
ら用いている手法で熟成・乾燥を経て未化成正極板とし
た。
BEST MODE FOR CARRYING OUT THE INVENTION Positive Electrode As the positive electrode lattice, two types of lattices of W140 × L240 × T4.2 (mm) or W140 × L240 × T5.5 (mm) made of a lead-calcium-tin alloy were prepared. Next, about 25 wt. % Lead powder, diluted sulfuric acid, and water are kneaded to prepare a paste-like active material. The above-mentioned grid body having a thickness of 4.2 mm (T4.2 mm) was coated with a paste-like active material having a weight of 460 g after the formation of the active material, and 5.5 mm in thickness.
Each of the lattice bodies (T5.5 mm) was filled with a paste-like active material having a weight of 600 g of the active material after chemical formation, and was aged and dried by a conventionally used method to obtain an unformed positive electrode plate. In addition, in order to change the porosity of the positive electrode plate, the amount of water in the paste-like active material was changed so that the porosity of the active material after chemical formation was 55, 58, 60, and 61%, respectively. Then, an unformed positive electrode plate was obtained after aging and drying by a conventionally used method.

【0008】2.負極 負極用格子体として、鉛−カルシウム−スズ合金からな
るW140×L240×T2.6、W140×L240×T2.4(mm)、W140×
L240×T1.8(mm)又はW140×L240×T1.5(mm)の3種類の
格子体を作製した。一酸化鉛を主成分とし金属鉛を約2
5wt.%含む鉛粉、硫酸バリウム、硫酸、リグニン及
びフレオン系界面活性剤を水にて練合したペ−スト状活
物質を作製する。前記した厚みが2.4mmの格子体
(T2.4mm)には化成後の活物質重量で280gとなるペ
−スト状活物質、厚みが1.8mmの格子体(T1.8mm)
の格子には化成後の活物質重量で210gとなるペ−ス
ト状活物質、厚みが1.5mmの格子体(T1.5mm)の格
子には化成後の活物質重量で180gとなるペ−スト状
活物質をそれぞれ充填し、従来から用いている手法で熟
成・乾燥を経て未化成負極板とした。
[0008] 2. Negative electrode As a negative electrode grid, W140 × L240 × T2.6, W140 × L240 × T2.4 (mm), W140 × made of lead-calcium-tin alloy
Three types of lattices of L240 × T1.8 (mm) or W140 × L240 × T1.5 (mm) were prepared. Approximately 2 of lead metal mainly composed of lead monoxide
5 wt. % Of lead powder, barium sulfate, sulfuric acid, lignin and freon-based surfactant are kneaded with water to prepare a paste-like active material. The above-mentioned 2.4 mm-thick lattice (T2.4 mm) is a paste-like active material having a weight of 280 g of active material after formation, and a 1.8 mm-thick lattice (T1.8 mm).
The paste of the paste-like active material having a weight of 210 g of the active material after formation is applied to the lattice of No. 1, and the paste of the active material after formation is 180 g in weight of the lattice of a 1.5 mm-thick lattice (T1.5 mm). Each of the strike-shaped active materials was filled, and aged and dried by a conventionally used method to obtain an unformed negative electrode plate.

【0009】3.密閉形鉛電池の作製・試験 作製したこれらの正極板4枚と負極板5枚とをガラス繊
維製不織布よりなるリテーナを介して積層して電極群と
し、それを電槽に挿入して群加圧力として20kgf/dm2
なるようにポリプロピレン製のスペーサを挿入して2
V、100Ahの密閉形鉛蓄電池を作製した。そして、
希硫酸電解液を注液し、遊離した電解液を排出して密閉
形鉛蓄電池とした。そして、過電量230%で電槽化成を行
い、電槽化成後の電解液の比重が1.26となるように
した。電槽化成後の電池を周囲温度が25±2℃で、1
時間率(1CA)で放電してその放電容量を測定し、正
極活物質の充填量と放電容量とから正極活物質の利用率
を算出した。また、正極板電解液量、負極板電解液量及
び正極活物質層の多孔度は、充放電試験をした電池を解
体して測定した。
3. Fabrication and test of sealed lead battery Four of these fabricated positive electrode plates and five negative electrode plates were laminated via a retainer made of a nonwoven fabric made of glass fiber to form an electrode group, which was inserted into a battery case and joined. Insert a spacer made of polypropylene so that the pressure becomes 20 kgf / dm 2 and
V, 100 Ah sealed lead-acid battery was produced. And
A diluted sulfuric acid electrolyte was injected, and the liberated electrolyte was discharged to obtain a sealed lead-acid battery. Then, battery formation was performed with an overcharge amount of 230%, and the specific gravity of the electrolytic solution after the battery formation was adjusted to 1.26. The battery after battery case formation should be stored in an ambient temperature of 25 ± 2 ° C.
Discharge was performed at a time rate (1 CA), the discharge capacity was measured, and the utilization rate of the positive electrode active material was calculated from the filling amount of the positive electrode active material and the discharge capacity. In addition, the amount of the electrolyte in the positive electrode plate, the amount of the electrolyte in the negative electrode plate, and the porosity of the positive electrode active material layer were measured by disassembling the battery that was subjected to the charge / discharge test.

【0010】[0010]

【実施例】(実施例1、2、比較例1、2)前記した条
件で表1に示す仕様の密閉形鉛蓄電池を作製し、正極中
の電解液量、負極中の電解液重量及び正極活物質の利用
率を測定した。表1に示されるように、注液した電解液
重量の16.5〜24.0wt.%をペースト式正極板
に保持すると正極活物質の利用率が高い。
EXAMPLES (Examples 1 and 2 and Comparative Examples 1 and 2) A sealed lead-acid battery having the specifications shown in Table 1 was manufactured under the above conditions, and the amount of the electrolyte in the positive electrode, the weight of the electrolyte in the negative electrode, and the weight of the positive electrode were measured. The utilization rate of the active material was measured. As shown in Table 1, 16.5 to 24.0 wt. % Is held in the paste-type positive electrode plate, the utilization rate of the positive electrode active material is high.

【0011】[0011]

【表1】 [Table 1]

【0012】(実施例1、2、比較例3、4)前記した
条件で表2に示す仕様の密閉形鉛蓄電池を作製し、正極
中の電解液量、負極中の電解液重量及び正極活物質の利
用率を測定した。表2に示されるように、注液した電解
液重量の10.5〜18.0wt.%をペースト式負極
板に保持すると正極活物質の利用率が高い。
Examples 1 and 2 and Comparative Examples 3 and 4 A sealed lead-acid battery having the specifications shown in Table 2 was prepared under the conditions described above, and the amount of the electrolyte in the positive electrode, the weight of the electrolyte in the negative electrode, and the activity of the positive electrode were measured. Material utilization was measured. As shown in Table 2, 10.5 to 18.0 wt. % Is held in the paste type negative electrode plate, the utilization rate of the positive electrode active material is high.

【0013】[0013]

【表2】 [Table 2]

【0014】(実施例3〜6)前記した条件で表3に示
す仕様の密閉形鉛蓄電池を作製し、正極の多孔度と正極
活物質の利用率を測定した。表3に示されるように、正
極活物質層の多孔度が58〜60%の範囲で正極活物質
の利用率が高い。
Examples 3 to 6 Under the above conditions, sealed lead-acid batteries having the specifications shown in Table 3 were prepared, and the porosity of the positive electrode and the utilization rate of the positive electrode active material were measured. As shown in Table 3, the utilization rate of the positive electrode active material is high when the porosity of the positive electrode active material layer is in the range of 58 to 60%.

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】上述したように、本発明では厚みが4.
0mm以上の正極板を用いた密閉形鉛蓄電池において、
正極中の電解液量が16.5〜24.0wt.%の範囲
に、負極中の電解液量が10.5〜18.0%の範囲に
する。この状態において、正極活物質の多孔度を58%
〜60%にすると正極活物質の利用率を高くできるた
め、電池を高容量化することができる。
As described above, according to the present invention, the thickness is 4.
In a sealed lead-acid battery using a positive electrode plate of 0 mm or more,
When the amount of electrolyte in the positive electrode is 16.5 to 24.0 wt. %, The amount of the electrolyte in the negative electrode is in the range of 10.5 to 18.0%. In this state, the porosity of the positive electrode active material is 58%
When the content is set to 60%, the utilization rate of the positive electrode active material can be increased, so that the capacity of the battery can be increased.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ペースト式負極板と、厚みが4.0mm以
上のペースト式正極板を用いた密閉形鉛蓄電池におい
て、注液した電解液重量の16.5〜24.0wt.%
を前記ペースト式正極板に保持し、かつ注液した電解液
重量の10.5〜18.0wt.%を前記ペースト式負
極板に保持することを特徴とする密閉形鉛蓄電池。
In a sealed lead-acid battery using a paste-type negative electrode plate and a paste-type positive electrode plate having a thickness of 4.0 mm or more, 16.5 to 24.0 wt. %
Was held on the paste-type positive electrode plate, and 10.5 to 18.0 wt. % In the paste-type negative electrode plate.
【請求項2】前記ペースト式正極板の活物質層の多孔度
が58〜60%であることを特徴とする請求項1記載の
密閉形鉛蓄電池。
2. The sealed lead-acid battery according to claim 1, wherein the porosity of the active material layer of the paste-type positive electrode plate is 58 to 60%.
JP10144470A 1998-05-26 1998-05-26 Sealed lead-acid battery Pending JPH11339843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10144470A JPH11339843A (en) 1998-05-26 1998-05-26 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10144470A JPH11339843A (en) 1998-05-26 1998-05-26 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11339843A true JPH11339843A (en) 1999-12-10

Family

ID=15363043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10144470A Pending JPH11339843A (en) 1998-05-26 1998-05-26 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11339843A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016256A (en) * 2007-07-06 2009-01-22 Gs Yuasa Corporation:Kk Lead-acid battery
WO2015079668A1 (en) * 2013-11-29 2015-06-04 株式会社Gsユアサ Lead-acid battery
WO2016084858A1 (en) * 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell
WO2023210635A1 (en) * 2022-04-26 2023-11-02 株式会社Gsユアサ Lead storage battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016256A (en) * 2007-07-06 2009-01-22 Gs Yuasa Corporation:Kk Lead-acid battery
WO2015079668A1 (en) * 2013-11-29 2015-06-04 株式会社Gsユアサ Lead-acid battery
JPWO2015079668A1 (en) * 2013-11-29 2017-03-16 株式会社Gsユアサ Lead acid battery
US10522837B2 (en) 2013-11-29 2019-12-31 Gs Yuasa International Ltd. Lead-acid battery
WO2016084858A1 (en) * 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell
JPWO2016084858A1 (en) * 2014-11-27 2017-06-08 日立化成株式会社 Lead acid battery
WO2023210635A1 (en) * 2022-04-26 2023-11-02 株式会社Gsユアサ Lead storage battery

Similar Documents

Publication Publication Date Title
JP4635325B2 (en) Control valve type lead acid battery
JPH11339843A (en) Sealed lead-acid battery
JP2000251896A (en) Lead-acid battery and its manufacture
JP4433593B2 (en) Control valve type lead acid battery
JP2000030696A (en) Sealed lead-acid battery
JPH1092421A (en) Sealed lead-acid battery
JP2001085046A (en) Sealed lead-acid battery
JP2002025602A (en) Lead-acid battery
JP2002075379A (en) Lead-acid battery
JP2001155722A (en) Sealed lead acid storage battery and method of fabricating it
JP2982545B2 (en) Sealed storage battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JPH11339842A (en) Sealed lead-acid battery
JP2000040508A (en) Manufacture of paste type electrode plate for lead-acid battery
JP2001332268A (en) Lead battery having control valve
JP2001057228A (en) Sealed lead-acid battery
JPH07147160A (en) Lead-acid battery
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
JP2003123744A (en) Control valve-type lead-acid battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2926233B2 (en) Manufacturing method of alkaline secondary battery
JP2003331831A (en) Control valve lead battery and method of manufacturing the lead battery
JPH0531273B2 (en)
JP2001273887A (en) Sealed lead storage battery
JPH08180857A (en) Electrode plate for lead-acid battery