WO2015080150A1 - Lead storage cell separator and lead storage cell - Google Patents

Lead storage cell separator and lead storage cell Download PDF

Info

Publication number
WO2015080150A1
WO2015080150A1 PCT/JP2014/081230 JP2014081230W WO2015080150A1 WO 2015080150 A1 WO2015080150 A1 WO 2015080150A1 JP 2014081230 W JP2014081230 W JP 2014081230W WO 2015080150 A1 WO2015080150 A1 WO 2015080150A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
acid battery
separator
thermoplastic resin
mass
Prior art date
Application number
PCT/JP2014/081230
Other languages
French (fr)
Japanese (ja)
Inventor
広喜 葛岡
河添 宏
響子 平井
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2015550960A priority Critical patent/JP6436092B2/en
Publication of WO2015080150A1 publication Critical patent/WO2015080150A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead-acid battery separator and a lead-acid battery.
  • the sealed lead-acid battery has a configuration in which a separator and an electrode plate are laminated in a sealed container, and since it uses a sealed container, it has excellent leakage resistance and does not require rehydration. Have.
  • the electrolytic solution in the sealed lead-acid battery is held so as not to flow into the pores of the separator. For this reason, a non-woven fabric separator mainly composed of glass fiber with good electrolyte retention is used for the sealed lead-acid battery separator (see Patent Document 1).
  • the nonwoven fabric separator mainly composed of glass fiber has low mechanical strength such as tensile strength and penetration strength, and when it is thinned, the separator may be torn by the load during battery assembly, or the projections on the electrode plate may The positive electrode plate and the negative electrode plate may be electrically short-circuited through.
  • the separator for a sealed lead-acid battery is required to satisfy both the liquid retention of the electrolyte and the mechanical strength.
  • An object of the present invention is to provide a lead-acid battery separator having high mechanical strength and excellent electrolyte retention, and a lead-acid battery including the lead-acid battery separator.
  • the present invention relates to a lead-acid battery separator comprising glass fibers and a thermoplastic resin, wherein the content of the thermoplastic resin is 0.1 to 15% by mass based on the total mass of the separator. .
  • the glass fiber is preferably bound with a thermoplastic resin.
  • the lead-acid battery separator can be obtained by impregnating or applying a solution containing a thermoplastic resin to a porous sheet made of glass fiber.
  • the average fiber diameter of the glass fiber is preferably 0.5 to 5 ⁇ m.
  • the thermoplastic resin can contain at least one resin selected from the group consisting of an olefin resin, an acrylic resin, a urethane resin, and a styrene resin.
  • the present invention also relates to a sealed lead-acid battery including the lead-acid battery separator.
  • the present invention it is possible to provide a lead-acid battery separator having high mechanical strength and excellent electrolyte retention, and a sealed lead-acid battery including the lead-acid battery separator.
  • the lead-acid battery separator is superior in assembly workability due to its high mechanical strength, can be thinned, and has excellent electrolyte retention, so that a lead-acid battery with excellent battery capacity and battery life can be produced. . Further, by using such a lead-acid battery separator, it is possible to provide a lead-acid battery capable of improving the high-rate characteristics, extending the life, and increasing the capacity.
  • FIG. 1 is an electron micrograph of a porous sheet 1.
  • 2 is an electron micrograph of a lead-acid battery separator produced in Example 1.
  • FIG. 2 is an electron micrograph of a lead-acid battery separator produced in Example 1.
  • the lead-acid battery separator of the present embodiment includes glass fibers and a thermoplastic resin, and the thermoplastic resin content is 0.1 to 15% by mass based on the total mass of the separator.
  • acid-resistant glass fiber is preferable and alkali-containing glass fiber is more preferable because it is in contact with sulfuric acid that is an electrolyte of a lead storage battery.
  • the average fiber diameter of the glass fiber is preferably 0.5 to 5 ⁇ m, more preferably 0.8 to 4.5 ⁇ m, still more preferably 1.0 to 3.5 ⁇ m, It is particularly preferable that the thickness is ⁇ 2.0 ⁇ m.
  • a glass fiber with a smaller fiber diameter can make the pores of the separator finer, so that the separator is excellent in permeation short circuit resistance. Therefore, the average fiber diameter of the glass fiber may be 5 ⁇ m or less, 4.5 ⁇ m or less, 3.5 ⁇ m or less, or 2.0 ⁇ m or less.
  • a glass fiber with a thicker fiber diameter is more excellent in drainage at the time of papermaking, so that production efficiency can be improved.
  • the average fiber diameter of the glass fiber is preferably 0.5 ⁇ m or more, 0.8 ⁇ m or more, or 1.0 ⁇ m or more.
  • the glass fiber those having the same average fiber diameter may be used alone, or two or more kinds having different average fiber diameters may be used in combination.
  • Glass fiber is used as a porous sheet.
  • the method for producing a porous sheet made of glass fiber is not particularly limited, and can be obtained by papermaking or the like according to a conventional method.
  • the basis weight of the glass fiber in the porous sheet is preferably 30 to 400 g / m 2 , more preferably 60 to 350 g / m 2 , and still more preferably 100 to 300 g / m 2 .
  • the glass fibers constituting the porous sheet are bound with a thermoplastic resin.
  • the separator for a lead storage battery can be produced by impregnating or applying a solution containing a thermoplastic resin to a porous sheet made of glass fiber and binding the glass fiber with the thermoplastic resin.
  • thermoplastic resin those excellent in acid resistance and water resistance are preferable, and examples thereof include olefin resins, acrylic resins, urethane resins, styrene resins, and the like.
  • a thermoplastic resin into which a hydrophilic group such as a sulfo group or a carboxyl group is introduced may be used.
  • an olefin resin or a styrene resin is preferable from the viewpoint of easily achieving both mechanical strength and liquid retention of the electrolytic solution, and polypropylene or polyethylene is preferable from the viewpoint of acid resistance and water resistance.
  • a thermoplastic resin may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the thermoplastic resin is 0.1 to 15% by mass based on the total amount of the lead-acid battery separator. However, from the viewpoint of coexistence of the liquid retention of the electrolyte and the mechanical strength, 0.2 to It is preferably 12% by mass, more preferably 0.5 to 10% by mass, and further preferably 3 to 10% by mass. As the proportion of the thermoplastic resin in the lead-acid battery separator increases, the mechanical strength increases. However, if the proportion increases excessively, the liquid retention amount tends to decrease. Therefore, although content of a thermoplastic resin is 15 mass% or less, it may be 12 mass% or less, and may be 10 mass% or less.
  • the content of the thermoplastic resin is 0.1% by mass or more, but may be 0.2% by mass or more, may be 0.5% by mass or more, and may be 3% by mass or more. Also good.
  • thermoplastic resin In order to uniformly adhere the thermoplastic resin to the porous sheet, it is preferable to use a method in which the porous sheet is impregnated or coated with a solution containing the thermoplastic resin and then dried.
  • the solution containing the thermoplastic resin may be a dispersion solution in which the thermoplastic resin is dispersed in the dispersion medium, or may be a uniform solution in which the thermoplastic resin is uniformly dissolved in the solvent.
  • the dispersion medium and the solvent for the thermoplastic resin are not particularly limited, but are preferably aqueous in order to be applied to the papermaking process.
  • thermoplastic resin can be uniformly attached in the porous sheet.
  • the thermoplastic resin uniformly adhered to the porous sheet uniformly binds the glass fiber contacts after drying, so the mechanical strength can be improved with a small amount of thermoplastic resin, and the decrease in liquid retention is suppressed. it can.
  • the method for impregnating or applying the solution containing the thermoplastic resin to the porous sheet is not particularly limited, and a conventional method can be applied.
  • the porous sheet impregnated or coated with the solution containing the thermoplastic resin is dried by heating.
  • the thickness of the lead-acid battery separator of this embodiment is preferably 0.1 to 3.0 mm, more preferably 0.3 to 2.5 mm, and 0.5 to 2.0 mm. Is more preferable, and 1.0 to 1.5 mm is particularly preferable.
  • the thicker the separator the more easily it becomes a lead-acid battery with excellent permeation resistance and short circuit resistance. Therefore, the thickness of the separator may be 0.1 mm or more, 0.3 mm or more, 0.5 mm or more, or 1.0 mm or more.
  • the amount of liquid retained in the lead-acid battery separator of the present embodiment is preferably 6 g / g or more, more preferably 7 g / g or more, and still more preferably 10 g / g or more from the viewpoint of further improving the characteristics of the lead-acid battery.
  • the amount of liquid retained in the lead-acid battery separator of the present embodiment is preferably 6 g / g or more, more preferably 7 g / g or more, and still more preferably 10 g / g or more from the viewpoint of further improving the characteristics of the lead-acid battery.
  • 20 g / g or less is preferable.
  • the liquid retention amount can be measured, for example, as follows. First, the weight (dry state) at 25 ° C. and 65.0% RH of a test piece obtained by cutting a lead storage battery separator into a size of 20 mm ⁇ 20 mm is measured. Next, after the test piece is hydrated in distilled water at room temperature (25 ° C. ⁇ 2 ° C.) for about 1 to 3 minutes, the weight (wet state) of the test piece after being pulled out of the distilled water and left for about 1 to 2 minutes is measured. Measure and calculate the liquid retention amount by the following formula.
  • Liquid retention amount (g / g) [Weight of test piece in wet state ⁇ Weight of test piece in dry state] / Weight of test piece in dry state Note that the above liquid retention amount is the same as that measured using water. To do. When water is used to measure the amount of liquid retained, it may be referred to as the amount of water retained.
  • the tensile strength of the lead-acid battery separator of the present embodiment is preferably 0.1 MPa or more, more preferably 0.3 MPa or more, and still more preferably 0.5 MPa or more from the viewpoint of further improving the characteristics of the lead-acid battery.
  • limiting in particular in the upper limit of tensile strength From a practical viewpoint, 5 Mpa or less is preferable.
  • the tensile strength can be measured, for example, as follows. First, a test piece obtained by cutting a lead-acid battery separator into 10 mm ⁇ 40 mm is prepared. Next, using a precision universal testing machine, set the test piece so that the distance between chucks is 20 mm, perform a tensile test under the conditions of a tensile speed of 5 mm / min and 25 ° C., and set the stress at break to the tensile strength. .
  • the separator for a lead storage battery of the present embodiment has high mechanical strength and is excellent in electrolyte retention, and can be suitably used for a lead storage battery.
  • the lead storage battery of this embodiment is provided with the above-mentioned separator for lead storage batteries.
  • the production method of the lead storage battery is not particularly limited, and can be produced according to a conventional method.
  • control valve type lead-acid battery that is a method of holding an electrolytic solution in a lead-acid battery separator can be cited.
  • the control valve type lead storage battery has an advantage that there is no free electrolyte flowing inside the storage battery, and the electrolyte does not spill even when the storage battery is placed sideways.
  • water electrolysis occurs during charging, it suppresses the generation of hydrogen gas, and the generated oxygen gas also has the action of reducing it back to the original water by a chemical reaction on the negative electrode plate surface.
  • the separator for a lead storage battery of the present embodiment can be suitably used particularly for a control valve type lead storage battery from the viewpoint that both mechanical strength and electrolyte retention can be achieved.
  • control valve type lead-acid battery In a control valve type lead-acid battery, the rubber valve (exhaust valve) built in the lid is closed to keep the inside of the battery airtight, but an excessive charging current flows and the internal pressure of the battery rises. At times, the rubber valve is open to release pressure.
  • the control valve-type lead-acid battery has the advantage that maintenance is extremely simple, such as no need for uniform charging and measurement of electrolyte specific gravity. Examples of the use of the control valve type lead storage battery include an uninterruptible power supply.
  • the control valve type lead acid battery can be manufactured as follows, for example.
  • lead powder which is a raw material of the active material, and kneaded with barium sulfate, carbon material, reinforcing short fibers, etc., and dilute sulfuric acid is further added.
  • lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scale-like metal lead) Is mentioned.
  • reinforcing short fibers examples include acrylic fibers, polypropylene fibers, and polyethylene terephthalate fibers.
  • the content of reinforcing short fibers in the negative electrode active material paste is preferably 0.05 to 0.3% by mass.
  • Examples of the carbon material include carbon black and graphite.
  • Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
  • the amount of carbon material added is preferably 0.2 to 1.4% by mass relative to the lead powder.
  • the amount of barium sulfate added is preferably 0.01 to 1.0 mass% with respect to the lead powder.
  • the amount of lignin sulfonic acid added is preferably 0.01 to 2.0% by mass in terms of resin solid content with respect to lead powder.
  • the negative electrode active material paste is filled into a current collector grid, aged, and then dried to produce an unformed negative electrode plate.
  • the aging conditions are preferably 40 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 90 RH%. Drying conditions are preferably 15 to 30 hours at a temperature of 50 to 80 ° C.
  • the current collector grid is composed of a lead-calcium-tin alloy, a lead-calcium alloy, or a lead-calcium-tin alloy or a lead-calcium alloy obtained by adding a small amount of arsenic, selenium, silver or bismuth thereto. Things can be used.
  • a reinforcing short fiber is added to lead powder, water and dilute sulfuric acid are further added, and this is kneaded to produce a positive electrode active material paste.
  • the positive electrode active material paste is filled into a current collector grid, aged and then dried to produce an unformed positive electrode plate.
  • the type of collector grid, aging conditions, and drying conditions are almost the same as in the case of the negative electrode plate.
  • the negative electrode plate and the positive electrode plate produced as described above are laminated via the lead-acid battery separator of this embodiment, and the electrode plates of the same polarity are connected with a strap to form an electrode plate group.
  • Dilute sulfuric acid is put into an unformed battery in which this electrode group is arranged in a battery case, and a lead storage battery is formed by chemical conversion.
  • the specific gravity of sulfuric acid is preferably 1.25 to 1.35.
  • a lead-acid battery separator of this embodiment By using the lead-acid battery separator of this embodiment, a lead-acid battery capable of improving the high-rate characteristics, extending the life, and increasing the capacity can be produced.
  • the mixture was stirred at a speed of 1000 rpm to obtain a glass fiber dispersion.
  • a papermaking apparatus Kelzan Kogyo Co., Ltd., product name: standard sheet machine papermaking apparatus
  • the porous sheet 1 having a thickness of 0.50 mm made of glass fibers having a basis weight of 120 g / m 2 was produced by filtering and drying.
  • the porous sheet 1 is cut into a 5 mm square, platinum-deposited using a platinum vapor deposition machine (Vacuum Device Inc., product name: MAGNETRON SPUTTER), and then a scanning electron microscope (Hitachi, Ltd., product name: S-4800). The electron micrograph observed in FIG. 1 is shown in FIG.
  • Example 1 After immersing the porous sheet 1 in a polypropylene emulsion (Unitika Ltd., product name: Arrow Base TC-4010) with a non-volatile content adjusted to 0.25% by mass, excess emulsion was removed with a water-absorbing filter paper, and 105 ° C. It was dried for 1 hour with a dryer set to 1 to produce a 0.51 mm thick lead-acid battery separator containing 0.5% by mass of polypropylene.
  • FIG. 2 is an electron micrograph of the lead-acid battery separator produced in Example 1. From FIG. 2, it can be confirmed that the glass fibers are bound with polypropylene.
  • Example 2 A lead-acid battery separator having a thickness of 0.52 mm containing 3% by mass of polypropylene was prepared in the same manner as in Example 1 except that the nonvolatile content of the polypropylene emulsion was changed to 0.75% by mass.
  • Example 3 A lead-acid battery separator having a thickness of 0.53 mm containing 5% by mass of polypropylene was prepared in the same manner as in Example 1 except that the nonvolatile content of the polypropylene emulsion was changed to 1.00% by mass.
  • Example 4 A lead-acid battery separator having a thickness of 0.51 mm containing 0.5% by mass of polyethylene was obtained in the same manner as in Example 1 except that the polypropylene emulsion was changed to a polyethylene emulsion (Unitika Ltd., product name: Arrow Base SE1200). Produced.
  • Example 5 A lead-acid battery separator having a thickness of 0.52 mm containing 3% by mass of polyethylene was prepared in the same manner as in Example 4 except that the nonvolatile content of the polyethylene emulsion was changed to 0.75% by mass.
  • Example 6 A lead-acid battery separator having a thickness of 0.53 mm containing 5% by mass of polyethylene was prepared in the same manner as in Example 4 except that the nonvolatile content of the polyethylene emulsion was changed to 1.00% by mass.
  • Example 7 Except for changing the polypropylene emulsion to a sulfonated emulsion of isoprene-styrene copolymer (JSR Corporation, product name: Dynaflow CS1201), 5 mass of sulfonated isoprene-styrene copolymer was obtained in the same manner as in Example 1. A separator for a lead storage battery having a thickness of 0.53 mm was prepared.
  • Example 8 After immersing the porous sheet 2 in a polypropylene emulsion whose non-volatile content is adjusted to 0.50% by mass, the excess emulsion is removed with a water-absorbing filter paper, and dried with a dryer set at 105 ° C. for 1 hour to obtain polypropylene. A 0.52 mm thick lead-acid battery separator containing 3% by mass was prepared.
  • Example 9 A lead-acid battery separator having a thickness of 0.53 mm containing 5% by mass of polypropylene was prepared in the same manner as in Example 8 except that the nonvolatile content of the polypropylene emulsion was changed to 1.00% by mass.
  • Example 10 A lead-acid battery separator having a thickness of 0.54 mm containing 10% by mass of polypropylene was prepared in the same manner as in Example 8 except that the nonvolatile content of the polypropylene emulsion was changed to 1.75% by mass.
  • Example 11 A lead-acid battery separator having a thickness of 0.52 mm containing 3% by mass of polyethylene was prepared in the same manner as in Example 8 except that the polypropylene emulsion was changed to a polyethylene emulsion.
  • Example 12 A 0.53 mm thick lead-acid battery separator containing 5% by mass of polyethylene was prepared in the same manner as in Example 11 except that the nonvolatile content of the polyethylene emulsion was changed to 1.00% by mass.
  • Example 13 A lead-acid battery separator having a thickness of 0.54 mm containing 10% by mass of polyethylene was prepared in the same manner as in Example 11 except that the nonvolatile content of the polyethylene emulsion was changed to 1.75% by mass.
  • Example 3 A lead-acid battery separator having a thickness of 0.54 mm containing 16% by mass of polypropylene was prepared in the same manner as in Example 1 except that the nonvolatile content of the polypropylene emulsion was changed to 3.25% by mass.
  • Example 4 A lead-acid battery separator having a thickness of 0.55 mm containing 16% by mass of polypropylene was prepared in the same manner as in Example 8 except that the nonvolatile content of the polypropylene emulsion was changed to 2.75% by mass.
  • Table 1 shows the compositions of the lead-acid battery separators produced in the examples and comparative examples.
  • the unit of numerical values in Table 1 is mass%.
  • a test piece having a separator cut to 10 mm ⁇ 40 mm was prepared, and using a precision universal testing machine (Shimadzu Corporation, product name: AGS-X), the distance between chucks was 20 mm, the tensile speed was 5 mm / min, and the temperature was 25.0 ° C. A tensile test was performed under the conditions, and the stress at break was defined as the tensile strength.
  • Liquid retention amount (g / g) [weight of wet specimen -weight of dry specimen] / weight of dry specimen
  • the lead-acid battery separator of the example contained a predetermined amount of thermoplastic resin, which had high mechanical strength and excellent electrolyte retention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

The purpose of the present invention is to provide a lead storage cell separator having a high mechanical strength and an excellent electrolytic solution retention performance, and a lead storage cell provided with the lead storage cell separator. The present invention pertains to a lead storage cell separator including a lead storage cell and containing glass fibers and a thermoplastic resin, the lead storage cell separator having a thermoplastic resin content of 0.1-15 mass% in relation to the total amount of the separator.

Description

鉛蓄電池用セパレータ及び鉛蓄電池Lead-acid battery separator and lead-acid battery
 本発明は、鉛蓄電池用セパレータ及び鉛蓄電池に関する。 The present invention relates to a lead-acid battery separator and a lead-acid battery.
 密閉型鉛蓄電池は、密閉容器内にセパレータと電極板とが積層配置された構成を備えるものであり、密閉容器を使用しているため、耐漏液性に優れ、補水を必要としないといった特徴を有している。密閉型鉛蓄電池内の電解液は、セパレータの孔内に流動することがないように保持されている。そのため、密閉型鉛蓄電池用セパレータには、電解液の保液性が良好なガラス繊維主体の不織布セパレータが使用されている(特許文献1参照)。 The sealed lead-acid battery has a configuration in which a separator and an electrode plate are laminated in a sealed container, and since it uses a sealed container, it has excellent leakage resistance and does not require rehydration. Have. The electrolytic solution in the sealed lead-acid battery is held so as not to flow into the pores of the separator. For this reason, a non-woven fabric separator mainly composed of glass fiber with good electrolyte retention is used for the sealed lead-acid battery separator (see Patent Document 1).
 近年、密閉型鉛蓄電池の高出力化に伴い、ハイレート特性を向上させるために薄型のセパレータが要求されている。しかしながら、ガラス繊維主体の不織布セパレータは引張強度、貫通強度等の機械的強度が低く、薄膜化した場合、電池組立時の負荷でセパレータが断裂すること、又は、極板の突起物等がセパレータを貫通して正極板と負極板が電気的に短絡(ショート)することがある。 In recent years, with the increase in output of sealed lead-acid batteries, a thin separator is required to improve the high rate characteristics. However, the nonwoven fabric separator mainly composed of glass fiber has low mechanical strength such as tensile strength and penetration strength, and when it is thinned, the separator may be torn by the load during battery assembly, or the projections on the electrode plate may The positive electrode plate and the negative electrode plate may be electrically short-circuited through.
 そこで、機械的強度を高めた密閉型鉛蓄電池用セパレータとして、ガラス繊維に有機繊維を混抄したセパレータが提案されている(特許文献2及び3参照)。 Thus, as a sealed lead-acid battery separator with improved mechanical strength, a separator in which organic fibers are mixed with glass fibers has been proposed (see Patent Documents 2 and 3).
特開平4-106869号公報JP-A-4-106869 特開昭56-99968号公報JP-A-56-99968 特開2002-313305号公報JP 2002-313305 A
 機械的強度を十分に向上させるためには、有機繊維の割合を多くする必要がある。一方、表面が疎水性である有機繊維は、電解液(硫酸水溶液)に対する濡れ性が悪く、電解液の保液性を低下させる傾向にある。そのため、密閉型鉛蓄電池用セパレータには、電解液の保液性と機械的強度とを両立することが求められている。 In order to sufficiently improve the mechanical strength, it is necessary to increase the proportion of organic fibers. On the other hand, the organic fiber having a hydrophobic surface has poor wettability with respect to the electrolyte solution (sulfuric acid aqueous solution) and tends to reduce the liquid retention of the electrolyte solution. Therefore, the separator for a sealed lead-acid battery is required to satisfy both the liquid retention of the electrolyte and the mechanical strength.
 本発明は、機械的強度が高く、電解液の保液性にも優れる鉛蓄電池用セパレータ、及び、該鉛蓄電池用セパレータを備える鉛蓄電池を提供することを目的とする。 An object of the present invention is to provide a lead-acid battery separator having high mechanical strength and excellent electrolyte retention, and a lead-acid battery including the lead-acid battery separator.
 本発明は、ガラス繊維及び熱可塑性樹脂を含む鉛蓄電池用セパレータであって、該セパレータの全質量を基準として、熱可塑性樹脂の含有量が0.1~15質量%である鉛蓄電池用セパレータに関する。 The present invention relates to a lead-acid battery separator comprising glass fibers and a thermoplastic resin, wherein the content of the thermoplastic resin is 0.1 to 15% by mass based on the total mass of the separator. .
 上記鉛蓄電池用セパレータでは、ガラス繊維が、熱可塑性樹脂で結着されていることが好ましい。該鉛蓄電池用セパレータは、ガラス繊維からなる多孔質シートに熱可塑性樹脂を含有する溶液を含浸又は塗布する工程により得ることができる。 In the lead-acid battery separator, the glass fiber is preferably bound with a thermoplastic resin. The lead-acid battery separator can be obtained by impregnating or applying a solution containing a thermoplastic resin to a porous sheet made of glass fiber.
 ガラス繊維の平均繊維径は、0.5~5μmであるとよい。熱可塑性樹脂は、オレフィン系樹脂、アクリル系樹脂、ウレタン系樹脂及びスチレン系樹脂からなる群より選ばれる少なくとも1種の樹脂を含有することができる。 The average fiber diameter of the glass fiber is preferably 0.5 to 5 μm. The thermoplastic resin can contain at least one resin selected from the group consisting of an olefin resin, an acrylic resin, a urethane resin, and a styrene resin.
 本発明はまた、上記鉛蓄電池用セパレータを備える密閉型鉛蓄電池に関する。 The present invention also relates to a sealed lead-acid battery including the lead-acid battery separator.
 本発明によれば、機械的強度が高く、電解液の保液性にも優れる鉛蓄電池用セパレータ、及び、該鉛蓄電池用セパレータを備える密閉型鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a lead-acid battery separator having high mechanical strength and excellent electrolyte retention, and a sealed lead-acid battery including the lead-acid battery separator.
 上記鉛蓄電池用セパレータは、機械的強度が高いため組立作業性に優れ、薄型化が可能となり、電解液の保液性に優れることから、電池容量及び電池寿命に優れる鉛蓄電池を作製することできる。また、このような鉛蓄電池用セパレータを用いることにより、ハイレート特性の向上、長寿命化、大容量化を可能とした鉛蓄電池を提供することができる。 The lead-acid battery separator is superior in assembly workability due to its high mechanical strength, can be thinned, and has excellent electrolyte retention, so that a lead-acid battery with excellent battery capacity and battery life can be produced. . Further, by using such a lead-acid battery separator, it is possible to provide a lead-acid battery capable of improving the high-rate characteristics, extending the life, and increasing the capacity.
多孔質シート1の電子顕微鏡写真である。2 is an electron micrograph of a porous sheet 1. 実施例1で作製した鉛蓄電池用セパレータの電子顕微鏡写真である。2 is an electron micrograph of a lead-acid battery separator produced in Example 1. FIG.
 以下に、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 本実施形態の鉛蓄電池用セパレータは、ガラス繊維及び熱可塑性樹脂を含み、該セパレータの全質量を基準として、熱可塑性樹脂の含有量が0.1~15質量%であることを特徴とする。 The lead-acid battery separator of the present embodiment includes glass fibers and a thermoplastic resin, and the thermoplastic resin content is 0.1 to 15% by mass based on the total mass of the separator.
 本実施形態に係るガラス繊維としては、鉛蓄電池の電解液である硫酸と接触することから、耐酸性ガラス繊維が好ましく、含アルカリガラス繊維がより好ましい。 As the glass fiber according to the present embodiment, acid-resistant glass fiber is preferable and alkali-containing glass fiber is more preferable because it is in contact with sulfuric acid that is an electrolyte of a lead storage battery.
 ガラス繊維の平均繊維径は、0.5~5μmであることが好ましく、0.8~4.5μmであることがより好ましく、1.0~3.5μmであることが更に好ましく、1.0~2.0μmであることが特に好ましい。繊維径が細いガラス繊維ほど、セパレータの孔を微細化できるため、耐浸透短絡性に優れたセパレータとなる。そのため、ガラス繊維の平均繊維径は5μm以下であるとよく、4.5μm以下であってもよく、3.5μm以下であってもよく、2.0μm以下であってもよい。繊維径が太いガラス繊維ほど、抄造時の濾水性に優れるため、生産効率を向上できる。そのため、ガラス繊維の平均繊維径は0.5μm以上であるとよく、0.8μm以上であってもよく、1.0μm以上であってもよい。ガラス繊維としては、平均繊維径の等しいものを単独で用いてもよく、平均繊維径の異なるものを2種以上組み合わせて用いてもよい。 The average fiber diameter of the glass fiber is preferably 0.5 to 5 μm, more preferably 0.8 to 4.5 μm, still more preferably 1.0 to 3.5 μm, It is particularly preferable that the thickness is ~ 2.0 μm. A glass fiber with a smaller fiber diameter can make the pores of the separator finer, so that the separator is excellent in permeation short circuit resistance. Therefore, the average fiber diameter of the glass fiber may be 5 μm or less, 4.5 μm or less, 3.5 μm or less, or 2.0 μm or less. A glass fiber with a thicker fiber diameter is more excellent in drainage at the time of papermaking, so that production efficiency can be improved. Therefore, the average fiber diameter of the glass fiber is preferably 0.5 μm or more, 0.8 μm or more, or 1.0 μm or more. As the glass fiber, those having the same average fiber diameter may be used alone, or two or more kinds having different average fiber diameters may be used in combination.
 ガラス繊維は、多孔質シートとして使用する。ガラス繊維からなる多孔質シートの作製方法は、特に限定されず、常法に従って抄造等により得ることができる。 Glass fiber is used as a porous sheet. The method for producing a porous sheet made of glass fiber is not particularly limited, and can be obtained by papermaking or the like according to a conventional method.
 多孔質シートにおけるガラス繊維の目付量は、30~400g/mであることが好ましく、60~350g/mであることがより好ましく、100~300g/mであることが更に好ましい。 The basis weight of the glass fiber in the porous sheet is preferably 30 to 400 g / m 2 , more preferably 60 to 350 g / m 2 , and still more preferably 100 to 300 g / m 2 .
 本実施形態の鉛蓄電池用セパレータでは、多孔質シートを構成しているガラス繊維が、熱可塑性樹脂で結着されていることが好ましい。該鉛蓄電池用セパレータは、熱可塑性樹脂を含有する溶液を、ガラス繊維からなる多孔質シートに含浸又は塗布し、熱可塑性樹脂でガラス繊維を結着させることにより作製することができる。 In the lead-acid battery separator of the present embodiment, it is preferable that the glass fibers constituting the porous sheet are bound with a thermoplastic resin. The separator for a lead storage battery can be produced by impregnating or applying a solution containing a thermoplastic resin to a porous sheet made of glass fiber and binding the glass fiber with the thermoplastic resin.
 本実施形態に係る熱可塑性樹脂としては、耐酸性及び耐水性に優れるものが好ましく、例えば、オレフィン系樹脂、アクリル系樹脂、ウレタン系樹脂、スチレン系樹脂等が挙げられる。セパレータの親水性を向上させる観点から、スルホ基、カルボキシル基等の親水基を導入した熱可塑性樹脂を用いてもよい。熱可塑性樹脂として、機械的強度及び電解液の保液性を両立し易い観点からは、オレフィン系樹脂又はスチレン系樹脂が好ましく、耐酸性及び耐水性の観点からは、ポリプロピレン又はポリエチレンが好ましい。熱可塑性樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 As the thermoplastic resin according to the present embodiment, those excellent in acid resistance and water resistance are preferable, and examples thereof include olefin resins, acrylic resins, urethane resins, styrene resins, and the like. From the viewpoint of improving the hydrophilicity of the separator, a thermoplastic resin into which a hydrophilic group such as a sulfo group or a carboxyl group is introduced may be used. As the thermoplastic resin, an olefin resin or a styrene resin is preferable from the viewpoint of easily achieving both mechanical strength and liquid retention of the electrolytic solution, and polypropylene or polyethylene is preferable from the viewpoint of acid resistance and water resistance. A thermoplastic resin may be used individually by 1 type, or may be used in combination of 2 or more type.
 熱可塑性樹脂の含有量は、鉛蓄電池用セパレータの全量を基準として0.1~15質量%であるが、電解液の保液性と機械的強度との両立の観点からは、0.2~12質量%であることが好ましく、0.5~10質量%であることがより好ましく、3~10質量%であることが更に好ましい。鉛蓄電池用セパレータ中の熱可塑性樹脂の割合が多い程、機械的強度が高くなるが、割合が増えすぎると保液量が低下する傾向にある。そのため、熱可塑性樹脂の含有量は15質量%以下であるが、12質量%以下であってもよく、10質量%以下であってもよい。また、多孔質シートを構成するガラス繊維の平均繊維径が細い程、目的の機械的強度を達成するために必要な熱可塑性樹脂の割合が増加する傾向にある。そのため、熱可塑性樹脂の含有量は0.1質量%以上であるが、0.2質量%以上であってもよく、0.5質量%以上であってもよく、3質量%以上であってもよい。 The content of the thermoplastic resin is 0.1 to 15% by mass based on the total amount of the lead-acid battery separator. However, from the viewpoint of coexistence of the liquid retention of the electrolyte and the mechanical strength, 0.2 to It is preferably 12% by mass, more preferably 0.5 to 10% by mass, and further preferably 3 to 10% by mass. As the proportion of the thermoplastic resin in the lead-acid battery separator increases, the mechanical strength increases. However, if the proportion increases excessively, the liquid retention amount tends to decrease. Therefore, although content of a thermoplastic resin is 15 mass% or less, it may be 12 mass% or less, and may be 10 mass% or less. In addition, as the average fiber diameter of the glass fibers constituting the porous sheet is thinner, the proportion of the thermoplastic resin necessary to achieve the desired mechanical strength tends to increase. Therefore, the content of the thermoplastic resin is 0.1% by mass or more, but may be 0.2% by mass or more, may be 0.5% by mass or more, and may be 3% by mass or more. Also good.
 熱可塑性樹脂を多孔質シートに均一に付着させるためには、多孔質シートに、熱可塑性樹脂を含有する溶液を含浸又は塗布した後、乾燥する方法を用いるとよい。熱可塑性樹脂を含有する溶液は、熱可塑性樹脂が分散媒に分散した分散系溶液であってもよく、熱可塑性樹脂が溶媒に均一に溶解した均一溶液であってもよい。熱可塑性樹脂の分散媒及び溶媒は特に限定されないが、抄造工程に適用するためには、水系であることが好ましい。 In order to uniformly adhere the thermoplastic resin to the porous sheet, it is preferable to use a method in which the porous sheet is impregnated or coated with a solution containing the thermoplastic resin and then dried. The solution containing the thermoplastic resin may be a dispersion solution in which the thermoplastic resin is dispersed in the dispersion medium, or may be a uniform solution in which the thermoplastic resin is uniformly dissolved in the solvent. The dispersion medium and the solvent for the thermoplastic resin are not particularly limited, but are preferably aqueous in order to be applied to the papermaking process.
 熱可塑性樹脂を分散系溶液又は均一溶液の状態で、多孔質シートに接触させることで、固形の熱可塑性樹脂からなる有機繊維とガラス繊維とを用いて鉛蓄電池用セパレータを作製する場合よりも、熱可塑性樹脂を多孔質シート中に均一に付着させることができる。多孔質シート中に均一に付着された熱可塑性樹脂は、乾燥後にガラス繊維の接点を均一に結着するため、少量の熱可塑性樹脂で、機械的強度を向上でき、保液量の低下を抑制できる。 Rather than the case where a separator for a lead storage battery is produced using organic fibers and glass fibers made of a solid thermoplastic resin by bringing the thermoplastic resin into contact with the porous sheet in a dispersion solution or a uniform solution state, The thermoplastic resin can be uniformly attached in the porous sheet. The thermoplastic resin uniformly adhered to the porous sheet uniformly binds the glass fiber contacts after drying, so the mechanical strength can be improved with a small amount of thermoplastic resin, and the decrease in liquid retention is suppressed. it can.
 熱可塑性樹脂を含有する溶液を多孔質シートに含浸又は塗布する方法は特に限定されず、常用の方法を適用できる。 The method for impregnating or applying the solution containing the thermoplastic resin to the porous sheet is not particularly limited, and a conventional method can be applied.
 熱可塑性樹脂を含有する溶液が含浸又は塗布された多孔質シートを、加熱により、乾燥する。乾燥方法には特に制限はなく、常用の乾燥方法を適用できる。乾燥時間を短縮するためには、分散媒又は溶媒の沸点以上の温度で加熱することが好ましく、作製される鉛蓄電池用セパレータの機械的強度をより向上させる観点からは、熱可塑性樹脂の融点以上の温度で加熱することが好ましい。この加熱は、一定の温度で行ってもよく、分散媒又は溶媒の沸点及び熱可塑性樹脂の融点に合わせて段階的に行ってもよい。 The porous sheet impregnated or coated with the solution containing the thermoplastic resin is dried by heating. There is no restriction | limiting in particular in a drying method, The usual drying method can be applied. In order to shorten the drying time, it is preferable to heat at a temperature equal to or higher than the boiling point of the dispersion medium or solvent. From the viewpoint of further improving the mechanical strength of the produced lead-acid battery separator, the temperature is equal to or higher than the melting point of the thermoplastic resin. It is preferable to heat at the temperature. This heating may be performed at a constant temperature, or may be performed stepwise according to the boiling point of the dispersion medium or solvent and the melting point of the thermoplastic resin.
 本実施形態の鉛蓄電池用セパレータの厚さは、0.1~3.0mmであることが好ましく、0.3~2.5mmであることがより好ましく、0.5~2.0mmであることが更に好ましく、1.0~1.5mmであることが特に好ましい。セパレータの膜厚が薄い程、ハイレート特性に優れた鉛蓄電池となり易い。そのため、セパレータの厚さは3.0mm以下であるとよく、2.5mm以下であってもよく、2.0mm以下であってもよく、1.5mm以下であってもよい。セパレータの膜厚が厚い程、耐浸透短絡性に優れた鉛蓄電池となり易い。そのため、セパレータの厚さは0.1mm以上であるとよく、0.3mm以上であってもよく、0.5mm以上であってもよく、1.0mm以上であってもよい。 The thickness of the lead-acid battery separator of this embodiment is preferably 0.1 to 3.0 mm, more preferably 0.3 to 2.5 mm, and 0.5 to 2.0 mm. Is more preferable, and 1.0 to 1.5 mm is particularly preferable. The thinner the separator film, the easier it is to have a lead-acid battery with excellent high rate characteristics. Therefore, the thickness of the separator may be 3.0 mm or less, 2.5 mm or less, 2.0 mm or less, or 1.5 mm or less. The thicker the separator, the more easily it becomes a lead-acid battery with excellent permeation resistance and short circuit resistance. Therefore, the thickness of the separator may be 0.1 mm or more, 0.3 mm or more, 0.5 mm or more, or 1.0 mm or more.
 本実施形態の鉛蓄電池用セパレータの保液量は、鉛蓄電池の特性をより向上できる観点から、6g/g以上が好ましく、7g/g以上がより好ましく、10g/g以上が更に好ましい。保液量の上限に特に制限はないが、実用的な観点からは、20g/g以下が好ましい。 The amount of liquid retained in the lead-acid battery separator of the present embodiment is preferably 6 g / g or more, more preferably 7 g / g or more, and still more preferably 10 g / g or more from the viewpoint of further improving the characteristics of the lead-acid battery. Although there is no restriction | limiting in particular in the upper limit of the amount of liquid retention, From a practical viewpoint, 20 g / g or less is preferable.
 上記保液量は、例えば、以下のようにして測定することができる。
 まず、鉛蓄電池用セパレータを20mm×20mmの大きさにカットした試験片の25℃、65.0%RHにおける重量(乾燥状態)を測定する。次いで、室温(25℃±2℃)の蒸留水に試験片を1~3分間程度含水させた後、蒸留水中から引き上げて1~2分間程度放置した後の試験片の重量(湿潤状態)を測定し、下記の式によって保液量を算出する。
 保液量(g/g)=[湿潤状態の試験片の重量-乾燥状態の試験片の重量]/乾燥状態の試験片の重量
 なお、上記保液量は、水を用いて測定した場合とする。保液量の測定に水を用いた場合は、保水量ということもある。
The liquid retention amount can be measured, for example, as follows.
First, the weight (dry state) at 25 ° C. and 65.0% RH of a test piece obtained by cutting a lead storage battery separator into a size of 20 mm × 20 mm is measured. Next, after the test piece is hydrated in distilled water at room temperature (25 ° C. ± 2 ° C.) for about 1 to 3 minutes, the weight (wet state) of the test piece after being pulled out of the distilled water and left for about 1 to 2 minutes is measured. Measure and calculate the liquid retention amount by the following formula.
Liquid retention amount (g / g) = [Weight of test piece in wet state−Weight of test piece in dry state] / Weight of test piece in dry state Note that the above liquid retention amount is the same as that measured using water. To do. When water is used to measure the amount of liquid retained, it may be referred to as the amount of water retained.
 本実施形態の鉛蓄電池用セパレータの引張強度は、鉛蓄電池の特性をより向上できる観点から、0.1MPa以上が好ましく、0.3MPa以上がより好ましく、0.5MPa以上が更に好ましい。引張強度の上限に特に制限はないが、実用的な観点からは、5MPa以下が好ましい。 The tensile strength of the lead-acid battery separator of the present embodiment is preferably 0.1 MPa or more, more preferably 0.3 MPa or more, and still more preferably 0.5 MPa or more from the viewpoint of further improving the characteristics of the lead-acid battery. Although there is no restriction | limiting in particular in the upper limit of tensile strength, From a practical viewpoint, 5 Mpa or less is preferable.
 上記引張強度は、例えば、以下のようにして測定することができる。
 まず、鉛蓄電池用セパレータを10mm×40mmにカットした試験片を準備する。次に、精密万能試験機を用いて、チャック間距離20mmになるように試験片をセットし、引張速度5mm/分、25℃の条件で引張試験を行い、破断時の応力を引張強度とする。
The tensile strength can be measured, for example, as follows.
First, a test piece obtained by cutting a lead-acid battery separator into 10 mm × 40 mm is prepared. Next, using a precision universal testing machine, set the test piece so that the distance between chucks is 20 mm, perform a tensile test under the conditions of a tensile speed of 5 mm / min and 25 ° C., and set the stress at break to the tensile strength. .
 本実施形態の鉛蓄電池用セパレータは、機械的強度が高く、電解液の保液性にも優れることから、鉛蓄電池に好適に用いることができる。 The separator for a lead storage battery of the present embodiment has high mechanical strength and is excellent in electrolyte retention, and can be suitably used for a lead storage battery.
[鉛蓄電池]
 本実施形態の鉛蓄電池は、上述の鉛蓄電池用セパレータを備えることを特徴とする。鉛蓄電池の作製方法は特に限定されず、常法に従って作製することができる。
[Lead battery]
The lead storage battery of this embodiment is provided with the above-mentioned separator for lead storage batteries. The production method of the lead storage battery is not particularly limited, and can be produced according to a conventional method.
 鉛蓄電池としては、液式鉛蓄電池及び密閉型鉛蓄電池がある。密閉型鉛蓄電池の方式としては、電解液を鉛蓄電池用セパレータに保持する方式である制御弁式鉛蓄電池が挙げられる。制御弁式鉛蓄電池は、蓄電池内部では流動するフリーの電解液が存在せず、蓄電池を横置きしても電解液がこぼれることがないという利点がある。また、充電中に水の電気分解反応が起こっても、水素ガスの発生を抑え、発生する酸素ガスも負極板表面での化学反応により元の水に還元して電解液中に戻す作用があり、水分が失われることが無く液量の点検及び補水が不要であるという利点もある。 As lead acid batteries, there are liquid lead acid batteries and sealed lead acid batteries. As a method of the sealed lead-acid battery, a control valve type lead-acid battery that is a method of holding an electrolytic solution in a lead-acid battery separator can be cited. The control valve type lead storage battery has an advantage that there is no free electrolyte flowing inside the storage battery, and the electrolyte does not spill even when the storage battery is placed sideways. In addition, even if water electrolysis occurs during charging, it suppresses the generation of hydrogen gas, and the generated oxygen gas also has the action of reducing it back to the original water by a chemical reaction on the negative electrode plate surface. In addition, there is an advantage that water is not lost and liquid amount inspection and water replenishment are unnecessary.
 本実施形態の鉛蓄電池用セパレータは、機械的強度及び電解液の保液性を両立できる観点から、特に、制御弁式鉛蓄電池に好適に用いることができる。 The separator for a lead storage battery of the present embodiment can be suitably used particularly for a control valve type lead storage battery from the viewpoint that both mechanical strength and electrolyte retention can be achieved.
 制御弁式鉛蓄電池では、蓄電池内部の気密を保つため、ふた部分に内蔵されたゴム弁(排気弁)は閉じた状態になっているが、過大な充電電流が流れて蓄電池の内圧が上昇した時はゴム弁が開いて圧を逃がすような構造となっている。このほか、制御弁式鉛蓄電池は均等充電・電解液比重測定が不要であるなど、保守が極めて簡略化できるという特長がある。制御弁式鉛蓄電池の用途としては、例えば、無停電電源装置等が挙げられる。 In a control valve type lead-acid battery, the rubber valve (exhaust valve) built in the lid is closed to keep the inside of the battery airtight, but an excessive charging current flows and the internal pressure of the battery rises. At times, the rubber valve is open to release pressure. In addition, the control valve-type lead-acid battery has the advantage that maintenance is extremely simple, such as no need for uniform charging and measurement of electrolyte specific gravity. Examples of the use of the control valve type lead storage battery include an uninterruptible power supply.
 制御弁式鉛蓄電池は、例えば、以下のようにして作製することができる。 The control valve type lead acid battery can be manufactured as follows, for example.
 まず、活物質の原料である鉛粉に対して、硫酸バリウム、炭素材料、補強用短繊維等を添加して混練した混合物に、水及びリグニンスルホン酸を加えて混合し、希硫酸を更に加えて負極活物質ペーストを作製する。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの紛体と鱗片状金属鉛の混合物)が挙げられる。 First, water and lignin sulfonic acid are added to and mixed with lead powder, which is a raw material of the active material, and kneaded with barium sulfate, carbon material, reinforcing short fibers, etc., and dilute sulfuric acid is further added. To prepare a negative electrode active material paste. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of the main component PbO and scale-like metal lead) Is mentioned.
 補強用短繊維としては、例えば、アクリル繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等が挙げられる。負極活物質ペースト中の補強用短繊維の含有量は、0.05~0.3質量%が好ましい。 Examples of the reinforcing short fibers include acrylic fibers, polypropylene fibers, and polyethylene terephthalate fibers. The content of reinforcing short fibers in the negative electrode active material paste is preferably 0.05 to 0.3% by mass.
 炭素材料としては、例えば、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ケッチェンブラック等が挙げられる。 Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
 炭素材料の添加量は、鉛粉に対して0.2~1.4質量%とすることが好ましい。硫酸バリウムの添加量は、鉛粉に対して0.01~1.0質量%とすることが好ましい。 The amount of carbon material added is preferably 0.2 to 1.4% by mass relative to the lead powder. The amount of barium sulfate added is preferably 0.01 to 1.0 mass% with respect to the lead powder.
 リグニンスルホン酸の添加量は、鉛粉に対して樹脂固形分で0.01~2.0質量%とすることが好ましい。 The amount of lignin sulfonic acid added is preferably 0.01 to 2.0% by mass in terms of resin solid content with respect to lead powder.
 次に、上記負極活物質ペーストを集電体格子に充填して、熟成した後に、乾燥させ、未化成の負極板を作製する。熟成条件は、温度35~85℃、湿度50~90RH%の雰囲気で40~60時間とすることが好ましい。乾燥条件は、温度50~80℃で15~30時間とすることが好ましい。 Next, the negative electrode active material paste is filled into a current collector grid, aged, and then dried to produce an unformed negative electrode plate. The aging conditions are preferably 40 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 90 RH%. Drying conditions are preferably 15 to 30 hours at a temperature of 50 to 80 ° C.
 集電体格子としては、鉛-カルシウム-錫合金、鉛-カルシウム合金、又は、これらに砒素、セレン、銀若しくはビスマスを微量添加した鉛-カルシウム-錫系合金、鉛-カルシウム系合金等からなるものを使用することができる。 The current collector grid is composed of a lead-calcium-tin alloy, a lead-calcium alloy, or a lead-calcium-tin alloy or a lead-calcium alloy obtained by adding a small amount of arsenic, selenium, silver or bismuth thereto. Things can be used.
 正極板を作製する場合は、例えば、鉛粉に対して、補強用短繊維を加え、更に水と希硫酸を加え、これを混練して正極活物質ペーストを作製する。この正極活物質ペーストを集電体格子に充填して、熟成した後に、乾燥させ、未化成の正極板を作製する。集電体格子の種類、熟成条件、乾燥条件は、負極板の場合とほぼ同様である。 In the case of producing a positive electrode plate, for example, a reinforcing short fiber is added to lead powder, water and dilute sulfuric acid are further added, and this is kneaded to produce a positive electrode active material paste. The positive electrode active material paste is filled into a current collector grid, aged and then dried to produce an unformed positive electrode plate. The type of collector grid, aging conditions, and drying conditions are almost the same as in the case of the negative electrode plate.
 上記のように作製した負極板と正極板とを、本実施形態の鉛蓄電池用セパレータを介して積層し、同極性の極板同士をストラップで連結させて極板群とする。この極板群を電槽内に配置した未化成電池に希硫酸を入れ、化成して鉛蓄電池とする。硫酸の比重は1.25~1.35とすることが好ましい。 The negative electrode plate and the positive electrode plate produced as described above are laminated via the lead-acid battery separator of this embodiment, and the electrode plates of the same polarity are connected with a strap to form an electrode plate group. Dilute sulfuric acid is put into an unformed battery in which this electrode group is arranged in a battery case, and a lead storage battery is formed by chemical conversion. The specific gravity of sulfuric acid is preferably 1.25 to 1.35.
 本実施形態の鉛蓄電池用セパレータを用いることで、ハイレート特性の向上、長寿命化、大容量化を可能とした鉛蓄電池を作製することができる。 By using the lead-acid battery separator of this embodiment, a lead-acid battery capable of improving the high-rate characteristics, extending the life, and increasing the capacity can be produced.
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(多孔質シート1の作製)
 平均繊維径3.5μmのガラス繊維(日本無機株式会社、製品名:FS19W-N)3g、精製水750g及び界面活性剤(明成化学株式会社、製品名:ラッコールAL)0.01gを1Lミキサー(株式会社TESCOM、製品名:TM837)に加え、30秒間攪拌した後、5Lビーカーに移し、精製水3250g及び上記界面活性剤0.04gを更に加え、ガラス繊維の凝集が目視で確認できなくなるまで回転速度1000rpmで攪拌し、ガラス繊維の分散液を得た。得られたガラス繊維の分散液を150meshのメッシュを設置した抄造装置(熊谷理機工業株式会社、製品名:スタンダードシートマシン抄紙装置)に投入し、全量10Lになるように精製水で希釈した後、濾水・乾燥して、目付量120g/mのガラス繊維からなる厚さ0.50mmの多孔質シート1を作製した。
(Preparation of porous sheet 1)
3 g of glass fiber having an average fiber diameter of 3.5 μm (Nippon Inorganic Co., Ltd., product name: FS19W-N), 750 g of purified water and 0.01 g of a surfactant (Meisei Chemical Co., Ltd., product name: Rakkal AL) are mixed in a 1 L mixer ( TESCOM Co., Ltd., product name: TM837), stirred for 30 seconds, transferred to a 5 L beaker, further added 3250 g of purified water and 0.04 g of the above surfactant, and rotated until no aggregation of glass fibers can be visually confirmed. The mixture was stirred at a speed of 1000 rpm to obtain a glass fiber dispersion. After the dispersion of the obtained glass fiber is put into a papermaking apparatus (Kumaya Riki Kogyo Co., Ltd., product name: standard sheet machine papermaking apparatus) installed with a mesh of 150 mesh, it is diluted with purified water so that the total amount becomes 10L. The porous sheet 1 having a thickness of 0.50 mm made of glass fibers having a basis weight of 120 g / m 2 was produced by filtering and drying.
 多孔質シート1を5mm角にカットし、白金蒸着機(Vacuum Device Inc.、製品名:MAGNETRON SPUTTER)を用いて白金蒸着した後、走査型電子顕微鏡(株式会社日立製作所、製品名:S-4800)で観察した電子顕微鏡写真を図1に示す。 The porous sheet 1 is cut into a 5 mm square, platinum-deposited using a platinum vapor deposition machine (Vacuum Device Inc., product name: MAGNETRON SPUTTER), and then a scanning electron microscope (Hitachi, Ltd., product name: S-4800). The electron micrograph observed in FIG. 1 is shown in FIG.
(多孔質シート2の作製)
 平均繊維径1.0μmのガラス繊維(日本無機株式会社、製品名:FM600)を用いた以外は、多孔質シート1の作製と同様にして、目付量120g/mのガラス繊維からなる厚さ0.51mmの多孔質シート2を作製した。
(Preparation of porous sheet 2)
Thickness made of glass fiber having a basis weight of 120 g / m 2 in the same manner as the production of the porous sheet 1 except that glass fiber having an average fiber diameter of 1.0 μm (Japan Inorganic Co., Ltd., product name: FM600) was used. A porous sheet 2 having a thickness of 0.51 mm was produced.
(実施例1)
 多孔質シート1を、不揮発分を0.25質量%に調整したポリプロピレンエマルジョン(ユニチカ株式会社、製品名:アローベースTC-4010)に浸漬した後、吸水濾紙で余分なエマルジョンを除去し、105℃に設定した乾燥機で1時間乾燥して、ポリプロピレンを0.5質量%含有する厚さ0.51mmの鉛蓄電池用セパレータを作製した。図2は、実施例1で作製した鉛蓄電池用セパレータの電子顕微鏡写真である。図2から、ガラス繊維がポリプロピレンで結着されていることが確認できる。
Example 1
After immersing the porous sheet 1 in a polypropylene emulsion (Unitika Ltd., product name: Arrow Base TC-4010) with a non-volatile content adjusted to 0.25% by mass, excess emulsion was removed with a water-absorbing filter paper, and 105 ° C. It was dried for 1 hour with a dryer set to 1 to produce a 0.51 mm thick lead-acid battery separator containing 0.5% by mass of polypropylene. FIG. 2 is an electron micrograph of the lead-acid battery separator produced in Example 1. From FIG. 2, it can be confirmed that the glass fibers are bound with polypropylene.
(実施例2)
 ポリプロピレンエマルジョンの不揮発分を0.75質量%に変更した以外は実施例1と同様にして、ポリプロピレンを3質量%含有する厚さ0.52mmの鉛蓄電池用セパレータを作製した。
(Example 2)
A lead-acid battery separator having a thickness of 0.52 mm containing 3% by mass of polypropylene was prepared in the same manner as in Example 1 except that the nonvolatile content of the polypropylene emulsion was changed to 0.75% by mass.
(実施例3)
 ポリプロピレンエマルジョンの不揮発分を1.00質量%に変更した以外は実施例1と同様にして、ポリプロピレンを5質量%含有する厚さ0.53mmの鉛蓄電池用セパレータを作製した。
Example 3
A lead-acid battery separator having a thickness of 0.53 mm containing 5% by mass of polypropylene was prepared in the same manner as in Example 1 except that the nonvolatile content of the polypropylene emulsion was changed to 1.00% by mass.
(実施例4)
 ポリプロピレンエマルジョンをポリエチレンエマルジョン(ユニチカ株式会社、製品名:アローベースSE1200)に変更した以外は実施例1と同様にして、ポリエチレンを0.5質量%含有する厚さ0.51mmの鉛蓄電池用セパレータを作製した。
Example 4
A lead-acid battery separator having a thickness of 0.51 mm containing 0.5% by mass of polyethylene was obtained in the same manner as in Example 1 except that the polypropylene emulsion was changed to a polyethylene emulsion (Unitika Ltd., product name: Arrow Base SE1200). Produced.
(実施例5)
 ポリエチレンエマルジョンの不揮発分を0.75質量%に変更した以外は実施例4と同様にして、ポリエチレンを3質量%含有する厚さ0.52mmの鉛蓄電池用セパレータを作製した。
(Example 5)
A lead-acid battery separator having a thickness of 0.52 mm containing 3% by mass of polyethylene was prepared in the same manner as in Example 4 except that the nonvolatile content of the polyethylene emulsion was changed to 0.75% by mass.
(実施例6)
 ポリエチレンエマルジョンの不揮発分を1.00質量%に変更した以外は実施例4と同様にして、ポリエチレンを5質量%含有する厚さ0.53mmの鉛蓄電池用セパレータを作製した。
(Example 6)
A lead-acid battery separator having a thickness of 0.53 mm containing 5% by mass of polyethylene was prepared in the same manner as in Example 4 except that the nonvolatile content of the polyethylene emulsion was changed to 1.00% by mass.
(実施例7)
 ポリプロピレンエマルジョンをイソプレン-スチレン共重合体のスルホン化物エマルジョン(JSR株式会社、製品名:ダイナフローCS1201)に変更した以外は実施例1と同様にして、イソプレン-スチレン共重合体のスルホン化物を5質量%含有する厚さ0.53mmの鉛蓄電池用セパレータを作製した。
(Example 7)
Except for changing the polypropylene emulsion to a sulfonated emulsion of isoprene-styrene copolymer (JSR Corporation, product name: Dynaflow CS1201), 5 mass of sulfonated isoprene-styrene copolymer was obtained in the same manner as in Example 1. A separator for a lead storage battery having a thickness of 0.53 mm was prepared.
(実施例8)
 多孔質シート2を、不揮発分を0.50質量%に調整したポリプロピレンエマルジョンに浸漬した後、吸水濾紙で余分なエマルジョンを除去し、105℃に設定した乾燥機で1時間乾燥して、ポリプロピレンを3質量%含有する厚さ0.52mmの鉛蓄電池用セパレータを作製した。
(Example 8)
After immersing the porous sheet 2 in a polypropylene emulsion whose non-volatile content is adjusted to 0.50% by mass, the excess emulsion is removed with a water-absorbing filter paper, and dried with a dryer set at 105 ° C. for 1 hour to obtain polypropylene. A 0.52 mm thick lead-acid battery separator containing 3% by mass was prepared.
(実施例9)
 ポリプロピレンエマルジョンの不揮発分を1.00質量%に変更した以外は実施例8と同様にして、ポリプロピレンを5質量%含有する厚さ0.53mmの鉛蓄電池用セパレータを作製した。
Example 9
A lead-acid battery separator having a thickness of 0.53 mm containing 5% by mass of polypropylene was prepared in the same manner as in Example 8 except that the nonvolatile content of the polypropylene emulsion was changed to 1.00% by mass.
(実施例10)
 ポリプロピレンエマルジョンの不揮発分を1.75質量%に変更した以外は実施例8と同様に、ポリプロピレンを10質量%含有する厚さ0.54mmの鉛蓄電池用セパレータを作製した。
(Example 10)
A lead-acid battery separator having a thickness of 0.54 mm containing 10% by mass of polypropylene was prepared in the same manner as in Example 8 except that the nonvolatile content of the polypropylene emulsion was changed to 1.75% by mass.
(実施例11)
 ポリプロピレンエマルジョンをポリエチレンエマルジョンに変更した以外は実施例8と同様にして、ポリエチレンを3質量%含有する厚さ0.52mmの鉛蓄電池用セパレータを作製した。
(Example 11)
A lead-acid battery separator having a thickness of 0.52 mm containing 3% by mass of polyethylene was prepared in the same manner as in Example 8 except that the polypropylene emulsion was changed to a polyethylene emulsion.
(実施例12)
 ポリエチレンエマルジョンの不揮発分を1.00質量%に変更した以外は実施例11と同様にして、ポリエチレンを5質量%含有する厚さ0.53mm鉛蓄電池用セパレータを作製した。
Example 12
A 0.53 mm thick lead-acid battery separator containing 5% by mass of polyethylene was prepared in the same manner as in Example 11 except that the nonvolatile content of the polyethylene emulsion was changed to 1.00% by mass.
(実施例13)
 ポリエチレンエマルジョンの不揮発分を1.75質量%に変更した以外は実施例11と同様にして、ポリエチレンを10質量%含有する厚さ0.54mmの鉛蓄電池用セパレータを作製した。
(Example 13)
A lead-acid battery separator having a thickness of 0.54 mm containing 10% by mass of polyethylene was prepared in the same manner as in Example 11 except that the nonvolatile content of the polyethylene emulsion was changed to 1.75% by mass.
(比較例1)
 多孔質シート1をそのまま鉛蓄電池用セパレータとして用いた。
(Comparative Example 1)
The porous sheet 1 was used as a lead-acid battery separator as it was.
(比較例2)
 多孔質シート2をそのまま鉛蓄電池用セパレータとして用いた。
(Comparative Example 2)
The porous sheet 2 was used as a lead-acid battery separator as it was.
(比較例3)
 ポリプロピレンエマルジョンの不揮発分を3.25質量%に変更した以外は実施例1と同様にして、ポリプロピレンを16質量%含有する厚さ0.54mmの鉛蓄電池用セパレータを作製した。
(Comparative Example 3)
A lead-acid battery separator having a thickness of 0.54 mm containing 16% by mass of polypropylene was prepared in the same manner as in Example 1 except that the nonvolatile content of the polypropylene emulsion was changed to 3.25% by mass.
(比較例4)
 ポリプロピレンエマルジョンの不揮発分を2.75質量%に変更した以外は実施例8と同様にして、ポリプロピレンを16質量%含有する厚さ0.55mmの鉛蓄電池用セパレータを作製した。
(Comparative Example 4)
A lead-acid battery separator having a thickness of 0.55 mm containing 16% by mass of polypropylene was prepared in the same manner as in Example 8 except that the nonvolatile content of the polypropylene emulsion was changed to 2.75% by mass.
(比較例5)
 平均繊維径1.0μmのガラス繊維3.0gを、平均繊維径1.0μmのガラス繊維2.7g及び有機繊維(三井化学株式会社、製品名:SWP)0.3gに変更した以外は、多孔質シート2の作製と同様の手順で、厚さ0.46mmの鉛蓄電池用セパレータを作製した。
(Comparative Example 5)
Except for changing 3.0 g of glass fiber having an average fiber diameter of 1.0 μm to 2.7 g of glass fiber having an average fiber diameter of 1.0 μm and 0.3 g of organic fiber (Mitsui Chemicals, product name: SWP), porous A separator for a lead-acid battery having a thickness of 0.46 mm was produced in the same procedure as that for producing the quality sheet 2.
(比較例6)
 平均繊維径1.0μmのガラス繊維3.0gを、平均繊維径1.0μmのガラス繊維2.1g及び有機繊維(三井化学株式会社、製品名:SWP)0.9gに変更した以外は、多孔質シート2の作製と同様の手順で、厚さ0.36mmの鉛蓄電池用セパレータを作製した。
(Comparative Example 6)
Porous except that 3.0 g of glass fiber having an average fiber diameter of 1.0 μm was changed to 2.1 g of glass fiber having an average fiber diameter of 1.0 μm and 0.9 g of organic fiber (Mitsui Chemicals, product name: SWP). A separator for a lead storage battery having a thickness of 0.36 mm was prepared in the same procedure as the preparation of the quality sheet 2.
 実施例及び比較例で作製した鉛蓄電池用セパレータの組成を表1に示す。表1中の数値の単位は、質量%である。 Table 1 shows the compositions of the lead-acid battery separators produced in the examples and comparative examples. The unit of numerical values in Table 1 is mass%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~13及び比較例1~6の各鉛蓄電池用セパレータについて、強度、保液性及び耐水性を以下の方法によって評価した。結果を表2に示す。 The strength, liquid retention and water resistance of each of the lead storage battery separators of Examples 1 to 13 and Comparative Examples 1 to 6 were evaluated by the following methods. The results are shown in Table 2.
[強度]
 セパレータを10mm×40mmにカットした試験片を準備し、精密万能試験機(株式会社島津製作所、製品名:AGS-X)を用い、チャック間距離20mm、引張速度5mm/分、25.0℃の条件で引張試験を行い、破断時の応力を引張強度とした。
[Strength]
A test piece having a separator cut to 10 mm × 40 mm was prepared, and using a precision universal testing machine (Shimadzu Corporation, product name: AGS-X), the distance between chucks was 20 mm, the tensile speed was 5 mm / min, and the temperature was 25.0 ° C. A tensile test was performed under the conditions, and the stress at break was defined as the tensile strength.
[保液性]
 セパレータを20mm×20mmの大きさにカットした試験片の25℃、65.0%RHにおける重量(乾燥状態)を1mgの単位まで測定した。次いで、室温(25℃±2℃)の蒸留水に試験片を浸漬して2分間含水させた後、水中から引き上げて1分間放置した後の試験片の重量(湿潤状態)を測定し、次の式によって保液量を算出した。
保液量(g/g)=[湿潤状態の試験片の重量-乾燥状態の試験片の重量]/乾燥状態の試験片の重量
[Liquid retention]
The weight (dry state) at 25 ° C. and 65.0% RH of a test piece obtained by cutting the separator into a size of 20 mm × 20 mm was measured to a unit of 1 mg. Next, after immersing the test piece in distilled water at room temperature (25 ° C. ± 2 ° C.) and allowing it to contain water for 2 minutes, the weight (wet state) of the test piece after being pulled out of water and allowed to stand for 1 minute is measured. The liquid retention amount was calculated by the following formula.
Liquid retention amount (g / g) = [weight of wet specimen -weight of dry specimen] / weight of dry specimen
[耐水性]
 保液性を評価した試験片を105℃に設定した乾燥機で60分間乾燥させた重量を測定し、保液性を評価する前の試験片の重量よりも減少していない場合を「A」、保液性を評価する前の試験片中に含まれていた熱可塑性樹脂の含有量未満の重量減少があった場合を「B」、保液性を評価する前の試験片に含まれていた熱可塑性樹脂の含有量と同等以上の重量減少があった場合を「C」とした。
[water resistant]
When the weight of the test piece evaluated for liquid retention was dried for 60 minutes with a drier set at 105 ° C., the case where the weight was not smaller than the weight of the test piece before the liquid retention was evaluated was “A”. , "B" if there is a weight loss less than the thermoplastic resin content contained in the test piece before evaluating the liquid retention, included in the test piece before evaluating the liquid retention The case where there was a weight loss equal to or greater than the content of the thermoplastic resin was designated as “C”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例の鉛蓄電池用セパレータは、所定量の熱可塑性樹脂を含有することで、機械的強度が高く、電解液の保液性にも優れることが確認できた。 It was confirmed that the lead-acid battery separator of the example contained a predetermined amount of thermoplastic resin, which had high mechanical strength and excellent electrolyte retention.

Claims (6)

  1.  ガラス繊維及び熱可塑性樹脂を含む鉛蓄電池用セパレータであって、
     該セパレータの全質量を基準として、前記熱可塑性樹脂の含有量が0.1~15質量%である、鉛蓄電池用セパレータ。
    A lead-acid battery separator comprising glass fiber and thermoplastic resin,
    A lead-acid battery separator, wherein the content of the thermoplastic resin is 0.1 to 15% by mass based on the total mass of the separator.
  2.  前記ガラス繊維が、前記熱可塑性樹脂で結着されている、請求項1に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to claim 1, wherein the glass fiber is bound with the thermoplastic resin.
  3.  前記ガラス繊維からなる多孔質シートに、前記熱可塑性樹脂を含有する溶液を含浸又は塗布する工程により得られる、請求項1又は2に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to claim 1 or 2, obtained by a step of impregnating or applying a solution containing the thermoplastic resin to the porous sheet made of the glass fiber.
  4.  前記ガラス繊維の平均繊維径が0.5~5μmである、請求項1~3のいずれか一項に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to any one of claims 1 to 3, wherein an average fiber diameter of the glass fibers is 0.5 to 5 µm.
  5.  前記熱可塑性樹脂が、オレフィン系樹脂、アクリル系樹脂、ウレタン系樹脂及びスチレン系樹脂からなる群より選ばれる少なくとも1種の樹脂を含有する、請求項1~4のいずれか一項に記載の鉛蓄電池用セパレータ。 The lead according to any one of claims 1 to 4, wherein the thermoplastic resin contains at least one resin selected from the group consisting of an olefin resin, an acrylic resin, a urethane resin, and a styrene resin. Storage battery separator.
  6.  請求項1~5のいずれか一項に記載の鉛蓄電池用セパレータを備える、密閉型鉛蓄電池。 A sealed lead-acid battery comprising the lead-acid battery separator according to any one of claims 1 to 5.
PCT/JP2014/081230 2013-11-27 2014-11-26 Lead storage cell separator and lead storage cell WO2015080150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015550960A JP6436092B2 (en) 2013-11-27 2014-11-26 Lead-acid battery separator and lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-244855 2013-11-27
JP2013244855 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015080150A1 true WO2015080150A1 (en) 2015-06-04

Family

ID=53199089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081230 WO2015080150A1 (en) 2013-11-27 2014-11-26 Lead storage cell separator and lead storage cell

Country Status (2)

Country Link
JP (1) JP6436092B2 (en)
WO (1) WO2015080150A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7412948B2 (en) 2019-10-03 2024-01-15 エンテックアジア株式会社 Separator for lead acid batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554842A (en) * 1978-06-27 1980-01-14 Shin Kobe Electric Mach Co Ltd Preparation of plate for lead accumulator
JPS62252065A (en) * 1986-04-23 1987-11-02 Nippon Sheet Glass Co Ltd Separator for storage battery
JPH08264171A (en) * 1995-03-27 1996-10-11 Nippon Muki Co Ltd Glass mat for lead-acid battery
JP2001273886A (en) * 2000-03-27 2001-10-05 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JP2005100808A (en) * 2003-09-25 2005-04-14 Nippon Sheet Glass Co Ltd Separator for lead storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154500A (en) * 1996-11-21 1998-06-09 Mitsui Chem Inc Separator for lead-acid battery and manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554842A (en) * 1978-06-27 1980-01-14 Shin Kobe Electric Mach Co Ltd Preparation of plate for lead accumulator
JPS62252065A (en) * 1986-04-23 1987-11-02 Nippon Sheet Glass Co Ltd Separator for storage battery
JPH08264171A (en) * 1995-03-27 1996-10-11 Nippon Muki Co Ltd Glass mat for lead-acid battery
JP2001273886A (en) * 2000-03-27 2001-10-05 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JP2005100808A (en) * 2003-09-25 2005-04-14 Nippon Sheet Glass Co Ltd Separator for lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7412948B2 (en) 2019-10-03 2024-01-15 エンテックアジア株式会社 Separator for lead acid batteries

Also Published As

Publication number Publication date
JPWO2015080150A1 (en) 2017-03-16
JP6436092B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
CN108520985B (en) Method for prolonging cycle life of zinc battery and application thereof
WO2016107564A1 (en) Composite positive material for lithium-sulphur battery with high rate performance and preparation method
CN112467079A (en) Silicon-containing negative plate and lithium ion battery comprising same
CN105970605A (en) Graphene oxide composite non-woven fabric and preparation method and application thereof
EP3306706B1 (en) Anion conducting membrane
CN111540868A (en) Preparation method and application of two-dimensional manganese dioxide modified polypropylene diaphragm
CN113328207A (en) Lithium ion battery composite diaphragm and preparation method thereof
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
CN113571839B (en) Functional composite diaphragm suitable for secondary zinc-based battery and preparation method and application thereof
CN109065805B (en) Preparation method of high-liquid-absorption-rate water-based polymer diaphragm
CN114649560A (en) Zn-MOF/PAN @ PAN composite membrane material and preparation method and application thereof
CN111342120B (en) Polymer solid electrolyte, nano composite diaphragm and preparation method thereof, and lithium metal battery
WO2023179550A1 (en) Composite oil-based separator and preparation method therefor, and secondary battery
CN109546153B (en) Preparation method of porous copper current collector, negative electrode and battery
JP6436092B2 (en) Lead-acid battery separator and lead-acid battery
CN109428054B (en) Anode pole piece, lithium ion secondary battery and preparation method
CN114171849B (en) Composite diaphragm with core-shell structure and preparation method thereof
CN114497440B (en) Negative plate and battery comprising same
CN116345064A (en) Preparation method of functional battery diaphragm
CN113921988B (en) Battery diaphragm coating material, preparation method thereof, battery diaphragm and battery
WO2016121511A1 (en) Lead storage cell separator and lead storage cell
CN117175141B (en) Lithium battery diaphragm and preparation method and application thereof
CN117352954B (en) Sodium-supplementing electrolyte diaphragm, preparation method and battery
JP2019091586A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN110993867B (en) Modified polyolefin diaphragm and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865594

Country of ref document: EP

Kind code of ref document: A1