JPH02173247A - Cold rolled steel sheet excellent in resistance to molten metal brittleness and having superior workability and its production and brazing method for same - Google Patents
Cold rolled steel sheet excellent in resistance to molten metal brittleness and having superior workability and its production and brazing method for sameInfo
- Publication number
- JPH02173247A JPH02173247A JP63325966A JP32596688A JPH02173247A JP H02173247 A JPH02173247 A JP H02173247A JP 63325966 A JP63325966 A JP 63325966A JP 32596688 A JP32596688 A JP 32596688A JP H02173247 A JPH02173247 A JP H02173247A
- Authority
- JP
- Japan
- Prior art keywords
- less
- cold
- rolled
- molten metal
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 21
- 239000002184 metal Substances 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000005219 brazing Methods 0.000 title claims description 21
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 38
- 239000010959 steel Substances 0.000 claims abstract description 38
- 238000001816 cooling Methods 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 238000000137 annealing Methods 0.000 claims abstract description 15
- 238000005098 hot rolling Methods 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 238000004804 winding Methods 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 238000005097 cold rolling Methods 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 238000005336 cracking Methods 0.000 description 9
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910001338 liquidmetal Inorganic materials 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910000655 Killed steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、深絞り等の加工後にろう付けが施されたり
、あるいは加工後に溶融Znめっきが施されるなど、加
工後の鋼板が液体金属と接触するような用途に用いて好
適な耐溶融金属脆性に優れた良加工性冷延鋼板およびそ
の製造方法ならびにそのろう付け方法に関するものであ
る。Detailed Description of the Invention (Industrial Application Field) This invention is applicable to processes such as brazing after processing such as deep drawing, or hot-dip Zn plating after processing, so that the steel plate after processing becomes liquid metal. The present invention relates to a cold-rolled steel sheet with excellent workability and excellent resistance to molten metal embrittlement suitable for use in applications where it comes into contact with metals, a method for manufacturing the same, and a method for brazing the same.
(従来の技術)
プレス加工用鋼板は従来、低炭素〔C:0.01〜0゜
05w tχ;以下単に%で示す) Alキルド鋼を素
材として、一般に箱焼鈍法で製造されていたが、最近で
は表面性状、形状および生産性の点から、C<0.01
%の極低炭素鋼を素材として連続焼鈍法によって製造さ
れるのが主流となり、材質の点においても箱焼鈍法によ
る場合をしのいでいる。(Prior art) Steel sheets for press working have conventionally been manufactured using low carbon [C: 0.01 to 0°05w tχ; hereinafter simply expressed as %] Al-killed steel using a box annealing method. Recently, from the viewpoint of surface texture, shape and productivity, C<0.01
% ultra-low carbon steel as a material by a continuous annealing method, which surpasses the box annealing method in terms of material quality.
極低C鋼では鋼中の侵入型固溶元素C,Nを固定し、耐
時効性や延性などを改善するために、Ti。In ultra-low C steel, Ti is used to fix interstitial solid solution elements C and N in the steel and improve aging resistance and ductility.
NbあるいはV、 Zr、 Taなどの炭窒化物形成元
素が添加される。現在、最も広く用いられているものは
、TiおよびNbであり、とくに両者の複合添加は単独
添加に比べて多くの利点を有している(例えば特公昭5
8407414号公報)。Carbonitride-forming elements such as Nb, V, Zr, and Ta are added. Currently, the most widely used substances are Ti and Nb, and in particular, combined addition of both has many advantages over single addition (for example,
8407414).
ところで最近、上記のような加工用鋼板につき、防錆性
、耐食性の観点からプレス成形後に溶融Znめっきが施
される用途が出現した。またかかる鋼板は、絞り成型後
の組立て工程で、気密性、寸法精度の確保の観点から、
いわゆるろう付けが行われることも多い。By the way, recently, applications have emerged in which steel sheets for processing as described above are subjected to hot-dip Zn plating after press forming from the viewpoint of rust prevention and corrosion resistance. In addition, in the assembly process after drawing and forming, such steel plates are
So-called brazing is often performed.
このような用途で上述の極低炭素鋼を使用した場合、従
来の低炭素を用いた場合には見られなかった、脆化現象
が生じ、しかもこの脆化度は加工度に依存するため、加
工度を低く抑制する必要が生じるだけでなく、脆化が生
じにくい高価な銀ろうを用いたり、歪除去焼鈍を行わな
ければならず、大きな問題となっていた。上記の脆化現
象はいわゆる液体金属脆性に属するものであり、強度の
加工による大きなミクロの残留応力が誘因の一つである
。When the above-mentioned ultra-low carbon steel is used in such applications, embrittlement occurs, which was not observed when conventional low carbon steels were used, and the degree of embrittlement depends on the degree of working. Not only does it become necessary to suppress the degree of processing to a low level, but it also requires the use of expensive silver solder that is less likely to cause embrittlement, and the need to perform strain relief annealing, which poses a major problem. The above-mentioned embrittlement phenomenon belongs to so-called liquid metal embrittlement, and one of the causes is large microscopic residual stress due to intense processing.
(発明が解決しようとする課題)
この発明は、極低炭素鋼の優れた特性を活かしたままで
、極低炭素鋼に特有な現象である加工後の溶融金属脆性
(ろう脆性、溶融Zn脆性)を解消し、より広範な用途
に使用できる加工用冷延鋼板を、その有利な製造方法お
よびその有利なろう付け方法と共に提案することを目的
とする。(Problems to be Solved by the Invention) This invention takes advantage of the excellent properties of ultra-low carbon steel and solves the problem of molten metal embrittlement (wax embrittlement, molten Zn embrittlement) after processing, which is a phenomenon specific to ultra-low carbon steel. The purpose of the present invention is to propose a cold-rolled steel sheet for processing that can be used in a wider range of applications, along with an advantageous manufacturing method and an advantageous brazing method.
なおこの発明で問題とした溶融金属脆性は、加工用鋼板
の分野においては、極低炭素鋼ではじめて取り上げられ
た問題である。The molten metal embrittlement that is a problem in this invention is a problem that was first addressed in ultra-low carbon steel in the field of steel plates for processing.
すなわち従来の低炭素A1キルド鋼は、絞り比が2.3
0を太き(上回るような超深絞りの用途に用いられたこ
とはなく、かような超深絞りの用の極低炭素鋼が開発さ
れ、かかる用途に用いられてはじめて問題とされた事項
である。In other words, conventional low carbon A1 killed steel has a drawing ratio of 2.3.
It has never been used for ultra-deep drawing applications with a thickness greater than 0, and this issue only became a problem after ultra-low carbon steel for such ultra-deep drawing applications was developed and used for such applications. It is.
ここに極低炭素鋼においてとくに上記の脆化現象が生じ
る原因は、まだ明確に解明されたわけではないが、その
割れ形態およびろうの侵入形態から判断すると、それら
がいずれもフェライト粒界に沿って起っていることから
、フェライト粒界の性質が従来の低炭素鋼とは異なるた
め、より具体的には粒界に偏析している固溶Cなどが極
度に減少したためと考えられる。The reason why the above-mentioned embrittlement phenomenon occurs especially in ultra-low carbon steel has not yet been clearly elucidated, but judging from the form of cracking and the form of penetration of solder, it seems that both of them occur along the ferrite grain boundaries. This is thought to be due to the fact that the properties of the ferrite grain boundaries are different from those of conventional low carbon steel, and more specifically, the solid solution C segregated at the grain boundaries has been extremely reduced.
(課題を解決するための手段)
さて発明者らは、上述した実情に鑑み、まず上記の溶融
脆性現象について調査し、さらにそれを再現するシミュ
レーション試験行って、溶融金属脆性の軽減策について
検討した。(Means for Solving the Problem) In view of the above-mentioned circumstances, the inventors first investigated the above-mentioned melt brittleness phenomenon, and further conducted a simulation test to reproduce it, and studied measures to reduce the molten metal brittleness. .
その際、他の諸特性(引張り特性、加工性)の劣化防止
を配慮したのは勿論であり、とくに絞り比にして2.3
0を上回るような加工を行った場合の脆化現象について
綿密な検討を行った。At that time, it goes without saying that consideration was given to preventing deterioration of other properties (tensile properties, workability), and in particular, the drawing ratio was 2.3.
A thorough study was conducted on the embrittlement phenomenon that occurs when processing is performed to exceed 0.
その結果、脆化現象は同材料を熱間のクリープを行いな
がら試験片に液体金属を接触させる際の割れ発生の有無
、あるいは破断の臨界応力で判定できることが判明した
。そこで種々の条件の下で熱間クリープ試験を液体金属
中で行い、鋼組成や鋼の組織が脆化の度合いに及ぼす影
響について調査した。その結果、かかる脆化現象は合金
組成に依存することを突止め、従って合金組成の適正化
により、実際の絞り成型部品についても脆化現象を回避
できることの知見を得たのである。As a result, it was found that the embrittlement phenomenon can be determined by the presence or absence of cracking when the material is subjected to hot creep and the test piece is brought into contact with liquid metal, or by the critical stress at break. Therefore, hot creep tests were conducted in liquid metal under various conditions to investigate the effects of steel composition and steel structure on the degree of embrittlement. As a result, they found that this embrittlement phenomenon depends on the alloy composition, and therefore, they found that by optimizing the alloy composition, it is possible to avoid the embrittlement phenomenon even in actual drawn parts.
この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.
すなわちこの発明は、
C: 0.0050%以下、
Si : 1.0%以下、
Mn : 1.2%以下、
Ti : 0.010〜0.100%、Al : 0.
005〜0.100%、P : 0.100%以下、
S:0.015%以下、
N : 0.0050%以下および
B : 0.0005〜0.0040%を含み、とき
にはさらに
Nb : 0.005〜0.025%
を含有し、残部はFeおよび不可避不純物の組成になる
耐溶融金属脆性に優れた良加工性冷延鋼板である。That is, this invention has the following properties: C: 0.0050% or less, Si: 1.0% or less, Mn: 1.2% or less, Ti: 0.010 to 0.100%, Al: 0.
005 to 0.100%, P: 0.100% or less, S: 0.015% or less, N: 0.0050% or less, and B: 0.0005 to 0.0040%, and sometimes further includes Nb: 0.005% or less. It is a cold-rolled steel sheet with excellent workability and excellent resistance to molten metal embrittlement, with the remainder being Fe and unavoidable impurities.
またこの発明は、
C: 0.0050%以下、
Si : 1.0%以下、
Mn : 1.2%以下、
Ti : 0.010〜0.100 %、Al
: 0.005〜0.100 %、P:0.10
0%以下、
S:0.015%以下、
N : 0.0050%以下および
B : 0.0005〜0.0040%を含み、とき
にはさらに
Nb : 0.005〜0.025%
を含有し、残部はFeおよび不可避不純物の組成になる
鋼片を、熱間圧延し、仕上げ熱延終了から1秒以内に冷
却を開始して、巻取りに至るまで10℃/S以上の平均
冷却速度で冷却したのち、700 ’C以下の温度で巻
取り、ついで圧下率:60%以上の冷間圧延を施したの
ち、700℃%AC,点の温度域で焼鈍を行うことを特
徴とする、耐溶融金属脆性に優れた良加工性冷延鋼板の
製造方法である。Further, this invention provides the following properties: C: 0.0050% or less, Si: 1.0% or less, Mn: 1.2% or less, Ti: 0.010-0.100%, Al
: 0.005-0.100%, P: 0.10
0% or less, S: 0.015% or less, N: 0.0050% or less, and B: 0.0005 to 0.0040%, sometimes further containing Nb: 0.005 to 0.025%, and the balance A steel billet with a composition of Fe and unavoidable impurities was hot rolled, cooling started within 1 second from the end of finish hot rolling, and cooling was performed at an average cooling rate of 10°C/S or more until coiling. A melt-resistant metal characterized by being coiled at a temperature of 700'C or less, then cold-rolled at a rolling reduction of 60% or more, and then annealed in a temperature range of 700'C% AC. This is a method for producing a cold-rolled steel sheet with excellent brittleness and good workability.
さらにこの発明は、上掲の鋼板をろう付けするに際し、
ろう付け温度Tが鋼板の成分組成に応じて定まる下記(
1)式を満足する条件下に行うことからなる耐溶融金属
脆性に優れた良加工性冷延鋼板のろう付け方法である。Furthermore, when brazing the above-mentioned steel plates, this invention provides
The brazing temperature T is determined according to the composition of the steel sheet (
1) This is a method for brazing cold rolled steel sheets with excellent workability and excellent resistance to molten metal embrittlement, which is carried out under conditions that satisfy the following formula.
記
T(’C) ≦2200[C%]+2167 (P%
) +6117〔Al%) +17220 (T
i%) +21833[Nb%) + 1225
00 〔B%] ・・・(1)(作 用)
まずこの発明鋼において成分組成を上記の範囲に限定し
た理由について述べる。Note T('C) ≦2200[C%]+2167 (P%
) +6117 [Al%) +17220 (T
i%) +21833 [Nb%) +1225
00 [B%] (1) (Function) First, the reason why the composition of this invention steel was limited to the above range will be described.
c : o、ooso%以下
加工用綱板として重要な伸び(Elおよびランクフォー
ド値(「)を向上させるためには、Cは少ないほど有利
である。従ってこの発明では、C含有量につき0.00
50%以下より望ましくは0.0035%以下に定めた
。なおclが増加すると、これを炭化物として固定し、
固溶C量を時効性等に無害な程度まで減少させるために
、より多くのTi、 Nbが必要となり、溶製コストの
上昇、作業の煩雑化、連続焼鈍温度の上昇などを招く不
利もある。c: less than o, ooso% In order to improve elongation (El) and Lankford value ('), which are important for processing steel sheets, it is more advantageous to have less C. Therefore, in this invention, the C content is less than 0.0%. 00
It is set at 50% or less, preferably 0.0035% or less. Note that when Cl increases, it is fixed as carbide,
In order to reduce the amount of solid solute C to a level that is harmless to aging properties, more Ti and Nb are required, which has disadvantages such as increased melting cost, complicated work, and increased continuous annealing temperature. .
Si : 1,0%以下
Siは、延性を大幅に低減することなしに引張強度を高
めることができるので、深絞り用高強度鋼板の製造にあ
たっては好ましい添加元素である。Si: 1.0% or less Si is a preferable additive element for producing high-strength steel sheets for deep drawing because it can increase tensile strength without significantly reducing ductility.
しかしながら、過度の添加は表面性状を劣化させるだけ
でなく、圧延等の製造工程を困難化するので、その上限
は1.0%とした。However, excessive addition not only deteriorates the surface properties but also makes manufacturing processes such as rolling difficult, so the upper limit was set at 1.0%.
門n : 1.2%以下
MnもSiと同様な有用元素であるが、過度の添加はや
はり表面性状の劣化を招くので、」二限は1.2%とし
た。Mn: 1.2% or less Mn is also a useful element similar to Si, but excessive addition also causes deterioration of the surface properties, so the second limit was set at 1.2%.
Ti: 0.010〜0.100%
Tiは、CをTiCの形で固定無害化し、El!、
r値を向上させる有用元素であり、鋼板の製造工程で析
出物を理想的な大きさまで粗大化させるためには少なく
とも0.010%を必要とする。Ti: 0.010-0.100% Ti fixes and renders C harmless in the form of TiC, and El! ,
It is a useful element that improves the r value, and at least 0.010% is required to coarsen precipitates to an ideal size in the steel sheet manufacturing process.
しかしながら、0.100%を超えて多量に添加した場
合は、固溶Ti量が顕著に増加する結果、再結晶温度が
上昇し、連続焼鈍温度を高くしなければならない不利が
生じるだけでなく、スラブ鋳造段階でノズル詰りか生し
易くなるなどの弊害も生じる。従ってこの発明ではTi
含有看は0.0’IO−0,100%の範囲に限定した
。However, when added in a large amount exceeding 0.100%, the amount of solid solution Ti increases significantly, resulting in an increase in the recrystallization temperature and the disadvantage that the continuous annealing temperature must be increased. There are also disadvantages such as the tendency for nozzle clogging to occur during the slab casting stage. Therefore, in this invention, Ti
The content was limited to a range of 0.0'IO-0.100%.
八I : 0.005〜0.100 %AIは、
溶鋼中の0を固定し、鋼の清浄度を高める有用元素であ
るが、添加量が0.005%に満たないとその添加効果
に乏しく、一方0.100%を超える多量添加はコスト
アップのみならずむしろ材質の劣化を招(ので、0.0
05〜0.100%の範囲で添加するものとした。Eight I: 0.005-0.100% AI is
It is a useful element that fixes 0 in molten steel and improves the cleanliness of steel, but if the amount added is less than 0.005%, the effect of addition is poor, while addition in large amounts exceeding 0.100% will only increase costs. Rather, it will cause deterioration of the material (so 0.0
It was supposed to be added in a range of 0.05 to 0.100%.
S : 0.015%以下 Sは加工性の面からは低減することが望ましい。S: 0.015% or less It is desirable to reduce S from the viewpoint of workability.
またSはTiと結合し、Cの固定に有効なTiを低減さ
せるので、上限を0.015%とした。Furthermore, since S combines with Ti and reduces Ti, which is effective for fixing C, the upper limit was set at 0.015%.
N : 0.0050%以下
Nは、Sと同様にTi、 Nb、AI で固定されるが
、析出物の存在はそれ自体が延性に有害であるばかりで
なく、N量に見合ったTilを添加しなければならない
のでコストの上昇につながる。従ってNの混入は極力抑
制することが好ましいが、0.0050%以下で許容さ
れる。N: 0.0050% or lessN, like S, is fixed by Ti, Nb, and AI, but the presence of precipitates is not only harmful to ductility in itself, but it is also necessary to add Ti commensurate with the amount of N. This leads to an increase in costs. Therefore, it is preferable to suppress the incorporation of N as much as possible, but it is permissible at 0.0050% or less.
P : 0.100%以下
Pは、T値を低下させることな(、また延性を大きく低
下させることなく鋼を強化できる有用元素であり、高張
力鋼板の製造の際は望ましい元素であるが、o、too
%を超えて添加した場合には耐2次加工脆性が著しく劣
化するので、0.100%以下に限定した。P: 0.100% or less P is a useful element that can strengthen steel without reducing the T value (and without significantly reducing ductility), and is a desirable element when manufacturing high-strength steel sheets. o, too
If it is added in excess of 0.100%, the resistance to secondary work brittleness will be significantly deteriorated, so it is limited to 0.100% or less.
B : 0.0005〜0.0040%Bは、少量の添
加で耐2次加工脆性の改善に大きく寄与するだけでなく
、ろう脆性および溶融Znめっき脆性などの溶融金属脆
性の改善にも有効に寄与する。ここに上記の効果が顕著
となるのは5ppm以上の添加からであり、また40p
pmを超えて添加しても効果は飽和に達するので、0.
0005〜0.0040%の範囲で添加するものとした
。B: 0.0005 to 0.0040% B not only greatly contributes to improving secondary processing embrittlement resistance when added in small amounts, but also effectively improves molten metal embrittlement such as wax embrittlement and hot-dip Zn plating embrittlement. Contribute. The above effect becomes noticeable when the amount is added at 5 ppm or more, and at 40 ppm or more.
Even if it is added in excess of pm, the effect reaches saturation, so 0.
The content was set to be in the range of 0.0005% to 0.0040%.
Nb : 0.005〜0.025%
Tiに加えてNbを0.005%以上加えることで、主
として熱延母板の組織が整粒微細化され、冷延鋼板の段
階では、面内異方性の小さい鋼板とすることができる。Nb: 0.005-0.025% By adding 0.005% or more of Nb in addition to Ti, the structure of the hot-rolled base sheet is mainly grain-sized and refined, and at the stage of cold-rolled steel sheet, in-plane anisotropy is achieved. It can be made of a steel plate with low strength.
またNbの添加は溶融金属脆性にも有効である。しかし
ながら0.0025%を超える添加は伸び値の低下およ
び再結晶温度の上昇を招くので、0.005〜0.02
5%の範囲で添加するものとした。Addition of Nb is also effective against molten metal embrittlement. However, addition of more than 0.0025% causes a decrease in elongation value and an increase in recrystallization temperature, so 0.005 to 0.02%
It was supposed to be added in a range of 5%.
次に製造法について説明すると、以下の項目について制
御を行う必要がある。Next, explaining the manufacturing method, it is necessary to control the following items.
■)仕上げ圧延終了から水冷開始までの時間1秒以内
この発明法で用いる極低炭素網は、高温における粒成長
性が極めて良いため、熱間圧延終了後の水冷開始が、圧
延終了後から1秒を超えて遅れると、極めて不均一な粒
成長が進む結果、熱延母板のフェライト粒径が不均一と
なり、冷延鋼板のr値が低下し、材質の面内異方性が増
加するばかりでなく、混粒組織となって耐2次加工脆性
も劣化する。■) Time from the end of finish rolling to the start of water cooling is within 1 second The ultra-low carbon mesh used in this invention method has extremely good grain growth properties at high temperatures, so the start of water cooling after the end of hot rolling is within 1 second after the end of rolling. If the delay exceeds seconds, extremely non-uniform grain growth progresses, resulting in non-uniform ferrite grain size in the hot-rolled base plate, a decrease in the r value of the cold-rolled steel sheet, and an increase in the in-plane anisotropy of the material. Not only that, but the secondary processing brittleness is also deteriorated due to the formation of a mixed grain structure.
2)水冷開始から巻取りに至るまでの平均冷却速度10
℃/s以上
これも1)と同じく熱延母板の不均一な粒成長を防止す
るために規定したものである。2) Average cooling rate from the start of water cooling to winding 10
℃/s or more Same as 1), this is also specified to prevent uneven grain growth in the hot-rolled mother plate.
3)巻取り温度・−700℃以下
700℃を超える温度で巻取った場合、Ej2゜下値な
どの向上効果が飽和してしまうのに加え、巻取り工程の
トラブルの増加、デスゲーリング性の劣化というデメリ
ットがある。3) Winding temperature: -700°C or lower When winding is carried out at a temperature higher than 700°C, the effect of improving Ej2゜ lower value is saturated, as well as increasing troubles in the winding process and deterioration of desgering properties. There is a disadvantage.
4)冷延圧下率−60%以」二
冷延圧下率は特にr値を向上させる上で重要であり、優
れたr値を得るためには少なくとも60%の圧下率を必
要とする。より好ましい範囲は70〜95%である。4) Cold rolling reduction -60% or less The cold rolling reduction is particularly important in improving the r value, and a reduction of at least 60% is required to obtain an excellent r value. A more preferable range is 70 to 95%.
5)焼鈍温度 −700℃−Ac3点
焼鈍温度は、好ましい材質を確保する上で重要であり、
この温度が700″Cに満たないと加工性に有利な集合
組織が充分に発達しないので高r値が得られず、であり
、一方八〇3点(約920〜930℃)を超えると深絞
り性、延性が急激に低下するので、加熱温度は700〜
Ac、の範囲に限定した。5) Annealing temperature -700℃-Ac 3-point annealing temperature is important to ensure preferable material quality.
If this temperature is less than 700"C, the texture that is advantageous for workability will not develop sufficiently, making it impossible to obtain a high r value. The heating temperature should not exceed 700℃ as the drawability and ductility will decrease rapidly.
It was limited to the range of Ac.
なお上記の焼鈍処理においては、とくに均熱を必要とす
ることはないので、かような処理に当っては連続焼鈍炉
を活用することが好ましい。In addition, in the above-mentioned annealing treatment, since soaking is not particularly required, it is preferable to utilize a continuous annealing furnace for such treatment.
さらに発明者らは、種々の化学組成より成る鋼を用いて
溶融金属脆性に及ぼす各元素の影響についても検討した
。Furthermore, the inventors also investigated the influence of each element on molten metal embrittlement using steels of various chemical compositions.
すなわち表1に示す種々の組成の鋼を溶製し、熱延、冷
延、焼鈍を行った後、絞り比2.60で円筒成型し、7
50℃に加熱してから高周波加熱ろう付けを行い、その
ときの割れ発生の有無について調べた。That is, steels with various compositions shown in Table 1 were melted, hot-rolled, cold-rolled, and annealed, and then formed into a cylinder at a drawing ratio of 2.60.
After heating to 50° C., high-frequency heating brazing was performed, and the presence or absence of cracking at that time was examined.
□□□」 その調査結果を整理して第1図に示す。□□□” The survey results are summarized and shown in Figure 1.
第1図の縦軸T c a L cは、鋼の成分組成に応
じる次式、
T”” = 2200 〔C%) +2167 (P
%) +6117〔Al%) +17220 (Ti
%) +21833〔Nb%) +122500 [B
%]から算出された値である。The vertical axis T c a L c in Fig. 1 is expressed by the following formula, T"" = 2200 [C%) +2167 (P
%) +6117 [Al%) +17220 (Ti
%) +21833 [Nb%) +122500 [B
%].
また図中の直線は、’1’ = T c+at cを示
す線である。Further, the straight line in the figure is a line indicating '1' = T c + at c.
同図より明らかなようにT c a L c≧Tであれ
ば、すなわち実際のろう付け温度Tが、鋼の成分組成に
応じて求めた算出値’1’ c a t c以下であれ
ば、割れの発生なしに良好なろう付けが実現されている
。As is clear from the figure, if T c a L c ≧T, that is, if the actual brazing temperature T is equal to or less than the calculated value '1' c a t c determined according to the chemical composition of the steel, Good brazing was achieved without cracking.
(実施例)
実施例1
表2に示す種々の成分組成になる鋼を溶製したのち、表
3に示す条件で熱延、冷延、酸洗ついで焼鈍を行った。(Example) Example 1 After melting steels having various compositions shown in Table 2, hot rolling, cold rolling, pickling, and annealing were performed under the conditions shown in Table 3.
最終板厚はいずれも0.7 mmである。The final plate thickness is 0.7 mm in all cases.
かくして得られた冷延板の機械的諸性質および脆化特性
について調査した結果を、表4に示す。Table 4 shows the results of investigating the mechanical properties and embrittlement characteristics of the cold-rolled sheets thus obtained.
なお表3中、Lは熱延後水冷開始までの時間(S)、■
は熱延終了後巻取りまでの平均冷却速度(℃/s)、C
Tは巻取り温度(℃) 、REDは冷延圧下率、Tは連
続焼鈍の均熱温度、1.は均熱時間である。In Table 3, L is the time (S) until the start of water cooling after hot rolling, ■
is the average cooling rate (°C/s) from the end of hot rolling to winding, C
T is the coiling temperature (°C), RED is the cold rolling reduction ratio, T is the soaking temperature of continuous annealing, 1. is the soaking time.
また表4中、Tcrが耐2次加工脆性の指標となるもの
であり、鋼板をブランクした後、コニカル・ダイスでカ
ップ成形し、種々の試験温度で5 kgの重鎮を80c
mの高さから落下させ、試片を圧壊させたとき脆性割れ
の発生する臨界温度をさす。その際の絞り比は2.0一
定とした。In addition, in Table 4, Tcr is an index of resistance to secondary work brittleness. After blanking a steel plate, it was cup-formed using a conical die, and 5 kg of heavy weight was heated to 80 cm at various test temperatures.
This refers to the critical temperature at which brittle cracking occurs when a specimen is crushed by dropping it from a height of m. The aperture ratio at that time was kept constant at 2.0.
表
表
表4から明らかなように、この発明の成分組成および製
造条件を満足するものはいずれも、強度レベルに応じた
低いYP、高いEfおよび高T値が得られ良好な加工性
を存するだけでなく、脆性遷移温度が一100’c程度
という実用上全く問題がないレベルの優れた耐2次加工
脆性を呈している。As is clear from Table 4, any product that satisfies the component composition and manufacturing conditions of the present invention provides low YP, high Ef, and high T values depending on the strength level, and has good workability. Rather, it exhibits excellent secondary processing brittleness with a brittle transition temperature of about 1100'C, which is at a level that poses no practical problems.
実施例2
表2に示すNα1の鋼を、表5に示す種々の条件で処理
した。Example 2 Steels with Nα1 shown in Table 2 were treated under various conditions shown in Table 5.
か(して得られた冷延板の緒特性について調べた結果を
、表5に併記する。Table 5 also shows the results of investigating the properties of the cold-rolled sheets obtained in this manner.
同表より明らかなようにこの発明法に従って製造した場
合には、高E2、高T値でしかもTcrの低い良加工性
でかつ耐2次加工脆性に優れた冷延鋼板が得られている
。As is clear from the same table, when manufactured according to the method of the present invention, a cold rolled steel sheet with high E2, high T value, low Tcr, good workability, and excellent resistance to secondary work brittleness is obtained.
実施例3
表4、表5の各供試材について絞り比2.30に絞り成
型したのち、カップ縁付近の部分を打抜き、ついで穴拡
げ加工の後、650〜900℃の各温度でろう付け試験
を行い、冷却後、割れ発生の有無を調べた。なおこのろ
う付けはろう付け部のみを局部的に高周波加熱するもの
である。Example 3 Each sample material in Tables 4 and 5 was drawn to a drawing ratio of 2.30, then punched out in the vicinity of the cup rim, then expanded, and then brazed at temperatures of 650 to 900°C. A test was conducted, and after cooling, the presence or absence of cracking was examined. Note that this brazing involves locally applying high-frequency heating to only the brazed portion.
その結果、鋼成分とろう付け温度の関係が、この発明の
適正範囲を満たす場合にはろう付けに起因した割れの発
生はなく、良好なろう付け性、言い換えれば良好な耐溶
融金属脆性を示した。As a result, when the relationship between steel composition and brazing temperature satisfies the appropriate range of this invention, no cracking occurs due to brazing, and good brazing properties, in other words, good resistance to molten metal embrittlement are exhibited. Ta.
(発明の効果)
かくしてこの発明によれば、加工性に優れるだけでなく
、耐溶融金属脆性にも優れた極低C鋼を得ることができ
、しかも実際のろう付けや溶融Znめっきに際して割れ
発生のおそれもない。(Effects of the Invention) Thus, according to the present invention, it is possible to obtain an ultra-low C steel that not only has excellent workability but also has excellent resistance to molten metal embrittlement, and is also free from cracking during actual brazing or hot-dip Zn plating. There is no fear of
第1図は、ろう付け割れに及ぼするう付け温度と鋼の成
分組成との影響を示したグラフである。
第1図
特
許
出
願
人
川
崎
製
鉄
株
式
ううイ吋1づi鼻!L 下 (0C)FIG. 1 is a graph showing the influence of brazing temperature and steel composition on brazing cracking. Figure 1 Patent Applicant Kawasaki Steel Co., Ltd. L lower (0C)
Claims (1)
耐溶融金属脆性に優れた良加工性冷延鋼板。 2、C:0.0050wt%以下、 Si:1.0wt%以下、 Mn:1.2wt%以下、 Ti:0.010〜0.100wt%、 Al:0.005〜0.100wt%、 P:0.100wt%以下、 S:0.015wt%以下、 N:0.0050wt%以下および B:0.0005〜0.0040wt% を含み、かつ Nb:0.005〜0.025wt% を含有し、残部はFeおよび不可避不純物の組成になる
耐溶融金属脆性に優れた良加工性冷延鋼板。 3、C:0.0050wt%以下、 Si:1.0wt%以下、 Mn:1.2wt%以下、 Ti:0.010〜0.100wt%、 Al:0.005〜0.100wt%、 P:0.100wt%以下、 S:0.015wt%以下、 N:0.0050wt%以下および B:0.0005〜0.0040wt% を含有し、残部はFeおよび不可避不純物の組成になる
鋼片を、熱間圧延し、仕上げ熱延終了から1秒以内に冷
却を開始して、巻取りに至るまで10℃/s以上の平均
冷却速度で冷却したのち、700℃以下の温度で巻取り
、ついで圧下率:60%以上の冷間圧延を施したのち、
700℃〜Ac_3点の温度域で焼鈍を行うことを特徴
とする、耐溶融金属脆性に優れた良加工性冷延鋼板の製
造方法。 4、C:0.0050wt%以下、 Si:1.0wt%以下、 Mn:1.2wt%以下、 Ti:0.010〜0.100wt%、 Al:0.005〜0.100wt%、 P:0.100wt%以下、 S:0.015wt%以下、 N:0.0050wt%以下および B:0.0005〜0.0040wt% を含み、かつ Nb:0.005〜0.025wt% を含有し、残部はFeおよび不可避不純物の組成になる
鋼片を、熱間圧延し、仕上げ熱延終了から1秒以内に冷
却を開始して、巻取りに至るまで10℃/s以上の平均
冷却速度で冷却したのち、700℃以下の温度で巻取り
、ついで圧下率:60%以上の冷間圧延を施したのち、
700℃〜Ac_3点の温度域で焼鈍を行うことを特徴
とする、耐溶融金属脆性に優れた良加工性冷延鋼板の製
造方法。 5、請求項1または2記載の鋼板をろう付けするに際し
、ろう付け温度Tが鋼板の成分組成に応じて定まる下記
(1)式を満足する条件下に行うことを特徴とする、耐
溶融金属脆性に優れた良加工性冷延鋼板のろう付け方法
。 記 T(℃)≦2200〔C%〕+2167〔P%〕+61
17〔Al%〕+17220〔Ti%〕+21833〔
Nb%〕+122500〔B%〕・・・(1)[Claims] 1. C: 0.0050 wt% or less, Si: 1.0 wt% or less, Mn: 1.2 wt% or less, Ti: 0.010 to 0.100 wt%, Al: 0.005 to 0. .100 wt%, P: 0.100 wt% or less, S: 0.015 wt% or less, N: 0.0050 wt% or less, and B: 0.0005 to 0.0040 wt%, with the remainder being Fe and unavoidable impurities. A cold-rolled steel sheet with excellent workability and excellent resistance to molten metal embrittlement. 2, C: 0.0050 wt% or less, Si: 1.0 wt% or less, Mn: 1.2 wt% or less, Ti: 0.010 to 0.100 wt%, Al: 0.005 to 0.100 wt%, P: 0.100 wt% or less, S: 0.015 wt% or less, N: 0.0050 wt% or less, and B: 0.0005 to 0.0040 wt%, and Nb: 0.005 to 0.025 wt%, The remainder consists of Fe and unavoidable impurities, making it a cold-rolled steel sheet with good workability and excellent resistance to molten metal embrittlement. 3. C: 0.0050 wt% or less, Si: 1.0 wt% or less, Mn: 1.2 wt% or less, Ti: 0.010 to 0.100 wt%, Al: 0.005 to 0.100 wt%, P: A steel piece containing 0.100 wt% or less, S: 0.015 wt% or less, N: 0.0050 wt% or less, and B: 0.0005 to 0.0040 wt%, with the balance being Fe and unavoidable impurities. After hot rolling, start cooling within 1 second from the end of finish hot rolling, cool at an average cooling rate of 10°C/s or more until coiling, then winding at a temperature of 700°C or less, and then rolling. After cold rolling at a rate of 60% or more,
A method for manufacturing a cold-rolled steel sheet with excellent workability and excellent resistance to molten metal embrittlement, characterized by performing annealing in a temperature range of 700°C to Ac_3 points. 4, C: 0.0050 wt% or less, Si: 1.0 wt% or less, Mn: 1.2 wt% or less, Ti: 0.010 to 0.100 wt%, Al: 0.005 to 0.100 wt%, P: 0.100 wt% or less, S: 0.015 wt% or less, N: 0.0050 wt% or less, and B: 0.0005 to 0.0040 wt%, and Nb: 0.005 to 0.025 wt%, A steel billet with the remainder consisting of Fe and unavoidable impurities is hot-rolled, cooling begins within 1 second from the end of finish hot rolling, and is cooled at an average cooling rate of 10°C/s or more until coiling. After that, it is rolled up at a temperature of 700°C or less, and then cold-rolled at a rolling reduction of 60% or more.
A method for manufacturing a cold-rolled steel sheet with excellent workability and excellent resistance to molten metal embrittlement, characterized by performing annealing in a temperature range of 700°C to Ac_3 points. 5. A melt-resistant metal characterized in that when brazing the steel plate according to claim 1 or 2, the brazing temperature T is performed under conditions that satisfy the following formula (1), which is determined depending on the composition of the steel plate. A method for brazing cold-rolled steel sheets with excellent brittleness and good workability. T (℃)≦2200 [C%] +2167 [P%] +61
17 [Al%] + 17220 [Ti%] + 21833 [
Nb%]+122500[B%]...(1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63325966A JPH02173247A (en) | 1988-12-26 | 1988-12-26 | Cold rolled steel sheet excellent in resistance to molten metal brittleness and having superior workability and its production and brazing method for same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63325966A JPH02173247A (en) | 1988-12-26 | 1988-12-26 | Cold rolled steel sheet excellent in resistance to molten metal brittleness and having superior workability and its production and brazing method for same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02173247A true JPH02173247A (en) | 1990-07-04 |
Family
ID=18182582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63325966A Pending JPH02173247A (en) | 1988-12-26 | 1988-12-26 | Cold rolled steel sheet excellent in resistance to molten metal brittleness and having superior workability and its production and brazing method for same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02173247A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270215A (en) * | 2006-03-30 | 2007-10-18 | Jfe Steel Kk | Method for producing cold-rolled sheet steel excellent in resistance to secondary working brittleness |
JP2015101776A (en) * | 2013-11-27 | 2015-06-04 | 新日鐵住金株式会社 | Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and alloyed hot-dip galvanized cold rolled steel sheet each having high young modulus and excellent in workability and production methods of them |
EP3395983A4 (en) * | 2015-12-22 | 2018-12-19 | Posco | Cold rolled steel sheet for continuous type self-brazing and manufacturing method therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59140333A (en) * | 1983-01-28 | 1984-08-11 | Nippon Steel Corp | Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability |
JPS63243225A (en) * | 1987-03-31 | 1988-10-11 | Nisshin Steel Co Ltd | Production of cold rolled steel sheet having excellent resistance to cracking by brazing |
-
1988
- 1988-12-26 JP JP63325966A patent/JPH02173247A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59140333A (en) * | 1983-01-28 | 1984-08-11 | Nippon Steel Corp | Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability |
JPS63243225A (en) * | 1987-03-31 | 1988-10-11 | Nisshin Steel Co Ltd | Production of cold rolled steel sheet having excellent resistance to cracking by brazing |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270215A (en) * | 2006-03-30 | 2007-10-18 | Jfe Steel Kk | Method for producing cold-rolled sheet steel excellent in resistance to secondary working brittleness |
JP2015101776A (en) * | 2013-11-27 | 2015-06-04 | 新日鐵住金株式会社 | Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and alloyed hot-dip galvanized cold rolled steel sheet each having high young modulus and excellent in workability and production methods of them |
EP3395983A4 (en) * | 2015-12-22 | 2018-12-19 | Posco | Cold rolled steel sheet for continuous type self-brazing and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7959747B2 (en) | Method of making cold rolled dual phase steel sheet | |
US6663725B2 (en) | High strength steel sheet and method for manufacturing the same | |
JP2017048412A (en) | Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor | |
US10301700B2 (en) | Method for producing a steel component | |
JPS6240405B2 (en) | ||
JPH0747797B2 (en) | Steel plate for enamel having excellent scabbing resistance, bubble resistance, black spot defect resistance and press formability, and method for producing the same | |
KR100264258B1 (en) | Cold rolled steel strip and hot dip coated cold rolled steel strip for use as building material and manufacturing method thereof | |
JPS6256209B2 (en) | ||
JPH0312131B2 (en) | ||
JP3864663B2 (en) | Manufacturing method of high strength steel sheet | |
JPH0567684B2 (en) | ||
JPH02173247A (en) | Cold rolled steel sheet excellent in resistance to molten metal brittleness and having superior workability and its production and brazing method for same | |
JP4273646B2 (en) | High-strength thin steel sheet with excellent workability and manufacturing method thereof | |
JPH09209039A (en) | Production of high strength cold rolled steel sheet excellent in deep drawability | |
JPS5884928A (en) | Production of high-strength cold-rolled steel plate for deep drawing having excellent nonaging property, secondary workability and curing performance for baked paint | |
JPH06116682A (en) | Thin steel sheet for high strength can having baking hardenability and production thereof | |
JP3773604B2 (en) | High-strength cold-rolled steel sheet or hot-dip galvanized steel slab excellent in deep drawability and method for producing the same | |
JP2003034825A (en) | Method for manufacturing high strength cold-rolled steel sheet | |
JP3419000B2 (en) | High-strength cold-rolled steel sheet excellent in deep drawability and secondary work brittle resistance, and method for producing the same | |
JPH04333526A (en) | Hot rolled high tensile strength steel plate having high ductility and its production | |
JPH0987748A (en) | Production of non-if steel-based nonaging dead soft cold-rolled steel sheet | |
JPS633930B2 (en) | ||
KR100544540B1 (en) | High Strength Cold-Rolled Steel Sheet with Good Elongation for Coil Packaging Band And A Method for Manufacturing Thereof | |
JPH08120337A (en) | Production of hot rolled steel sheet excellent in bore expandability and corrosion resistance | |
JPH0277558A (en) | Cold rolled sheet metal having superior workability, reduced in in-plane anisotropy, and excellent in secondary working brittleness and its production |