JPH02172899A - Composite semiconductor substrate - Google Patents

Composite semiconductor substrate

Info

Publication number
JPH02172899A
JPH02172899A JP32361288A JP32361288A JPH02172899A JP H02172899 A JPH02172899 A JP H02172899A JP 32361288 A JP32361288 A JP 32361288A JP 32361288 A JP32361288 A JP 32361288A JP H02172899 A JPH02172899 A JP H02172899A
Authority
JP
Japan
Prior art keywords
single crystal
layer
intermediate layer
substrate
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32361288A
Other languages
Japanese (ja)
Inventor
Masashi Yamaguchi
真史 山口
Mitsuru Sugo
須郷 満
Yoshio Ito
義夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32361288A priority Critical patent/JPH02172899A/en
Publication of JPH02172899A publication Critical patent/JPH02172899A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the high-quality compd. semiconductor substrate by providing a specific intermediate layer and a strain superlattice layer and adding specific impurities to a single crystal layer of the compd. semiconductor at the time of growing the single crystal of the compd. semiconductor consisting of group III-V elements or II-VI elements of periodic law table on the single crystal substrate consisting of Si, Ge, etc. CONSTITUTION:The following constitution is adopted at the time of forming the compd. semiconductor material formed by providing the single crystal layer of the compd. semiconductor consisting of the group III-V elements or II-VI elements of periodic law table which are different in component compsn. from the component compsn. of the single crystal substrate on the prescribed single crystal substrate: The 1st intermediate layer as an initial growth layer consisting of the above-mentioned compd. semiconductor is first formed as the intermediate layer to be introduced between the single crystal substrate and the single crystal layer of the compd. semiconductor, then the 2nd intermediate layer consisting of the strain superlattice layer composed of at least one kind among InGaAs/GaAs, InAsP/InP, etc., is provided on this 1st intermediate layer. The impurities of at least one kind selected from Si, S, Zn, Mg, In, and Al are added at >=2X10<18>cm<-3> to the whole or a part of the single crystal layer of the magnetic compd. semiconductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合半導体基板に係り、特に単結晶基板上に、
元素の周期表■−■もしくはII−VI族の元素よりな
る化合物半導体の単結晶層を成長させた、転位密度の極
めて少ない高品質の半導体へテロエピタキシャル基板に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a composite semiconductor substrate, and in particular, to a single crystal substrate,
The present invention relates to a high-quality semiconductor heteroepitaxial substrate having an extremely low dislocation density, on which a single crystal layer of a compound semiconductor made of elements from Groups ■-■ or II-VI of the Periodic Table of Elements is grown.

〔従来の技術〕[Conventional technology]

SiやGeなどの半導体単結晶基板上に、該単結晶基板
とは組成の異なるGaAs、InP、Zn5aなどの化
合物半導体の単結晶層を成長させた複合半導体基板が作
製されている。これらの複合半導体基板を用いて、高性
能な半導体デバイスを実現するためには、半導体単結晶
層内の格子欠陥が少ないことが要求される。しかし、従
来の複合半導体基板において、半導体よりなる単結晶基
板材料と半導体単結晶層材料との格子常数および熱膨張
係数が異なるため、格子不整合に起因する不整合転位や
熱応力に起因する転位が発生するため、10@〜10”
cm−”程度の高密度の転位が半導体単結晶層内に存在
するという問題があった。
A composite semiconductor substrate is manufactured by growing a single crystal layer of a compound semiconductor such as GaAs, InP, or Zn5a having a composition different from that of the single crystal substrate on a single crystal semiconductor substrate such as Si or Ge. In order to realize high-performance semiconductor devices using these composite semiconductor substrates, it is required that the semiconductor single crystal layer has few lattice defects. However, in conventional composite semiconductor substrates, because the lattice constant and thermal expansion coefficient of the single crystal substrate material made of semiconductor and the semiconductor single crystal layer material are different, mismatched dislocations caused by lattice mismatch and dislocations caused by thermal stress occur. occurs, so 10@~10”
There has been a problem in that high-density dislocations on the order of cm-'' exist within the semiconductor single crystal layer.

従来、上記半導体単結晶層内の転位密度の低減をはかる
ため、熱アニール処理や、単結晶基板と半導体単結晶層
との間に歪超格子層などの中間層を導入する試みがなさ
れている。ここで、Si単結晶基板上に、GaAs単結
晶単結晶酸した従来の複合半導体基板を例にして、半導
体単結晶層内の転位低減に関する従来技術の問題点を説
明する。
Conventionally, attempts have been made to reduce the dislocation density within the semiconductor single crystal layer by using thermal annealing treatment or introducing an intermediate layer such as a strained superlattice layer between the single crystal substrate and the semiconductor single crystal layer. . Here, problems in the prior art regarding reduction of dislocations in a semiconductor single crystal layer will be explained using as an example a conventional composite semiconductor substrate in which GaAs single crystal acid is formed on a Si single crystal substrate.

第3図に、従来の複合半導体基板の構成の一例を示す、
Siなどの単結晶基板l上に、有機金属気相成長(OM
VPE)法などで、GaAsなどの単結晶成長層2を形
成する際、単結晶成長層2内の転位密度を低減させるた
めに、結晶成長温度が400℃程度の低温結晶成長層お
よび700℃程度の高温結晶成長層からなる第1中間暦
3を形成さt−後20〜300℃の温度から700〜9
00℃までの温度の間を数回繰り返す熱アニール処理を
行いながらInGaAs/GaAsなどからなる第2中
間層4を形成させていた【山口らニアブライドフィジッ
クス レターズ(Applied Physics L
etters)53巻、21号、 1988年(頁不詳
)〕。
FIG. 3 shows an example of the configuration of a conventional composite semiconductor substrate.
Metal organic chemical vapor phase epitaxy (OM) is applied onto a single crystal substrate such as Si.
When forming a single crystal growth layer 2 of GaAs or the like using VPE) method, etc., in order to reduce the dislocation density in the single crystal growth layer 2, a low temperature crystal growth layer with a crystal growth temperature of about 400°C and a low temperature crystal growth layer of about 700°C are used. After forming the first intercalary layer 3 consisting of a high temperature crystal growth layer of t-700-9
The second intermediate layer 4 made of InGaAs/GaAs was formed by repeating thermal annealing several times at temperatures up to 00°C [Yamaguchi et al., Applied Physics Letters].
etters) Volume 53, No. 21, 1988 (page unknown)].

この従来の方法で作製したGaAs/Siからなる複合
半導体基板について、GaAs単結晶成長層2内におけ
る転位密度低減に及ぼすInGaAs/GaAs歪超格
子層で構成されている第2中間M4の効果を第4図に示
す。図において、第2中間層4の導入により、GaAs
単結晶成長WJ2内にInGaAs/GaAs歪超格子
層の組成および層厚に依存した応力が加わり、単結晶内
の転位同士の合体などによって転位の伝播が抑制される
結果、単結晶成長N2内の転位密度の低減をもたらすこ
とになる。しかし、第4図に示すごとく、応力値で10
’dyn/ am”までは、単結晶成長層2内の転位密
度の低減は顕著であるが、 10’dyn/cm2以上
では、転位発生臨界応力を超えるため、GaAs単結晶
成長層2内には転位が発生することになる。このように
、従来技術においては、GaAs単結晶成長層2内の転
位密度は約10’cn−”が限界であった。
Regarding the composite semiconductor substrate made of GaAs/Si produced by this conventional method, the effect of the second intermediate M4 composed of the InGaAs/GaAs strained superlattice layer on the reduction of dislocation density in the GaAs single crystal growth layer 2 was investigated. Shown in Figure 4. In the figure, by introducing the second intermediate layer 4, GaAs
Stress that depends on the composition and layer thickness of the InGaAs/GaAs strained superlattice layer is applied to the single crystal growth WJ2, and dislocation propagation is suppressed by coalescence of dislocations within the single crystal. This results in a reduction in dislocation density. However, as shown in Figure 4, the stress value is 10
Up to 'dyn/am', the reduction in the dislocation density in the single crystal growth layer 2 is remarkable, but at 10'dyn/cm2 or more, the dislocation generation critical stress is exceeded, so the dislocation density in the GaAs single crystal growth layer 2 is reduced. Thus, in the conventional technology, the dislocation density in the GaAs single crystal growth layer 2 was limited to about 10'cn-''.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したごとく、従来技術における複合半導体基板にお
いて、単結晶基板上に設ける半導体単結晶層内の転位密
度の低減をはかるために、熱アニール処理や歪超格子層
などの中間層の導入が試みられているが、半導体単結晶
層内の転位密度の低減には限界があった。
As mentioned above, in conventional composite semiconductor substrates, in order to reduce the dislocation density in the semiconductor single crystal layer provided on the single crystal substrate, attempts have been made to introduce intermediate layers such as thermal annealing and strained superlattice layers. However, there was a limit to the reduction of dislocation density within a semiconductor single crystal layer.

本発明の目的は、上記従来技術の欠点を解消し、転位密
度の極めて少ない高品質の半導体へテロエピタキシャル
単結晶成長層を有する複合半導体基板を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a composite semiconductor substrate having a high quality semiconductor heteroepitaxial single crystal growth layer with extremely low dislocation density.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の課題を達成するために、Si、Geなどからな
る所定の単結晶基板上に、該単結晶基板とは成分組成の
異なるGaAsやInPなどの元素の周期表III族と
V族の元素もしくはZn5eなどのII族とVI族の元
素などよりなる化合物半導体の単結晶層を設けた複合半
導体基板を作製する場合において5上記単結晶基板と上
記化合物半導体の単結晶層との間に導入する中間層とし
て、上記単結晶基板上に初期成長層としての上記化合物
半導体よりなる第1の中間層を形成し、該第1の中間m
上に、InGaAs/GaAs、InGaAs/GaA
sP。
In order to achieve the objects of the present invention, on a predetermined single crystal substrate made of Si, Ge, etc., elements of Group III and Group V of the periodic table, such as GaAs and InP, whose composition is different from that of the single crystal substrate. Alternatively, in the case of manufacturing a composite semiconductor substrate provided with a single crystal layer of a compound semiconductor made of elements of group II and group VI such as Zn5e, 5 is introduced between the single crystal substrate and the single crystal layer of the compound semiconductor. As an intermediate layer, a first intermediate layer made of the compound semiconductor as an initial growth layer is formed on the single crystal substrate, and the first intermediate layer m
On top, InGaAs/GaAs, InGaAs/GaA
sP.

AffiGaAs/GaAg、InAsP/InP、I
nP/InGaP、Zn5e/ZnSSe、ZnSeT
e/ZnSeなどのうちより選択される少なくとも1種
の歪超格子層よりなる第2の中間層を形成し、かつ形成
する上記化合物半導体の単結晶層または/および第1の
中間層と第2の中間層のうちのいずれか一層もしくは両
層の全部、もしくはこれらの各層の一部に、SL、S、
Zn、Mg、In、AMなどのうちより選択される少な
くとも1種の不純物を。
AffiGaAs/GaAg, InAsP/InP, I
nP/InGaP, Zn5e/ZnSSe, ZnSeT
A second intermediate layer made of at least one strained superlattice layer selected from e/ZnSe, etc., and a single crystal layer and/or the first intermediate layer of the compound semiconductor to be formed; SL, S,
At least one impurity selected from Zn, Mg, In, AM, etc.

2 X 10” am−”個以上添加したものである。2 x 10" am-" or more.

そして、上記本発明の複合半導体基板の中間層を形成す
る過程において、第1の中間層および第2の中間層の導
入前もしくは導入前後に、基板温度を700〜900℃
の温度範囲から0〜300℃の温度範囲までの間を、1
〜200回繰り返す熱アニール処理を施すことによって
、いっそう転位密度の少ない高品質の半導体へテロエピ
タキシャル基板が得られる。
In the process of forming the intermediate layer of the composite semiconductor substrate of the present invention, the substrate temperature is lowered to 700 to 900° C. before or after the introduction of the first intermediate layer and the second intermediate layer.
from the temperature range of 0 to 300℃, 1
By repeating the thermal annealing treatment up to 200 times, a high quality semiconductor heteroepitaxial substrate with even lower dislocation density can be obtained.

ここで1本発明に係わる複合半導体基板の基本構成例を
挙げ、図面に基づいて、さらに具体的に説明する。
Here, an example of the basic configuration of a composite semiconductor substrate according to the present invention will be given and explained in more detail based on the drawings.

第1図に示すごとく、Si、Geなどの単結晶基板1上
に、有機金属気相成長(OMVPE)法などで、GaA
s、InP、Zn5eなどの単結晶成長層2を形成する
際、単結晶成長層2内の転位密度を低減させるため、成
長温度400℃程度の低温結晶成長層および700℃程
度の高温結晶成長層からなる第1中間暦(初期成長、I
り 3を形成した後、0〜300℃から700〜900
℃までの数回の熱アニールを繰り返し、InGaAs/
GaAsなどからなる第2中間層(歪超格子層)4を形
成する。ここまでは、従来の技術と共通する構成である
が1本発明においては、さらに単結晶成長n2あるいは
その一部〔第1図(a)に例示〕、または上記初期成長
層、歪超格子層などからなる第1,2中間層3.4ある
いはその一部〔第1図(b))、あるいは単結晶成長層
2.第1中間RIJ3、第2中間屑4の成長届全域【第
1図(C〕〕に、Si、S。
As shown in FIG. 1, GaA
When forming the single crystal growth layer 2 of S, InP, Zn5e, etc., in order to reduce the dislocation density in the single crystal growth layer 2, a low temperature crystal growth layer with a growth temperature of about 400°C and a high temperature crystal growth layer with a growth temperature of about 700°C are used. The first intercalary (initial growth, I
After forming 3, heat from 0 to 300℃ to 700 to 900℃.
By repeating thermal annealing several times to ℃, InGaAs/
A second intermediate layer (strained superlattice layer) 4 made of GaAs or the like is formed. Up to this point, the configuration is common to the conventional technology, but in the present invention, the single crystal growth n2 or a part thereof (as illustrated in FIG. 1(a)), the initial growth layer, the strained superlattice layer, etc. The first and second intermediate layers 3.4 or a part thereof (FIG. 1(b)), or the single crystal growth layer 2. In the growth report area of the first intermediate RIJ 3 and the second intermediate scrap 4 [Figure 1 (C)], Si and S are present.

Zn、Mg、In、Alなとの不純物を 2XLO”c
m−’以上添加して、不純物添加した単結晶成長層2′
、不純物添加した第1中間層3′、不純物添加した第2
中間層4′によって構成することを特徴とする複合半導
体基板である。
Impurities such as Zn, Mg, In, and Al 2XLO”c
Single crystal growth layer 2' doped with impurities by adding m-' or more
, a first doped intermediate layer 3', a second doped intermediate layer 3', and a second doped intermediate layer 3'.
This is a composite semiconductor substrate characterized by comprising an intermediate layer 4'.

第2図に、本発明のGaAs/Siよりなる複合半導体
基板における単結晶成長層2内の転位密度低減に及ぼす
歪超格子層による応力効果を、従来技術と比較して示す
。歪超格子層からなる第2中間WJ4の導入により、単
結晶成長層2内に歪超格子層の組成および層厚に依存し
た応力が加わり。
FIG. 2 shows the stress effect of the strained superlattice layer on the reduction of dislocation density in the single crystal growth layer 2 in the GaAs/Si composite semiconductor substrate of the present invention in comparison with the conventional technique. By introducing the second intermediate WJ4 made of a strained superlattice layer, stress depending on the composition and layer thickness of the strained superlattice layer is applied within the single crystal growth layer 2.

単結晶内の転位同士の合体などにより転位の伝播を抑制
する結果、単結晶成長M2内の転位密度低減をもたらす
ことになる。従来技術では、107dyn/12以上で
転位発生臨界応力を超えるため、単結晶成長層2内に転
位が発生することになる。この結果、従来技術において
は、単結晶成長WJ2内の転位密度は約1061−2が
限界であったのに対し、本発明では第2図に示すように
、不純物添加した単結晶成長層2′などにsi、 s、
 Zr+、 Mg+ In。
As a result of suppressing the propagation of dislocations by coalescence of dislocations within the single crystal, etc., the dislocation density within the single crystal growth M2 is reduced. In the prior art, dislocations occur in the single crystal growth layer 2 because the critical stress for generating dislocations is exceeded at 107 dyn/12 or more. As a result, in the conventional technology, the dislocation density in the single crystal grown WJ2 was limited to about 1061-2, whereas in the present invention, as shown in FIG. si, s, etc.
Zr+, Mg+ In.

Alなとの不純物を2X10”■1以上添加したため、
不純物添加した単結晶成長層2′内の転位発生臨界応力
を約1桁向上させることができ、その結果、単結晶成長
層2内の転位密度を10’an−”以下と、1桁以上の
転位密度の低減をはかることができる。
Because more than 2X10"■1 of impurities such as Al were added,
The critical stress for dislocation generation in the impurity-doped single-crystal growth layer 2' can be improved by about one order of magnitude, and as a result, the dislocation density in the single-crystal growth layer 2 can be reduced to 10'an-'' or less, by more than one order of magnitude. Dislocation density can be reduced.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図面に基づきさらに詳
細に説明する。
An embodiment of the present invention will be described below in more detail based on the drawings.

(実施例1) 第1図に、GaAs/Siからなる本発明の複合半導体
基板の構成の一例を示す。図において、SLの単結晶基
板1上に、有機金属気相成長法により、成長温度400
℃程度の低温成長GaAs層および700℃程度の高温
成長GaAJj7からなる第1中間層3を、約1.5μ
m形成した後、20℃から800℃まで5〜lO回の熱
アニールを繰り返した。
(Example 1) FIG. 1 shows an example of the structure of a composite semiconductor substrate of the present invention made of GaAs/Si. In the figure, SL single crystal substrate 1 is grown at a growth temperature of 400 by metal organic vapor phase epitaxy.
The first intermediate layer 3 consisting of a GaAs layer grown at a low temperature of about 700°C and a GaAJj layer grown at a high temperature of about 700°C is
After forming M, thermal annealing was repeated 5 to 10 times from 20°C to 800°C.

この後、In、、1Ga0.、As/GaAsの各々の
層の厚さ1000人ずつの10周期構造からなる歪超格
子Mに、不純物としてSiを約5 X 10” cm−
’添加して、不純物を添加した第2中間層4′を形成し
た。さらに、700℃でGaAsに不純物を添加した単
結晶成長R2’ を、不純物としてSiを約5X10”
■−3添加しつつ、1μm形成した。このように、本発
明に基づ(GaAs/Siからなる複合半導体基板のG
aAs単結晶成長NJ2内の転位密度を透過電子線顕微
鏡やエッチピット評価法で調べたところ、約10’CI
I+”であり、従来に比べて約1桁の転位密度の低減が
はかられ、顕著な効果がみられた。
After this, In,, 1Ga0. , Si was added as an impurity to a strained superlattice M consisting of a 10-periodic structure with each layer of As/GaAs having a thickness of 1000 layers, about 5 x 10" cm-
' was added to form a second intermediate layer 4 ' doped with impurities. Furthermore, a single crystal R2' of GaAs doped with impurities was grown at 700°C, and Si was added as an impurity to approximately 5×10"
(1) While adding -3, a 1 μm thick layer was formed. In this way, based on the present invention (G of a composite semiconductor substrate made of GaAs/Si)
When the dislocation density in the aAs single crystal grown NJ2 was investigated using a transmission electron microscope and an etch pit evaluation method, it was found to be approximately 10'CI.
I+", and the dislocation density was reduced by about one order of magnitude compared to the conventional method, and a remarkable effect was observed.

従来技術では、In0.、Ga、、、As/Ga、Aq
歪超格子暦を使用した場合、各々の暦の厚さ100人ず
つの10周期構造が最適で、GaAs単結晶成長層2に
かかる応力も10’dyn/cm”が限界で、これ以上
の応力、すなわち上記以上の歪超格子M厚さでは転位が
発生することとなった。これに対して、本発明では、不
純物添加した単結晶成長層2′や不純物添加した歪超格
子層4′への、高濃度の不純物添加により約1桁の転位
発生臨界応力を高められた結果、歪超格子層厚を厚くで
き、従来技術に比べて約1桁低い転位密度をもつ高品質
の複合半導体基板が得られた。さらに、不純物の種類や
濃度。
In the prior art, In0. , Ga, , As/Ga, Aq
When using a strained superlattice ephemeris, the optimal structure is a 10-periodic structure with each ephemeris having a thickness of 100 people, and the stress applied to the GaAs single crystal growth layer 2 is limited to 10'dyn/cm'', and higher stress is not possible. In other words, dislocations occur when the thickness of the strained superlattice M is greater than the above.In contrast, in the present invention, dislocations occur in the impurity-doped single crystal growth layer 2' or the impurity-doped strained superlattice layer 4'. As a result of increasing the critical stress for dislocation generation by approximately one order of magnitude by adding impurities at a high concentration, the strained superlattice layer thickness can be increased, resulting in a high-quality composite semiconductor substrate with a dislocation density approximately one order of magnitude lower than that of conventional technology. In addition, the types and concentrations of impurities were determined.

歪超格子層の構成や層厚などの最適化によって。By optimizing the structure and layer thickness of the strained superlattice layer.

さらに高品質の複合半導体基板が得られる。Furthermore, a high quality composite semiconductor substrate can be obtained.

(実施例2) 第1図に示す構成のI n P / S iからなる本
発明の複合半導体基板を、以下に示す手順で作製した。
(Example 2) A composite semiconductor substrate of the present invention made of InP/Si having the configuration shown in FIG. 1 was manufactured by the procedure shown below.

Stの単結晶基板1上に、有機金属気相成長法により、
成長温度400℃程度の低温成長aaAs層および70
0℃程度の高温成長GaAsWIからなる第1中間層3
を、約1μm形成した後、20℃から800℃まで5〜
10回の熱アニールを繰り返した。この後、InAs、
、、P、、、/InPの各々の層の厚さ500人ずつの
lθ周期構造からなる歪超格子層に、不純物としてSi
を約5X10”01m−’添加して、不純物添加した第
2中間層4′を形成した。さらに、600℃でInPに
不純物添加した単結晶成長層2′を、不純物としてAl
1を約5X10”■−3添加しつつ、2μm形成した。
On the St single crystal substrate 1, by organometallic vapor phase epitaxy,
Low-temperature grown aaAs layer with a growth temperature of about 400°C and 70%
First intermediate layer 3 made of GaAsWI grown at a high temperature of about 0°C
After forming about 1 μm of
Thermal annealing was repeated 10 times. After this, InAs,
, , P, , , Si is added as an impurity to the strained superlattice layer consisting of an lθ periodic structure with a thickness of 500 in each layer of InP.
The impurity-doped second intermediate layer 4' was formed by doping about 5×10"01 m-' of InP. Further, the single crystal growth layer 2', which was doped with InP at 600°C, was grown with Al as an impurity.
1 was added to a thickness of 2 μm while adding about 5×10”×−3.

このようにして作製した本発明に基づ<InP/Siか
らなる複合半導体基板のInP単結晶成長暦2内の転位
密度を、透過′泄子線顕微鏡やエッチピット評価法で調
べたところ、約3X10’an”であり、従来技術に比
べて約1桁の転位密度の低減がはかられ顕著な効果がみ
られた。
When the dislocation density in the InP single crystal growth history 2 of the InP/Si composite semiconductor substrate manufactured in this way based on the present invention was investigated using a transmission electron beam microscope and an etch pit evaluation method, it was found that approximately 3 x 10'an'', and the dislocation density was reduced by about one order of magnitude compared to the conventional technology, and a remarkable effect was observed.

従来技術では、InAsP/InP歪超格子層を用いた
場合、各々の層の厚さ150人ずつの10周期構造が最
適で、InP単結晶成長層2にかかる応力も10’dy
n/■2程度が限界で、これ以上の応力。
In the conventional technology, when an InAsP/InP strained superlattice layer is used, a 10-period structure with each layer having a thickness of 150 layers is optimal, and the stress applied to the InP single crystal growth layer 2 is also 10'dy.
The limit is about n/■2, and the stress is higher than this.

すなわちこれ以上の歪超格子層の厚さでは転位が発生す
ることになった。これに対して、本発明では、不純物添
加した単結晶成長層2′や不純物添加した歪超格子層4
′への、高濃度の不純物添加により約1桁の転位発生臨
界応力を高められた結果、歪超格子層厚を厚くでき、従
来技術に比べて約1桁低い転位密度をもつ高品質の複合
半導体基板が得られた。さらに、不純物の種類や濃度、
歪超格子層の構成や2.厚などの最適化により、さらに
高品質な複合半導体基板が得られる。
In other words, dislocations occur when the strained superlattice layer is thicker than this. In contrast, in the present invention, the impurity-doped single crystal growth layer 2' and the impurity-doped strained superlattice layer 4
As a result of increasing the critical stress for dislocation generation by approximately one order of magnitude by adding a high concentration of impurities to A semiconductor substrate was obtained. Furthermore, the type and concentration of impurities,
Structure of strained superlattice layer and 2. By optimizing the thickness, etc., a composite semiconductor substrate of even higher quality can be obtained.

以上の実施例においては、単結晶成長層として、GaA
sやInPなどの■−■族の元素からなる化合物半導体
材料を用いた場合について説明したが。
In the above embodiments, GaA is used as the single crystal growth layer.
A case has been described in which a compound semiconductor material made of elements of the ■-■ group such as s and InP is used.

InGaAsやInGaAsPなどの三元や四元混晶材
料、Zn5eやZn、SSeなどのII−VI族の元素
からなる化合物半導体材料にも同様に適用できる。また
、単結晶基板としてもSi単結晶基板に限らず、Geを
始めとする他の単結晶基板を好適に用いることができる
ことは言うまでもない。
It can be similarly applied to ternary and quaternary mixed crystal materials such as InGaAs and InGaAsP, and compound semiconductor materials made of II-VI group elements such as Zn5e, Zn, and SSe. Furthermore, it goes without saying that the single crystal substrate is not limited to the Si single crystal substrate, and other single crystal substrates such as Ge can be suitably used.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように1本発明による複合半導体基
板は、単結晶成長層や中間層への不純物添加により、こ
れらの層内の転位発生臨界応力を増加させる結果、歪超
格子層の厚さを厚くしても転位を発生させることなく、
単結晶成長層内への伝播転位の低減をはかることができ
る。また、添加する不純物に関しても、GaAs/Si
の場合のSiやZnなどの電気的に活性な不純物ばかり
でなく、A2やInなどの電気的に不活性な不純物をも
利用できるからデバイス構成上あるいはプロセス上に問
題は生じない。したがって、高品質な複合半導体基板を
提供することができ、これにより、高性能、低価格、軽
量、大口径、高強度の光デバイス、M1子デバイスや光
・電子i積回路用の半導体基板として広く利用すること
ができる。
As explained in detail above, in the composite semiconductor substrate according to the present invention, the thickness of the strained superlattice layer increases as a result of adding impurities to the single crystal growth layer and the intermediate layer to increase the critical stress for generating dislocations in these layers. Even if the thickness is increased, dislocations do not occur.
It is possible to reduce propagation of dislocations into the single crystal growth layer. Regarding the impurities to be added, GaAs/Si
In this case, not only electrically active impurities such as Si and Zn but also electrically inactive impurities such as A2 and In can be used, so no problems arise in terms of device configuration or process. Therefore, it is possible to provide a high-quality composite semiconductor substrate, which can be used as a semiconductor substrate for high performance, low cost, lightweight, large diameter, and high strength optical devices, M1 child devices, and optical/electronic integrated circuits. Can be widely used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、(c)は本発明の複合半導体基
板の基本的構成の一例を示す模式図、第2図は本発明の
GaAs/Siからなる複合半導体基板のGaAs単結
晶層内の転位密度と応力の関係を示すグラフ、第3図は
従来の複合半導体基板の構成の一例を示す模式図、第4
図は従来のGaAs/Siからなる複合半導体基板のG
aAs単結晶層内の転位密度と応力の関係を示すグラフ
である。 1・・・単結晶基板 2・・・単結晶成長層 2′・・・不純物添加した単結晶成長層3・・・第1中
間N(初期成長2) 3′・・・不純物を添加した第1中間層4・・・第2中
間ff1(歪超格子層)4′・・・不純物添加した第2
中間層 (a) 一−−挙粕&幕扱 特許出頭入  日本電信電話株式会社 代理人弁理士 中 村 純 之 助 (b) (C) 第1 図
FIGS. 1(a), (b), and (c) are schematic diagrams showing an example of the basic structure of a composite semiconductor substrate of the present invention, and FIG. Graph showing the relationship between dislocation density and stress in a crystal layer; FIG. 3 is a schematic diagram showing an example of the structure of a conventional composite semiconductor substrate; FIG.
The figure shows the G of a conventional GaAs/Si composite semiconductor substrate.
3 is a graph showing the relationship between dislocation density and stress in an aAs single crystal layer. 1...Single crystal substrate 2...Single crystal growth layer 2'...Single crystal growth layer doped with impurities 3...First intermediate N (initial growth 2) 3'...Single crystal growth layer doped with impurities 1 intermediate layer 4... Second intermediate layer ff1 (strained superlattice layer) 4'... Second layer doped with impurities
Middle class (a) 1--Appearance for patents handled by Nippon Telegraph and Telephone Corporation Junnosuke Nakamura (b) (C) Figure 1

Claims (1)

【特許請求の範囲】 1、所定の単結晶基板上に、該単結晶基板とは成分組成
が異なる元素の周期表III族とV族の元素もしくはI
I族とVI族の元素よりなる化合物半導体の単結晶層を
設けた複合半導体基板において、上記単結晶基板と上記
化合物半導体の単結晶層との間に導入する中間層として
、上記単結晶基板上に初期成長層としての上記化合物半
導体よりなる第1の中間層を形成し、該第1の中間層上
に、InGaAs/GaAs、 InGaAs/GaAsP、AlGaAs/GaAs、
InAsP/InP、InP/InGaP、ZnSe/
ZnSSe、ZnSeTe/ZnSeのうちより選択さ
れる少なくとも1種の歪超格子層よりなる第2の中間層
を設け、上記化合物半導体の単結晶層の全部もしくはそ
の一部に、Si、S、Zn、Mg、In、Alのうちよ
り選択される少なくとも1種の不純物を、2×10^1
^8cm^−^3個以上添加したことを特徴とする複合
半導体基板。 2、所定の単結晶基板上に、該単結晶基板とは成分組成
が異なる元素の周期表III族とV族の元素もしくはI
I族とVI族の元素よりなる化合物半導体の単結晶層を
設けた複合半導体基板において、上記単結晶基板と上記
化合物半導体の単結晶層との間に導入する中間層として
、上記単結晶基板上に初期成長層としての上記化合物半
導体よりなる第1の中間層を形成し、該第1の中間層上
に、InGaAs/GaAs、 InGaAs/GaAsP、AlGaAs/GaAs、
InAsP/InP、InP/InGaP、ZnSe/
ZnSSe、ZnSeTe/ZnSeのうちより選択さ
れる少なくとも1種の歪超格子層よりなる第2の中間層
を設け、上記第1の中間層または第2の中間層、もしく
は上記第1の中間層および第2の中間層の全部もしくは
その1部に、Si、S、Zn、Mg、In、Alのうち
より選択される少なくとも1種の不純物を、 2×10^1^8cm−^3個以上添加したことを特徴
とする複合半導体基板。 3、所定の単結晶基板上に、該単結晶基板とは成分組成
の異なる元素の周期表III族とV族の元素もしくはI
IとVI族の元素よりなる化合物半導体の単結晶層を設
けた複合半導体基板において、上記単結晶基板と上記化
合物半導体の単結晶層との間に導入する中間層として、
上記単結晶基板上に初期成長層としての上記化合物半導
体よりなる第1の中間層を形成し、該第1の中間層上に
、InGaAs/GaAs、  InGaAs/GaAsP、AlGaAs/GaAs、
InAsP/InP、InP/InGaP、ZnSe/
ZnSSe、ZnSeTe/ZnSeのうちより選択さ
れる少なくとも1種の歪超格子層よりなる第2の中間層
を設け、上記化合物半導体の単結晶層の全部もしくはそ
の一部および上記第1の中間層と第2の中間層の全部も
しくはその一部に、Si、S、Zn、Mg、In、Al
のうちより選択される少なくとも1種の不純物を、2×
10^1^8cm^−^3個以上添加したことを特徴と
する複合半導体基板。 4、特許請求の範囲第1項、第2項または第3項記載の
複合半導体基板において、第1の中間層または第2の中
間層の導入前もしくは導入前後に、基板温度を、700
〜900℃の温度範囲から0〜300℃の温度範囲まで
の間を、1〜200回繰り返す熱アニール処理を施した
ことを特徴とする複合半導体基板。
[Claims] 1. On a predetermined single crystal substrate, an element of Group III and V of the periodic table, or I
In a composite semiconductor substrate provided with a single crystal layer of a compound semiconductor made of elements of group I and group VI, as an intermediate layer introduced between the single crystal substrate and the single crystal layer of the compound semiconductor, on the single crystal substrate. A first intermediate layer made of the above compound semiconductor is formed as an initial growth layer, and on the first intermediate layer, InGaAs/GaAs, InGaAs/GaAsP, AlGaAs/GaAs,
InAsP/InP, InP/InGaP, ZnSe/
A second intermediate layer made of at least one strained superlattice layer selected from ZnSSe, ZnSeTe/ZnSe is provided, and Si, S, Zn, At least one impurity selected from Mg, In, and Al is added to 2×10^1
A composite semiconductor substrate characterized by adding three or more ^8cm^-^. 2. On a predetermined single crystal substrate, an element of group III and V of the periodic table or I
In a composite semiconductor substrate provided with a single crystal layer of a compound semiconductor made of elements of group I and group VI, as an intermediate layer introduced between the single crystal substrate and the single crystal layer of the compound semiconductor, on the single crystal substrate. A first intermediate layer made of the above compound semiconductor is formed as an initial growth layer, and on the first intermediate layer, InGaAs/GaAs, InGaAs/GaAsP, AlGaAs/GaAs,
InAsP/InP, InP/InGaP, ZnSe/
A second intermediate layer made of at least one strained superlattice layer selected from ZnSSe and ZnSeTe/ZnSe is provided, and the first intermediate layer or the second intermediate layer, or the first intermediate layer and At least one type of impurity selected from Si, S, Zn, Mg, In, and Al is added to all or a part of the second intermediate layer in an amount of 2×10^1^8 cm-^3 or more. A composite semiconductor substrate characterized by: 3. On a predetermined single-crystal substrate, an element of Group III and V of the periodic table or I
In a composite semiconductor substrate provided with a single crystal layer of a compound semiconductor made of elements of groups I and VI, as an intermediate layer introduced between the single crystal substrate and the single crystal layer of the compound semiconductor,
A first intermediate layer made of the compound semiconductor as an initial growth layer is formed on the single crystal substrate, and on the first intermediate layer, InGaAs/GaAs, InGaAs/GaAsP, AlGaAs/GaAs,
InAsP/InP, InP/InGaP, ZnSe/
A second intermediate layer made of at least one strained superlattice layer selected from ZnSSe and ZnSeTe/ZnSe is provided, and all or part of the single crystal layer of the compound semiconductor and the first intermediate layer are provided. All or part of the second intermediate layer contains Si, S, Zn, Mg, In, Al.
At least one impurity selected from among
A composite semiconductor substrate characterized in that three or more of 10^1^8cm^-^ are added. 4. In the composite semiconductor substrate according to claim 1, 2, or 3, before or after introducing the first intermediate layer or the second intermediate layer, the substrate temperature is lowered to 700°C.
A composite semiconductor substrate characterized in that it has been subjected to thermal annealing treatment repeated 1 to 200 times between a temperature range of ~900°C to a temperature range of 0 to 300°C.
JP32361288A 1988-12-23 1988-12-23 Composite semiconductor substrate Pending JPH02172899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32361288A JPH02172899A (en) 1988-12-23 1988-12-23 Composite semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32361288A JPH02172899A (en) 1988-12-23 1988-12-23 Composite semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH02172899A true JPH02172899A (en) 1990-07-04

Family

ID=18156669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32361288A Pending JPH02172899A (en) 1988-12-23 1988-12-23 Composite semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH02172899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127339A (en) * 1999-10-25 2001-05-11 Kyocera Corp Semiconductor light emitting element
CN111826152A (en) * 2019-04-18 2020-10-27 三星电子株式会社 Quantum dots, method of manufacturing the same, quantum dot group, composition, quantum dot polymer composite, and display device including the same
US11739263B2 (en) 2019-04-18 2023-08-29 Samsung Electronics Co., Ltd. Cadmium free quantum dot including lithium, production method thereof, and electronic device including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127339A (en) * 1999-10-25 2001-05-11 Kyocera Corp Semiconductor light emitting element
CN111826152A (en) * 2019-04-18 2020-10-27 三星电子株式会社 Quantum dots, method of manufacturing the same, quantum dot group, composition, quantum dot polymer composite, and display device including the same
US11739263B2 (en) 2019-04-18 2023-08-29 Samsung Electronics Co., Ltd. Cadmium free quantum dot including lithium, production method thereof, and electronic device including the same
CN111826152B (en) * 2019-04-18 2024-04-23 三星电子株式会社 Quantum dot, method of manufacturing the same, quantum dot group, composition, quantum dot polymer composite, and display device including the same

Similar Documents

Publication Publication Date Title
US5221367A (en) Strained defect-free epitaxial mismatched heterostructures and method of fabrication
EP0291346B1 (en) A laminated structure of compound semiconductors
US20050054180A1 (en) Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
JP3114809B2 (en) Semiconductor device
JPH03236218A (en) Compound semiconductor substrate and manufacture thereof
US4517047A (en) MBE growth technique for matching superlattices grown on GaAs substrates
US5016065A (en) Compound semiconductor substrate with InGaP layer
EP0332329B1 (en) Method for making a semiconductor substrate including a strained layer superlattice structure
JPH02172899A (en) Composite semiconductor substrate
US5183776A (en) Heteroepitaxy by growth of thermally strained homojunction superlattice buffer layers
JPH03136319A (en) Heteroepitaxial substrate and semiconductor device
JPS63182811A (en) Epitaxial growth method for compound semiconductor
JPH0722312A (en) Method for manufacturing strain semiconductor film
JP2000012467A (en) Method for forming gaas layer
JPH03161922A (en) Hetero-epitaxial growth of group iii-v compound semiconductor on dissimilar substrate
JPH03188619A (en) Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate
JPS63186416A (en) Compound semiconductor substrate
JPH02174220A (en) Manufacture of semiconductor substrate
JP2742855B2 (en) Semiconductor thin film manufacturing method
JP3441773B2 (en) Semiconductor thin film device and method of manufacturing the same
US6197441B1 (en) Cubic nitride semiconductor device and fabrication method of the same
JPH08264456A (en) Growing method for crystal of compound semiconductor
JP3224118B2 (en) Epitaxial growth method
JP3255798B2 (en) Compound semiconductor device and method of manufacturing the same
JPH02194651A (en) Composite semiconductor substrate