JPH021720B2 - - Google Patents

Info

Publication number
JPH021720B2
JPH021720B2 JP57129871A JP12987182A JPH021720B2 JP H021720 B2 JPH021720 B2 JP H021720B2 JP 57129871 A JP57129871 A JP 57129871A JP 12987182 A JP12987182 A JP 12987182A JP H021720 B2 JPH021720 B2 JP H021720B2
Authority
JP
Japan
Prior art keywords
axis
planar
hinge
bodies
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57129871A
Other languages
Japanese (ja)
Other versions
JPS5920800A (en
Inventor
Jun Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57129871A priority Critical patent/JPS5920800A/en
Publication of JPS5920800A publication Critical patent/JPS5920800A/en
Publication of JPH021720B2 publication Critical patent/JPH021720B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Tents Or Canopies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は打上げ時には折畳まれていて所定の
軌道投入時又は軌道において展開する例えばアン
テナ、太陽電池パネル等の宇宙船の展開物を展開
させる機構に関するものである。 従来の概念として折畳まれた展開物を展開させ
る場合、展開物の平面体相互間を1軸回転自在な
ヒンジで結合して展開させる方式であり、いわゆ
る可展ダブルコルゲーシヨン面のように展開時に
2方向に展開する2次元展開方式の場合、1軸回
転自在なヒンジを用いる従来の方式では以下述べ
るような問題点がある。第1図aは展開物の展開
前を、第1図bは展開物の展開途中を、又第1図
cは展開物の展開後をそれぞれ示す図であり、複
数個の平行四辺形平面体1a〜1dおよび衛星2
をそれぞれ1軸回転自在なヒンジ3a〜3eを用
いて結合している。平行四辺形平面体1aの回転
角θ1が90度の時が第1図aに示す展開前の状態で
あり0度の時が第1図cに示す展開後の状態であ
り第1図bにおいて展開時に1軸回転自在なヒン
ジ3bを介して結合されている平面体1a,1b
それぞれの回転角θ1、θ2が常に等しく変動し、こ
れと同様の条件が平面体1b,1c、平面体1
c,1dにも適用でき、これらの条件から展開時
における平面体1a〜1dの位置関係は決定され
る。後述するように平面体1d,1a間の距離L
は展開物の展開前、展開中、展開後で変動するの
で、展開物の平面体相互を1軸回転自在なヒンジ
で結合する従来の方式は2次元的に展開する展開
機構の場合、円滑な展開運動を達成し得ないとい
う欠点がある。 この発明はこのような問題点に対処し得る宇宙
船の展開物展開機構を提案するもので以下第2図
を用いてこの発明を詳述する。第2図aは1軸回
転自在なヒンジを示す図であり2個の平面体1
a,1bの板厚T、ヒンジ直径D、ヒンジ回転中
心4aから平面体端部までのヒンジクリアランス
Hにより形状諸元が定義される。 第2図bは1軸回転自在なヒンジを3個3a,
3b,3c組み合わせたヒンジ5を示す図であ
り、2個の平面体1a,1bを結合している。第
2図cは提案する展開物展開機構の展開後を示す
図であり、衛星2に1軸回転自在なヒンジ3a〜
3iを介して平行四方形平面体1a〜1iを取り
付ける。ここで1軸回転自在なヒンジ3b,3
d,3f,3hは平面体下方に取り付けられ、1
軸回転自在なヒンジ3a,3c,3e,3g,3
iは平面体上方に取り付けられている。各平面体
は1軸回転自在なヒンジ3a〜3iを介して対称
に展開するので、展開時における平面体1a〜1
iの位置関係は決定される。この時平面体1a,
1f間の距離L1および平面体1d,1i間の距
離L2を求めてみる。第2図dにおいて衛星2と
第1の平面体1aにより構成される回転角θ1を示
す。第2図eにおいて第3の平面体1cと第4の
平面体1dとにより構成される回転角θ2を示す。
第2図fにおいて第1の平面体1a、第2の平面
体1b、第5の平面体1e、第6平面体1fとに
より構成される角度θ3を示す。第2図gにおいて
第1の平面体1aと第6の平面体1fにより構成
される回転角θ4を示す。第2図Cにおいて軸6
a、y軸6bおよび上記2軸と直交右手座標系を
構成するような図示しないz軸を考える。上記座
標系において頂点7aの座標を仮に(xc、yc
zc)および頂点7aをとおり頂点7b,7cから
構成される直線の傾きと直交する傾きを有する直
線と頂点7b,7cから構成される直線との交点
7dの座標を(xM、yM、zM)とすると回転角θ2
は次のように定義される。 ここではNは段数すなわちx軸方向に配列され
る平面体の数を示す。座標(xc、yc、zc)は頂点
7bの座標(xA、yA、zA)とすれば次の関係を有
している。 xc=xA yc=yA−P1 ……(2) zc=zA ここでP1は各平面体のy軸方向の辺の長さで
ある。座標(xA、yA、zA)は次のように書ける。 ここでHはヒンジクリアランス、θはヒンジ直
径、P2は各平面体のx軸方向の辺の長さ、Tは
平面体板厚、θaは平面体の小さい方の頂角であ
る。 また頂点7b,7cを結ぶ直線の傾きをαとし
それに直交する傾きをα′とするとそれらは次式の
ように示し得る。 よつて座標(xM、yM、zM)は次式で示し得る。 以上によりθ2が定義された。 θ3は次のように定義される。 θ3=ARCTAN(−α) ……(6) 回転角θ4は頂点7eの座標を(x2、y2、z2)お
よび頂点7eをとおり頂点7f,7gから構成さ
れる直線の傾きと直交する傾きを有する直線と頂
点7f,7gから構成される直線との交点7hの
座標を(xN、yN、zN)とすれば次のように定義さ
れる。 座標(x2、y2、z2)は頂点7fの座標(x1
y1、z1)と次の関係を有している。 x2=x1 y2=−y1 ……(8) z2=z1 ここで座標(x1、y1、z1)は次のように書け
る。 x1=H×sin(θ1)+D/2×cos(θ1) Y1=P1/2 ……(9) z1=H×cos(θ1)−D/2×sin(θ1) さらに座標(xN、yN、zN)は次のように書け
る。 xN=2y1+(α′−α)×x1/α′−α YN=−y1+α′1(xN−x1) zN=z1+P2sin(θa)cos(θ1)×(x1−xN2+(Y1
−YN2/(P2sin(θa)sin(θ12+(P2cos(θa
2 以上によりθ4が定義された。 ここで頂点7iの座標を(xp、yp)とするとL1
は次式で示される。 L1=(xP−x12+(YP−y12 ……(11) ただし xp−x1=〔2{D/2cos(θ1)+H×sin(θ1)}(
N−1)+2Tcos(θ1)×N+(−1)N−1/2/2
〕×{1 −cos(2θ3)}+2〔{D/2sin(θ2)+H×cos
(θ2)}+T×1−(−1)N/2×sin(θ2)〕×1
/1+α′2……(12) Yp−Y1=〔2{D/2cos(θ1)+H×sin(θ1)}(
N−1)+2Tcos(θ1)×N+(−1)N−1/2/2 ×sin(2θ3)+2〔{D/2sin(θ2)+H×cos(
θ2)}+T×1−(−1)N/2×sin(θ2)〕×α′
/1+α′2……(13) である。 L2は頂点7j,7kを結ぶ直線と頂点7l,
7mを結ぶ直線と平行な傾きを有しかつ上記2直
線の中心を通る直線、と頂点7nを通り上記直線
と直交する傾きを持つ直線との交点(xQ、yQ)と
頂点7nの座標(xB、yB)との距離および点7d
の座標(xM、yM)と頂点7aの座標(xc、yc)間
の距離を用いて次式のように示し得る。 L2=2×{√(QB2+(QB2 −√(Mc2+(Mc2} ……(14) ここで xM−xc=P1/α′−α …(17) yM−yc=α′P1/α′−α ……(18) である。いまH=2mm、D=5mm、P1=P2=100
mm、θa=60゜、T=5mm、N=3の場合のθ1に対
応するL1およびL2の変化を表1に示す。
The present invention relates to a mechanism for deploying deployable objects of a spacecraft, such as antennas and solar battery panels, which are folded at the time of launch and are deployed at the time of entering or in a predetermined orbit. When unfolding a folded deployable object, the conventional concept is to connect the planar bodies of the deployable object with a hinge that can freely rotate on one axis, and to expand it, like a so-called developable double corrugated surface. In the case of a two-dimensional deployment method in which the device is deployed in two directions during deployment, the conventional method using a hinge that can freely rotate in one axis has the following problems. Fig. 1a shows the unfolded object before it is developed, Fig. 1b shows the unfolded object during its development, and Fig. 1c shows the unfolded object after it is developed. 1a-1d and satellite 2
are connected using hinges 3a to 3e, each of which is rotatable on one axis. When the rotation angle θ 1 of the parallelogram plane 1a is 90 degrees, it is the state before development shown in Figure 1 a, and when it is 0 degrees, it is the state after development shown in Figure 1 c, and when it is 0 degrees, it is the state after development shown in Figure 1 b. Planar bodies 1a and 1b are connected via a hinge 3b that can freely rotate on one axis when unfolded.
The respective rotation angles θ 1 and θ 2 always vary equally, and the same conditions apply to the planar bodies 1b, 1c and the planar body 1.
c and 1d, and the positional relationship of the planar bodies 1a to 1d at the time of development is determined from these conditions. As will be described later, the distance L between the plane bodies 1d and 1a
changes before, during, and after the unfolding of the developable object, so the conventional method of connecting the two planar objects of the developable object with a hinge that can freely rotate on one axis is difficult to achieve smoothly in the case of a two-dimensional unfolding mechanism. It has the disadvantage of not being able to achieve unfolding motion. This invention proposes a deployable object deployment mechanism for a spacecraft that can deal with such problems, and the invention will be explained in detail below using FIG. 2. Figure 2a is a diagram showing a hinge that can rotate freely on one axis, and is a diagram showing a hinge that can rotate freely on one axis, and is
The shape specifications are defined by the plate thickness T of a and 1b, the hinge diameter D, and the hinge clearance H from the hinge rotation center 4a to the end of the plane body. Figure 2b shows three hinges 3a, which can rotate freely on one axis.
3b and 3c are diagrams showing a combined hinge 5, which connects two planar bodies 1a and 1b. FIG. 2c is a diagram showing the proposed deployable object deployment mechanism after deployment, with hinges 3a to 3a rotatable on one axis attached to the satellite 2.
Parallelogram planar bodies 1a to 1i are attached via 3i. Here, hinges 3b, 3 that can freely rotate on one axis
d, 3f, 3h are attached below the plane body, 1
Hinge 3a, 3c, 3e, 3g, 3 that can rotate freely
i is attached above the flat body. Since each planar body unfolds symmetrically via hinges 3a to 3i that are rotatable on one axis, the planar bodies 1a to 1 when unfolded
The positional relationship of i is determined. At this time, the plane body 1a,
Let us find the distance L 1 between 1f and the distance L 2 between planar bodies 1d and 1i. FIG. 2d shows the rotation angle θ 1 formed by the satellite 2 and the first planar body 1a. FIG. 2e shows the rotation angle θ 2 formed by the third planar body 1c and the fourth planar body 1d.
FIG. 2f shows an angle θ 3 formed by the first plane body 1a, the second plane body 1b, the fifth plane body 1e, and the sixth plane body 1f. FIG. 2g shows the rotation angle θ 4 formed by the first planar body 1a and the sixth planar body 1f. In Fig. 2C, axis 6
Let us consider a z-axis (not shown) that constitutes a right-handed coordinate system orthogonal to the a, y-axes 6b, and the above two axes. In the above coordinate system, let us assume that the coordinates of the vertex 7a are (x c , y c ,
z c ) and the coordinates of the intersection 7d between the straight line passing through the vertex 7a and having an inclination perpendicular to the slope of the straight line composed of the vertices 7b and 7c, and the straight line composed of the vertices 7b and 7c, as (x M , y M , z M ), the rotation angle θ 2
is defined as follows. Here, N indicates the number of stages, that is, the number of plane bodies arranged in the x-axis direction. If the coordinates (x c , y c , z c ) are the coordinates (x A , y A , z A ) of the vertex 7b, they have the following relationship. x c = x A y c = y A − P 1 ...(2) z c = z A where P 1 is the length of the side of each planar body in the y-axis direction. The coordinates (x A , y A , z A ) can be written as: Here, H is the hinge clearance, θ is the hinge diameter, P 2 is the length of the side of each planar body in the x-axis direction, T is the thickness of the planar body, and θ a is the smaller apex angle of the planar body. Further, if the slope of the straight line connecting the vertices 7b and 7c is α and the slope perpendicular to it is α', they can be expressed as in the following equation. Therefore, the coordinates (x M , y M , z M ) can be expressed by the following equation. From the above, θ 2 was defined. θ 3 is defined as follows. θ 3 = ARCTAN (−α) ... (6) The rotation angle θ 4 is the coordinate of the vertex 7e (x 2 , y 2 , z 2 ) and the slope of the straight line that passes through the vertex 7e and consists of the vertices 7f and 7g. If the coordinates of the intersection point 7h of a straight line having orthogonal inclinations and a straight line formed from the vertices 7f and 7g are (x N , y N , z N ), it is defined as follows. The coordinates (x 2 , y 2 , z 2 ) are the coordinates (x 1 ,
y 1 , z 1 ) and has the following relationship. x 2 = x 1 y 2 = −y 1 ...(8) z 2 = z 1 where the coordinates (x 1 , y 1 , z 1 ) can be written as follows. x 1 = H x sin (θ 1 ) + D/2 x cos (θ 1 ) Y 1 = P 1 /2 ...(9) z 1 = H x cos (θ 1 ) - D/2 x sin (θ 1 ) Furthermore, the coordinates (x N , y N , z N ) can be written as follows. x N =2y 1 + (α′−α)×x 1 /α′−α Y N =−y 1 +α′ 1 (x N −x 1 ) z N =z 1 +P 2 sin(θ a ) cos( θ 1 )×(x 1 −x N ) 2 + (Y 1
−Y N ) 2 / (P 2 sin (θ a ) sin (θ 1 ) 2 + (P 2 cos (θ a )
) 2 or more defined θ 4 . Here, if the coordinates of vertex 7i are (x p , y p ), then L 1
is expressed by the following equation. L 1 = (x P - x 1 ) 2 + (Y P - y 1 ) 2 ... (11) However, x p - x 1 = [2 {D/2cos (θ 1 ) + H×sin (θ 1 )} (
N-1)+2Tcos( θ1 )×N+(-1) N -1/2/2
]×{1 −cos(2θ 3 )}+2[{D/2sin(θ 2 )+H×cos
2 )}+T×1−(−1) N /2×sin(θ 2 )〕×1
/1+α′ 2 …(12) Y p −Y 1 = [2{D/2cos(θ 1 )+H×sin(θ 1 )}(
N-1)+2Tcos( θ1 )×N+(-1) N- 1/2/2×sin( 2θ3 )+2[{D/2sin( θ2 )+H×cos(
θ 2 )}+T×1−(−1) N /2×sin(θ 2 )]×α′
/1+α′ 2 ...(13). L 2 is the straight line connecting vertices 7j and 7k and the vertex 7l,
Coordinates of the intersection point (x Q , y Q ) of a straight line that has an inclination parallel to the straight line connecting 7 m and that passes through the center of the above two straight lines and a straight line that passes through the apex 7 n and has an inclination perpendicular to the above straight line and the apex 7 n Distance to (x B , y B ) and point 7d
The distance between the coordinates (x M , y M ) of the vertex 7a and the coordinates (x c , y c ) of the vertex 7a can be expressed as shown in the following equation. L 2 = 2×{√( QB ) 2 +( QB ) 2 −√( Mc ) 2 +( Mc ) 2 } ……(14) Here x M −x c = P 1 /α′−α …(17) y M −y c = α′P 1 /α′−α …(18). Now H = 2mm, D = 5mm, P 1 = P 2 = 100
Table 1 shows the changes in L 1 and L 2 corresponding to θ 1 when θ a =60°, T=5 mm, and N=3.

【表】 このように平面体1a,1f、平面体1b,1
e、平面体1e,1h、平面体1d,1i間の距
離は最大値と最小値を有する。これらを結ぶヒン
ジを第2図bで説明したヒンジ5a〜5dを用い
ることにより展開中も平面体1a,1f、平面体
1b,1e、平面体1e,1h、平面体1d,1
iは剛に結合された状態で円滑な展開運動を達成
し得る。第2図は提案する展開物展開機構の展開
前を示す図であり、衛星2に1軸回転自在なヒン
ジ3a〜3iを介して平面体1a〜1iが接続さ
れておりかつ1軸回転自在なヒンジを複数個組み
合わせたヒンジ5a〜5dにより平面体相互を保
持している。 従つてこの発明によれば2次元的に展開する展
開機構の場合生ずる平面体相互間の距離の変動は
1軸回転自在なヒンジを複数個組み合わせたヒン
ジで対応することが可能であり円滑な各平面体の
対称展開も達成できる。
[Table] In this way, plane bodies 1a, 1f, plane bodies 1b, 1
e, the distance between the plane bodies 1e and 1h, and the distance between the plane bodies 1d and 1i has a maximum value and a minimum value. By using the hinges 5a to 5d explained in FIG. 2b to connect these, the plane bodies 1a, 1f, plane bodies 1b, 1e, plane bodies 1e, 1h, plane bodies 1d, 1 can also be used during deployment.
i can achieve smooth unfolding movement while being rigidly coupled. FIG. 2 is a diagram showing the proposed deployable object deployment mechanism before deployment, in which planar bodies 1a to 1i are connected to the satellite 2 via hinges 3a to 3i, which are rotatable in one axis, and are rotatable in one axis. The planar bodies are held together by hinges 5a to 5d, which are a combination of a plurality of hinges. Therefore, according to the present invention, it is possible to cope with the variation in the distance between plane bodies that occurs in the case of a two-dimensional unfolding mechanism by using a hinge that is a combination of a plurality of hinges that can freely rotate on one axis, and to smoothly rotate each plane. Symmetric expansion of planar bodies can also be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来の概念による展開物の展開前を
示す図、第1図bは従来の概念による展開物の展
開中を示す図、第1図cは従来の概念による展開
物の展開後を図す図、第2図aは1軸回転自在な
ヒンジを示す図、第2図bはこの発明による1軸
回転自在なヒンジを複数個組み合わせたヒンジを
示す図、第2図cはこの発明による展開物の展開
後を示す図、第2図d〜gは展開物の展開角を示
す図、第2図hはこの発明による展開物の展開前
を示す図であり1は平行四辺形平面体、2は衛
星、3は1軸回転自在なヒンジ、4はヒンジ回転
中心、5は1軸回転自在なヒンジを複数個組み合
わせたヒンジ、6は座標系、7は平行四辺形平面
体の各頂点である。なお、図中同一あるいは相当
部分には同一符号を付してある。
Figure 1a is a diagram showing the unfolded object before development according to the conventional concept, Figure 1b is a diagram showing the unfolded object according to the conventional concept during expansion, and Figure 1c is a diagram after the expansion of the unfolded object according to the conventional concept. FIG. 2a is a diagram showing a hinge that can freely rotate on one axis, FIG. Figure 2 d to g are views showing the unfolded product according to the invention after development; Figure 2 h is a diagram showing the unfolded product according to the invention before development; 1 is a parallelogram; 2 is a plane body, 2 is a satellite, 3 is a hinge that can rotate on one axis, 4 is the hinge rotation center, 5 is a hinge that is a combination of multiple hinges that can be rotated on one axis, 6 is a coordinate system, and 7 is a parallelogram plane body. Each vertex. In addition, the same reference numerals are given to the same or corresponding parts in the figures.

Claims (1)

【特許請求の範囲】[Claims] 1 宇宙船に取付けられている展開物を宇宙空間
で2次元的に展開させるように構成した宇宙船の
展開物展開機構において、複数個の平面体からな
る展開物の各平面体が同一平面上で、所定の配置
をなすように展開物の平面体相互間を1軸回転自
在の第1のヒンジ、および1軸回転自在な第1の
ヒンジを複数個組み合わせた第2のヒンジを用い
て結合し、上記第1および第2のヒンジの作用に
より展開の過程において平面体相互が対称形を保
持しつつ2次元的に展開するようにしたことを特
徴とする宇宙船の展開物展開機構。
1 In a deployable object deployment mechanism of a spacecraft configured to deploy deployable objects attached to a spacecraft two-dimensionally in outer space, each of the planar objects of the deployable object consisting of a plurality of planar objects is on the same plane. Then, the planar bodies of the developed object are connected to each other using a first hinge that is rotatable on one axis and a second hinge that is a combination of a plurality of first hinges that are rotatable on one axis so as to form a predetermined arrangement. A deployable object deploying mechanism for a spacecraft, characterized in that the planar bodies are configured to expand two-dimensionally while maintaining mutual symmetry during the unfolding process due to the action of the first and second hinges.
JP57129871A 1982-07-26 1982-07-26 Unfolding mechanism of unfolding article of spaceship Granted JPS5920800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57129871A JPS5920800A (en) 1982-07-26 1982-07-26 Unfolding mechanism of unfolding article of spaceship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57129871A JPS5920800A (en) 1982-07-26 1982-07-26 Unfolding mechanism of unfolding article of spaceship

Publications (2)

Publication Number Publication Date
JPS5920800A JPS5920800A (en) 1984-02-02
JPH021720B2 true JPH021720B2 (en) 1990-01-12

Family

ID=15020357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57129871A Granted JPS5920800A (en) 1982-07-26 1982-07-26 Unfolding mechanism of unfolding article of spaceship

Country Status (1)

Country Link
JP (1) JPS5920800A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0133937B1 (en) * 1989-02-22 1998-04-18 말키 예후다 Soap with an imprinted image

Also Published As

Publication number Publication date
JPS5920800A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
US7059094B2 (en) Frame structure
US4896165A (en) Module for expandable structure and expandable structure employing said module
CN107685880B (en) Expandable combined unit and large-scale space expandable mechanism composed of same
JPH021720B2 (en)
JPH0474240B2 (en)
JPH025640B2 (en)
JPH07187089A (en) Two-dimensionally expandable panel device
JP2532286B2 (en) Deployable structure
JPH0429995Y2 (en)
JPH01151630A (en) Expansion type frame structure
JP2579110B2 (en) Spherical truss structure
JP3539099B2 (en) Deployable panel structure
JPH0124119B2 (en)
JPH06104479B2 (en) Deployable truss structure and hinge mechanism having deploying force
JP2576696B2 (en) Deployment truss
JP2004017957A (en) Developable structure of and forming method of trussed construction
JP2579676B2 (en) Synchronous deployable truss structure module and synchronous deployable truss structure
JPH0632293A (en) Development type truss
JPH01109198A (en) Hinge mechanism for developing and housing space antenna
JP2635576B2 (en) Deployment operation control device
JPH02133300A (en) Extension construction, antenna and solar cell in extension form using this construction
JPH02136396A (en) Deployment truss antenna
JPH11247290A (en) Expansion type frame structure
CN114865279A (en) Symmetrical double-layer peripheral truss folding and unfolding antenna mechanism based on inclined hexagonal prism units
JPH0794237B2 (en) Truss structure