JPH025640B2 - - Google Patents

Info

Publication number
JPH025640B2
JPH025640B2 JP57088310A JP8831082A JPH025640B2 JP H025640 B2 JPH025640 B2 JP H025640B2 JP 57088310 A JP57088310 A JP 57088310A JP 8831082 A JP8831082 A JP 8831082A JP H025640 B2 JPH025640 B2 JP H025640B2
Authority
JP
Japan
Prior art keywords
hinge
axis
deployable
bodies
rotatable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57088310A
Other languages
Japanese (ja)
Other versions
JPS58206499A (en
Inventor
Jun Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57088310A priority Critical patent/JPS58206499A/en
Publication of JPS58206499A publication Critical patent/JPS58206499A/en
Publication of JPH025640B2 publication Critical patent/JPH025640B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は打上げ時には折畳まれていて所定の
軌道投入時又は軌道において展開する例えばアン
テナ、太陽電池パネル等の宇宙船の展開物を展開
させる機構に関するものである。 従来の概念として畳まれた展開物を展開させる
場合、展開物の平面体相互間を1軸回転自在なヒ
ンジで結合して展開させる方式であり、第1図a
は展開前、第1図bは展開途中、第1図cは展開
後を示す図であり複数個の平行四辺形平面体1a
〜1dをそれぞれ1軸回転自在なヒンジ2a〜2
eで結合し衛星3にも結合されているようないを
ゆる可展ダブルコルゲーシヨン面のように展開時
に2方向4a,4bに展開する2次展開方式の場
合、1軸回転自在なヒンジを用いる従来の方式で
は以下述べるような問題点がある。 すなわち第2図aは1軸回転自在なヒンジの構
成を示す図であり板厚Tの平面体1a,1bを直
径Dでヒンジ回転中心5と平面体端部とのクリア
ランスHの1軸回転自在なヒンジを示している。
第2図bは1軸回転自在なヒンジを用いた場合の
展開時における平面体相互間の距離の変動を説明
する図であり複数個の平行四辺形平面体1a〜1
dと衛星3を1軸回転自在なヒンジ2a〜2dで
接続しており各平面体の辺の長さをP1、小さい
方の頂角をθaとした場合の相対する平面体1a,
1d間の距離L1が展開時にどのように変化する
か述べる。第2図cは平面体1aと衛星3との展
開角θ16aを説明する図であり展開角θ1が0゜の時
が展開前であり展開角θ1が90゜の時が展開後であ
る。いま第2図bにおいて平面体1aを展開した
場合、平面体1bはヒンジ2bにより平面体1a
と対称形に展開する。同様にして平面体1c,1
dの展開位置が決定されるので自動的に平面体1
a,1d間の距離L1が決定される。 いま(X,Y,Z)座標系をそれぞれX軸7
a,Y軸7bおよびX軸、Y軸と右手直交座標系
を構成するZ軸ととると、第2の平面体1bの2
頂点8a,8bを結ぶ直線X−Y面内に写影した
直線の傾きαは次式で求められる。 α=−cos(θa)/sin(θa)×sin(θ1) ……(1) 上記直線に直交する直線の傾きα′は次式で示さ
れる。 α′=−1/α ……(2) また平面体の頂点8a,8cの中点をとおり、
上記2頂点を結ぶ直線に直交する直線と頂点8
d,8aを結ぶ直線との成す交角θ36bは次式で
示される。 θ3=ARCTAN(−α) ……(3) この時頂点8aの座標X5,Y5,Z5は次式
で定義される。 いま頂点8eをとおりかつ頂点8a,8bを結
ぶ直線と直交する直線面内における第2の平面体
1bおよび第3の平面体1cの形状を第2図dに
示す。相対する平面体1b,1cの2点8f,8
gの座標(XM,YM,ZM),(XMM,YMM)
および平面体1bの構成する回転角θ26cはそれ
ぞれ次式のごとく示し得る。 ただし であり これらを用いると頂点8h,8dの座標(X1
3,Y13,Z13),(X3,Y3,Z3)はそ
れぞれ次式のごとく示し得る。 相対する平面体1a,1d間の距離L1は頂点
8h,8d間の距離であるから結局L1は次のよ
うに求まる。 L1=√(3−13)2+(3−13)2
(3−13)2……(7) いまH=2mm、D=5mm、P1=100mm、θa=
60゜,T=5mmとした時の展開角θ1と距離L1との
関係を表1に示す。
The present invention relates to a mechanism for deploying deployable objects of a spacecraft, such as antennas and solar battery panels, which are folded at the time of launch and are deployed at the time of entering or in a predetermined orbit. When unfolding a folded unfolded object, the conventional concept is to connect the flat bodies of the unfolded object with a hinge that can rotate freely on one axis.
1b shows the state before development, FIG. 1b shows the state during development, and FIG. 1c shows the state after development.
Hinge 2a~2 that can rotate ~1d by one axis, respectively
In the case of the secondary deployment method, which is connected to satellite 3 by e and expands in two directions 4a and 4b when deployed like a loosely expandable double corrugation surface, a hinge that can rotate freely on one axis is used. The conventional method used has the following problems. In other words, FIG. 2a shows the configuration of a hinge that can freely rotate on one axis. Planar bodies 1a and 1b of plate thickness T are rotatable on one axis with a diameter D and a clearance H between the hinge rotation center 5 and the end of the plane body. It shows a hinge.
FIG. 2b is a diagram illustrating the variation in the distance between plane bodies when unfolded when a uniaxially rotatable hinge is used.
d and the satellite 3 are connected by hinges 2a to 2d that can rotate freely on one axis, and the length of the side of each plane is P1, and the apex angle of the smaller one is θa, then the opposing plane 1a,
We will describe how the distance L1 between 1d changes during development. Figure 2c is a diagram explaining the deployment angle θ 1 6a between the plane body 1a and the satellite 3. When the deployment angle θ 1 is 0°, it is before deployment, and when the deployment angle θ 1 is 90°, it is after deployment. It is. Now, when the planar body 1a is unfolded in FIG.
and expand symmetrically. Similarly, the planar bodies 1c, 1
Since the development position of d is determined, the flat body 1 is automatically
The distance L1 between a and 1d is determined. Now (X, Y, Z) coordinate system is X axis 7
a, the Y axis 7b and the X axis, and the Y axis and the Z axis constituting the right-handed orthogonal coordinate system, the
The inclination α of the straight line projected in the straight line X-Y plane connecting the vertices 8a and 8b is determined by the following equation. α=-cos(θa)/sin(θa)×sin( θ1 )...(1) The slope α' of a straight line perpendicular to the above straight line is expressed by the following equation. α'=-1/α ...(2) Also, passing through the midpoint of vertices 8a and 8c of the plane body,
A straight line perpendicular to the straight line connecting the two vertices above and vertex 8
The intersection angle θ 3 6b formed by the straight line connecting d and 8a is expressed by the following equation. θ 3 =ARCTAN(−α) (3) At this time, the coordinates X5, Y5, and Z5 of the vertex 8a are defined by the following equation. FIG. 2d shows the shapes of the second planar body 1b and the third planar body 1c in a straight line that passes through the vertex 8e and is perpendicular to the straight line connecting the vertices 8a and 8b. Two points 8f, 8 on opposing planar bodies 1b, 1c
Coordinates of g (XM, YM, ZM), (XMM, YMM)
The rotation angle θ 2 6c formed by the planar body 1b can be expressed as shown in the following equations. however It is Using these, the coordinates of vertices 8h and 8d (X1
3, Y13, Z13) and (X3, Y3, Z3) can be expressed as shown in the following equations. Since the distance L1 between the opposing planar bodies 1a and 1d is the distance between the vertices 8h and 8d, L1 can be found as follows. L1=√(3−13) 2 +(3−13) 2 +
(3-13) 2 ...(7) Now H = 2mm, D = 5mm, P1 = 100mm, θa =
Table 1 shows the relationship between the development angle θ 1 and the distance L1 when the angle is 60° and T=5 mm.

【表】 以上説明したように展開物の平面体相互を1軸
回転自在なヒンジで結合する従来の方式は、2次
元的に展開する展開機構の場合、展開時に平面体
相互の距離が変化するので円滑な展開運動を達成
し得ないという欠点がある。 この発明はこのような問題点に対処し得る宇宙
船の展開物展開機構を提案するもので以下第3図
を用いてこの発明を詳述する。 第3図aは1軸回転自在なヒンジを3個2a,
2b,2c組み合わせたヒンジ9を示す図であ
り、2個の平面体1a,1bと接続されている。
これにより軸長可変で1軸回転自在である。第3
図bは展開前を示す図であり衛星3および平面体
1a〜1dを1軸回転自在なヒンジ2a〜2dお
よび軸長可変で1軸回転自在なヒンジ9で接続し
ている。第3図cは展開後を示す図であり衛星3
および平面体1a〜1dを1軸回転自在なヒンジ
2a〜2dおよび軸長可変で1軸回転自在なヒン
ジ9で接続している。 従つてこの発明によれば2次元的に展開する展
開機構の場合生ずる平面体相互の距離の変化も吸
収でき円滑な展開運動を達成し得る。又宇宙空間
で発生する熱変形等の歪みも吸収し得る。
[Table] As explained above, in the conventional method of connecting the planar bodies of the deployable objects with hinges that can rotate freely on one axis, in the case of a deployment mechanism that deploys two-dimensionally, the distance between the planar bodies changes during deployment. Therefore, it has the disadvantage that smooth unfolding movement cannot be achieved. This invention proposes a deployable object deployment mechanism for a spacecraft that can deal with such problems, and this invention will be explained in detail below using FIG. 3. Figure 3a shows three hinges 2a that can rotate on one axis,
It is a figure showing the hinge 9 which combined 2b and 2c, and is connected to two plane bodies 1a and 1b.
As a result, the shaft length can be changed and the shaft can be freely rotated on one axis. Third
FIG. b is a diagram showing the state before deployment, in which the satellite 3 and the planar bodies 1a to 1d are connected by hinges 2a to 2d that are rotatable in one axis and a hinge 9 that is variable in axis length and rotatable in one axis. Figure 3c is a diagram showing the satellite 3 after deployment.
The planar bodies 1a to 1d are connected by hinges 2a to 2d that are rotatable on one axis and a hinge 9 that has a variable axial length and is rotatable on one axis. Therefore, according to the present invention, it is possible to absorb changes in the distance between plane bodies that occur in the case of a two-dimensional unfolding mechanism, and achieve smooth unfolding motion. It can also absorb distortions such as thermal deformation that occur in outer space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来の概念による展開物の展開前を
示す図、第1図bは従来の概念による展開物の展
開途中を示す図、第1図cは従来の概念による展
開物の展開後を示す図、第2図aは従来の概念に
よる1軸回転自在なヒンジを示す図、第2図bは
1軸回転自在なヒンジを用いた場合の展開時にお
ける平面体相互間の距離の変動を説明する図、第
2図cは平面体と衛星との展開角を説明する図、
第2図dは平面体の展開角を説明する図、第3図
aはこの発明による軸長可変で1軸回転自在なヒ
ンジを示す図、第3図bはこの発明による展開物
の展開前を示す図、第3図cはこの発明による展
開物の展開後を示す図であり、1は平面体、2は
1軸回転自在なヒンジ、3は衛星、4は展開方
向、5はヒンジ回転中心、6は回転角度、7は座
標系、8は平面体の位置、9は軸長可変で1軸回
転自在なヒンジである。なお、図中同一あるいは
相当部分には同一符号を付してある。
Figure 1a is a diagram showing the unfolded object before development according to the conventional concept, Figure 1b is a diagram showing the unfolded object in the middle of expansion according to the conventional concept, and Figure 1c is after the expansion of the unfolded object according to the conventional concept. Figure 2a is a diagram showing a conventional concept of a uniaxially rotatable hinge, and Figure 2b is a diagram showing changes in the distance between planar bodies during deployment when a uniaxially rotatable hinge is used. Figure 2c is a diagram explaining the deployment angle between the flat body and the satellite.
Fig. 2 d is a diagram illustrating the unfolding angle of a planar body, Fig. 3 a is a diagram showing a hinge that is variable in axis length and rotatable on one axis according to the present invention, and Fig. 3 b is a diagram before unfolding of the deployable object according to the present invention. FIG. 3c is a diagram showing the deployable product according to the present invention after it is deployed, where 1 is a planar body, 2 is a hinge that can freely rotate on one axis, 3 is a satellite, 4 is a deployment direction, and 5 is a hinge rotation. The center, 6 is the rotation angle, 7 is the coordinate system, 8 is the position of the planar body, and 9 is a hinge whose axial length is variable and can be freely rotated on one axis. In addition, the same reference numerals are given to the same or corresponding parts in the figures.

Claims (1)

【特許請求の範囲】[Claims] 1 宇宙船に取付けられている展開物を宇宙空間
で2次元的に展開させるように構成した宇宙船の
展開物展開機構において、複数個の平面体からな
る展開物の平面体相互間を1軸回転自在の第1の
ヒンジおよび1軸回転自在な第1のヒンジを複数
個組み合わせた第2のヒンジを用いることによ
り、2次元的に展開する上記展開物の展開時に生
ずる平面体相互間の距離の変動を上記第2のヒン
ジで吸収せしめることにより円滑な展開物の展開
運動を達成し得るようにしたことを特徴とする宇
宙船の展開物展開機構。
1. In a deployable object deployment mechanism of a spacecraft configured to deploy deployable objects attached to a spacecraft two-dimensionally in outer space, a single axis is used between the flat bodies of the deployable object consisting of a plurality of flat bodies. By using a rotatable first hinge and a second hinge that is a combination of a plurality of uniaxially rotatable first hinges, the distance between the plane bodies that occurs when the above-mentioned expandable object is expanded two-dimensionally can be reduced. A deployable object deployment mechanism for a spacecraft, characterized in that a smooth deploying movement of the deployable object can be achieved by absorbing fluctuations in the amount by the second hinge.
JP57088310A 1982-05-25 1982-05-25 Unfolding mechanism of unfolder of spaceship Granted JPS58206499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57088310A JPS58206499A (en) 1982-05-25 1982-05-25 Unfolding mechanism of unfolder of spaceship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57088310A JPS58206499A (en) 1982-05-25 1982-05-25 Unfolding mechanism of unfolder of spaceship

Publications (2)

Publication Number Publication Date
JPS58206499A JPS58206499A (en) 1983-12-01
JPH025640B2 true JPH025640B2 (en) 1990-02-05

Family

ID=13939351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57088310A Granted JPS58206499A (en) 1982-05-25 1982-05-25 Unfolding mechanism of unfolder of spaceship

Country Status (1)

Country Link
JP (1) JPS58206499A (en)

Also Published As

Publication number Publication date
JPS58206499A (en) 1983-12-01

Similar Documents

Publication Publication Date Title
EP1332966B1 (en) Frame structure
US6378809B1 (en) AFT deployable thermal radiators for spacecraft
US6229501B1 (en) Reflector and reflector element for antennas for use in outer space and a method for deploying the reflectors
JPH025640B2 (en)
JP2980243B2 (en) Cylindrical deployment structure
JPH021720B2 (en)
JP2618911B2 (en) Truss structure
JPH02283597A (en) Expanding truss structure and expansion synchronizer therefor
JP2001106195A (en) Plane-expansion structure
JPH06104479B2 (en) Deployable truss structure and hinge mechanism having deploying force
JPH01151630A (en) Expansion type frame structure
JP3717035B2 (en) Expandable frame structure
JP2000059122A (en) Expansion type planar structure device
JPH07187089A (en) Two-dimensionally expandable panel device
JPH07183723A (en) Expansible antenna reflection mirroe
CN114802809B (en) Chemical molecular satellite for space electromagnetic shielding
JP2538619B2 (en) Deployment Trust
JP2004017957A (en) Developable structure of and forming method of trussed construction
JP4178349B2 (en) Junction
JPS60223208A (en) Expanding antenna
JP2986789B1 (en) 3D unfolded structure
JPH02133300A (en) Extension construction, antenna and solar cell in extension form using this construction
JPH11247290A (en) Expansion type frame structure
JPH02136396A (en) Deployment truss antenna
JP2635576B2 (en) Deployment operation control device