JPH0429995Y2 - - Google Patents

Info

Publication number
JPH0429995Y2
JPH0429995Y2 JP1984068258U JP6825884U JPH0429995Y2 JP H0429995 Y2 JPH0429995 Y2 JP H0429995Y2 JP 1984068258 U JP1984068258 U JP 1984068258U JP 6825884 U JP6825884 U JP 6825884U JP H0429995 Y2 JPH0429995 Y2 JP H0429995Y2
Authority
JP
Japan
Prior art keywords
arms
linear movement
telescoping
hinges
connecting bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984068258U
Other languages
Japanese (ja)
Other versions
JPS60179598U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6825884U priority Critical patent/JPS60179598U/en
Publication of JPS60179598U publication Critical patent/JPS60179598U/en
Application granted granted Critical
Publication of JPH0429995Y2 publication Critical patent/JPH0429995Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (考案の利用分野) 本考案は1ケ所に駆動力を与えることで互いに
直交する多方向に伸縮展開する折り畳み式直交多
軸展開機構に関するものである。
[Detailed Description of the Invention] (Field of Application of the Invention) The present invention relates to a foldable orthogonal multi-axis deployment mechanism that expands and contracts in multiple mutually orthogonal directions by applying a driving force to one location.

(考案の背景) 例えばロケツト、人工衛星等に搭載し、ある時
点でロケツト、人工衛星等の本体から離れた点に
観測機器を設定するために、あるいは地上と交信
するためのアンテナを展開するために多軸方向に
伸縮する機構が利用されている。この伸縮機構に
は通常多方向への展開が要求されるが、従来の多
軸方向伸縮機構は各々独立した伸縮機構を互に別
異の方向に展開させることにより構成していたの
で、収納時のスペースが大きくなり、駆動部も各
伸縮機構毎に必要とするため限定されたスペース
のロケツト、人工衛星等に搭載するのには不適当
であり、特にロケツト、人工衛星等への搭載用と
して簡単な構成で多軸方向に互に連動して伸縮す
る機構が要求されている。
(Background of the idea) For example, to install observation equipment on a rocket, artificial satellite, etc. at a certain point away from the main body of the rocket, artificial satellite, etc., or to deploy an antenna for communicating with the ground. A mechanism that expands and contracts in multiple axes is used. This telescoping mechanism is normally required to expand in multiple directions, but conventional multi-axial telescoping mechanisms were constructed by deploying independent telescoping mechanisms in different directions, so when stored Since it takes up a large amount of space and requires a drive section for each telescoping mechanism, it is unsuitable for mounting on rockets, artificial satellites, etc. that have limited space, and is particularly suitable for mounting on rockets, artificial satellites, etc. There is a need for a mechanism that has a simple configuration and expands and contracts in conjunction with each other in multiple axes.

(考案の目的) 本考案は上記要求に対応するためになされたも
のである。
(Purpose of the invention) The present invention has been made to meet the above requirements.

1方向に伸縮(展開)する機構としては、第1
図に示す伸縮やつとこ(レージトング:
lazytongs)が公知である。この伸縮やつとこを
簡単に説明すると、同一寸法のアーム1a,1b
を互に中央でクロスさせて軸2で転動可能に軸支
した機構を、上記アーム1a,1bの先端に於い
て次々に軸3a,3bで転動可能に連結したもの
であり、上記アーム1a,1bの先端部(いずれ
のアームであつてもよい)に駆動力Fを作用させ
ることにより伸縮させることができる。
As a mechanism that expands and contracts (deploys) in one direction, the first
The telescopic and retractable tongs shown in the figure (Rage tongs:
lazytongs) are well known. To briefly explain this expansion and contraction, arms 1a and 1b of the same size.
A mechanism in which the arms 1a and 1b are crossed at the center and rotatably supported on a shaft 2 is connected to the ends of the arms 1a and 1b so as to be rotatable one after another on shafts 3a and 3b. By applying a driving force F to the tips of 1a and 1b (which may be either arm), they can be expanded and contracted.

(考案の実施例) 本考案は上記伸縮やつとこを連結機構で多方向
に指向連結したものであり、以下、第2図によつ
て本考案の実施例を説明する。
(Embodiment of the invention) The present invention is one in which the above-mentioned telescoping and levers are directionally connected in multiple directions using a connecting mechanism.Hereinafter, an embodiment of the invention will be described with reference to FIG. 2.

A〜D……伸縮やつとこ E……連結機構部 4a,4b……連結体 5……ガイドレール 6a〜6d……連結アーム 7a〜7d,8a,8b,9a〜9d,10
a〜10d……ヒンジ 尚、以上の他の記号については第1図と同じで
ある。
A to D...Extension and contraction E...Connection mechanism section 4a, 4b...Connection body 5...Guide rail 6a to 6d...Connection arm 7a to 7d, 8a, 8b, 9a to 9d, 10
a to 10d...hinge The other symbols mentioned above are the same as in FIG. 1.

伸縮やつとこA〜Dは第1図で説明した機構で
あり、それぞれ基部分のアーム1a,1bの先端
が連結機構部Eの各連結アーム6a〜6dの先端
にヒンジ10a〜10dによつて転動可能に軸支
連結されている。
The telescoping arms A to D are the mechanisms explained in FIG. Pivotally connected for movement.

連結機構部Eの構造を以下に説明する。 The structure of the coupling mechanism section E will be explained below.

連結体4a,4bは例えば角柱状に形成され、
一方の連結体、例えば4bにはガイドレール5が
固定され、他の一方の連結体、例えば4aには上
記ガイドレール5が摺動自在に貫通係合してい
て、この機構により当該連結体4a,4bは互に
平行を保ちながらその相互間隔を変えるように、
直線運動ができるようになつている。
The connecting bodies 4a and 4b are formed, for example, in a prismatic shape,
A guide rail 5 is fixed to one of the connecting bodies, for example 4b, and the guide rail 5 is slidably engaged with the other connecting body, for example 4a. , 4b change their mutual spacing while remaining parallel to each other,
It is now able to move in a straight line.

連結アーム6a〜6dは例えば板状に形成さ
れ、一方の先端部分を直角方向に折り曲げて略L
字形状をしている。
The connecting arms 6a to 6d are formed, for example, in a plate shape, and one tip portion is bent in a right angle direction to form an approximately L shape.
It has a letter shape.

上記連結アーム6a〜6dは2本ずつ、6aと
6b及び6cと6dとがそれぞれヒンジ8a及び
8bにより交叉して可動的に軸支連結され、この
ヒンジ8a及び8bで連結された位置から各々互
に等距離の位置で上記連結体4a,4bの長手方
向両端にヒンジ7a及び7bにより連結アーム6
a及び6bが、ヒンジ7c及び7dにより連結ア
ーム6c及び6dがそれぞれ転動可能に軸支され
ている。
Two of the connecting arms 6a to 6d, 6a and 6b and 6c and 6d, are intersected and movably connected by hinges 8a and 8b, and are mutually connected from the positions connected by the hinges 8a and 8b. A connecting arm 6 is attached to both longitudinal ends of the connecting bodies 4a and 4b by hinges 7a and 7b at positions equidistant from each other.
connecting arms 6c and 6d are rotatably supported by hinges 7c and 7d, respectively.

以上のように構成した連結機構部Eの各連結ア
ーム6a〜6dの先端には前記したようにヒンジ
9a〜9d及び10a〜10dにより4個の伸縮
やつとこA〜Dが軸支連結されている。すなわ
ち、伸縮やつとこA及びCは互に他の対に属する
連結アーム6a,6c及び6b,6dの折曲側先
端部(連結体4a,4bの直線運動方向側の先端
部)にヒンジ9a,9c及び9b,9dで連結さ
れ、伸縮やつとこB及びDは同じ対に属する連結
アーム6a,6b及び6c,6dの非折曲側先端
部(連結体4a,4bの直線運動方向と直交する
方向の先端部)にヒンジ10a,10b及び10
c,10dで連結されている。
As described above, four telescopic levers A to D are pivotally connected to the tips of each of the connecting arms 6a to 6d of the connecting mechanism section E configured as described above by hinges 9a to 9d and 10a to 10d. . That is, the telescopic links A and C each have a hinge 9a, a 9c, 9b, and 9d, and the extendable and retractable connectors B and D are attached to the non-bent ends of the connecting arms 6a, 6b and 6c, 6d belonging to the same pair (in a direction perpendicular to the linear movement direction of the connecting bodies 4a, 4b). hinges 10a, 10b and 10
c and 10d.

連結アーム6a〜6dの寸法及びヒンジ7a〜
7dによる連結体4a,4bと連結アーム6a〜
6dの連結位置は各伸縮やつとこA〜Dの各アー
ム1a,1bを連結するヒンジ(軸)3a,3b
間の間隔変化量と連結体4a,4b間の間隔変化
量とが同じになるように設定され、各伸縮やつと
こA〜Dの伸縮度合(アーム1a,1bの1個あ
たりの伸縮長)は相互に同一となる。
Dimensions of connecting arms 6a-6d and hinges 7a-
Connecting bodies 4a, 4b and connecting arms 6a~ by 7d
The connection position of 6d is the hinge (shaft) 3a, 3b that connects each arm 1a, 1b of each telescoping member A to D.
The amount of change in the distance between them is set to be the same as the amount of change in the distance between the connecting bodies 4a and 4b. mutually identical.

次に実施例の機構の伸縮駆動方法について説明
する。駆動部は特に図示していないが、連結体4
a,4b間の間隔を変える駆動機構としてもよ
く、いずれか一つの伸縮やつとこ、例えばAのい
ずれかのヒンジ3a,3b間の距離を制御する駆
動機構としてもよい。
Next, a method for driving the mechanism according to the embodiment to extend and retract will be explained. Although the driving part is not particularly shown, the connecting body 4
It may be a drive mechanism that changes the distance between a and 4b, or it may be a drive mechanism that controls the distance between any one of the extensions and contractions or the hinges 3a and 3b of A, for example.

例えば、連結体4a,4b間に駆動力が作用す
る駆動機構とし、当該連結体4a,4bを例えば
相互に近づくように駆動すると、連結アーム6
a,6dはそれぞれヒンジ7a,7dを中心にし
て反時計方向に、連結アーム6b,6cはそれぞ
れヒンジ7b,7cを中心にして、時計方向にそ
れぞれ転動する。これにより、ヒンジ9a−9c
間、9b−9d間、10a−10b間及び10c
−10d間がそれぞれ縮まり、各伸縮やつとこA
〜DはそれぞれY,X,Y′,X′の各方向に伸展
する。上記連結体4a,4bを相互に遠ざかるよ
うに駆動すると、上記各部の動作方向と逆方向の
動作で各伸縮やつとこA〜Dは、それぞれ反Y,
反X,反Y′,反X′の各方向に縮少する。そして
上記各伸縮やつとこA〜Dのアーム1a,1bの
1組あたりの伸展量及び縮少量は相互に同じであ
り、伸縮やつとこA及びCと伸縮やつとこB及び
Dとは、伸展方向及び縮少方向とが互に直交する
方向となる。
For example, if a drive mechanism is used in which a driving force acts between the connecting bodies 4a and 4b, and the connecting bodies 4a and 4b are driven closer to each other, the connecting arm 6
The connecting arms a and 6d roll counterclockwise around the hinges 7a and 7d, respectively, and the connecting arms 6b and 6c roll clockwise around the hinges 7b and 7c, respectively. As a result, the hinges 9a-9c
between, between 9b and 9d, between 10a and 10b, and between 10c
-10d are each shortened, and each expansion/contraction and connection A
~D extend in the Y, X, Y', and X' directions, respectively. When the connecting bodies 4a and 4b are driven away from each other, each of the extensions and contractions and the links A to D move in the opposite direction to the direction of movement of each part, respectively.
It shrinks in the anti-X, anti-Y', and anti-X' directions. The amount of extension and contraction per pair of arms 1a, 1b of each of the above-mentioned telescoping connectors A to D are the same, and the stretching direction and the amount of contraction of the telescopic connectors A and C and the telescopic connectors B and D are the same. The reduction direction and the direction are perpendicular to each other.

尚、実施例は4方向への展開機構であるが、伸
縮やつとこA〜Dのいずれか1つを削除して3方
向展開機構としても、又は互に直交関係にある2
つの伸縮やつとこ、例えばAとBにより2方向展
開機構としても2軸(X軸及びY軸)に展開する
機構に変わりはなく、このような場合も本考案の
要旨の範囲内である。
In addition, although the example is a mechanism for deploying in four directions, it can also be used as a mechanism for deploying in three directions by deleting any one of the extensions and connectors A to D, or two that are orthogonal to each other may be used.
Even if it is a two-direction deployment mechanism using two extensions and contractions, for example A and B, it is still a mechanism that deploys in two axes (X-axis and Y-axis), and such a case is also within the scope of the present invention.

(考案の効果) 以上の説明から明らかなように本考案によれば
駆動力を1ケ所に印加することで直交する関係に
ある多軸方向(最高4方向)に伸縮展開できる機
構が得られ、駆動部が1個でよいため小型にでき
るほか収納時の占有容積も少なくてよい。また各
方向の動作が互に同期している(同じである)た
めに各方向相互間の特別な制御も不必要であり、
本考案は特に飛翔体搭載機器として優れた効果を
発揮するものである。
(Effects of the invention) As is clear from the above explanation, according to the invention, a mechanism that can expand and contract in multiple axes (up to four directions) that are perpendicular to each other by applying a driving force to one location can be obtained. Since only one drive unit is required, it can be made smaller and also requires less space when stored. Furthermore, since the operations in each direction are synchronized (the same), there is no need for special control between each direction.
The present invention is particularly effective as a device mounted on a flying object.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の伸縮やつとこの構造を示す図、
第2図は本考案の実施例を示す図であり、主な記
号の意味は次の通りである。 A,B,C,D……伸縮やつとこ、E……連結
機構部、4a,4b……連結体、6a〜6d……
連結アーム。
Figure 1 is a diagram showing the structure of a known telescoping mechanism.
FIG. 2 is a diagram showing an embodiment of the present invention, and the meanings of main symbols are as follows. A, B, C, D... Telescopic connector, E... Connecting mechanism section, 4a, 4b... Connecting body, 6a to 6d...
connecting arm.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 互に平行を保ちながら相互間隔を変えるような
直線運動を可能とした2本の連結体と、該2本の
連結体のそれぞれの両端に転動可能に軸支され、
かつ互に他の連結体の同一側端部に軸支されたも
のどうしが該同一側端部から等距離の位置で交叉
可動的に軸支された4本のアームと、該4本のア
ームの両軸支位置から外方に伸延した先端部で、
上記連結体の直線運動方向側に位置する一対の先
端部及び当該直線運動方向と直交する方向側に位
置する一対の先端部にそれぞれ伸縮やつとこを軸
支連結した折り畳み式直交多軸展開機構。
two connecting bodies that are capable of linear movement that changes the distance between them while remaining parallel to each other, and rotatably supported at both ends of each of the two connecting bodies,
and four arms that are mutually pivotally supported on the same side end of the other connecting body and movably pivotally supported crosswise at positions equidistant from the same side end; and the four arms. The distal end extends outward from the biaxial support position of the
A folding type orthogonal multi-axis deployment mechanism in which a pair of tip portions located on the linear movement direction side of the connecting body and a pair of tip portions located on the side perpendicular to the linear movement direction are respectively pivotally connected with telescoping and levers.
JP6825884U 1984-05-10 1984-05-10 Foldable orthogonal multi-axis deployment mechanism Granted JPS60179598U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6825884U JPS60179598U (en) 1984-05-10 1984-05-10 Foldable orthogonal multi-axis deployment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6825884U JPS60179598U (en) 1984-05-10 1984-05-10 Foldable orthogonal multi-axis deployment mechanism

Publications (2)

Publication Number Publication Date
JPS60179598U JPS60179598U (en) 1985-11-28
JPH0429995Y2 true JPH0429995Y2 (en) 1992-07-20

Family

ID=30602844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6825884U Granted JPS60179598U (en) 1984-05-10 1984-05-10 Foldable orthogonal multi-axis deployment mechanism

Country Status (1)

Country Link
JP (1) JPS60179598U (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646939B2 (en) * 2007-03-29 2011-03-09 川崎重工業株式会社 Panel device
JP5665019B2 (en) * 2009-12-08 2015-02-04 国立大学法人大阪大学 Expanded structure
JP5996713B1 (en) * 2015-04-30 2016-09-21 株式会社不二宮製作所 Variable area frame and variable volume solid structure using telescopic arm
JP6391124B2 (en) * 2016-08-08 2018-09-19 株式会社不二宮製作所 Variable shape solid structure using telescopic arm
JP6391125B2 (en) * 2016-08-22 2018-09-19 株式会社不二宮製作所 Variable shape frame using telescopic arm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443497U (en) * 1977-08-31 1979-03-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443497U (en) * 1977-08-31 1979-03-24

Also Published As

Publication number Publication date
JPS60179598U (en) 1985-11-28

Similar Documents

Publication Publication Date Title
US5228258A (en) Collapsible truss structure
US6047610A (en) Hybrid serial/parallel manipulator
EP0106891B1 (en) Deployable truss
CN112768869B (en) Flat antenna folding and unfolding unit and two-dimensional folding and unfolding antenna mechanism
JPH0429995Y2 (en)
JPS62288272A (en) Developing structure
GB2507623A (en) An assembly for converting motion
CN113675574B (en) Bidirectional flat plate folding and unfolding unit and bidirectional flat plate folding and unfolding antenna mechanism
JP2569277B2 (en) Drive with three degrees of freedom in space
CN109050699B (en) A kind of changeable constructed machine people system
JPH03165606A (en) Mesh antenna
JPH03178900A (en) Developing type structure
JP7261082B2 (en) walking robot
CN107416232A (en) A kind of parabola petal type rolls over extending apparatus
JPS5988291A (en) Manipulator
JPH0659880B2 (en) Deployable frame structure
JPS6010091Y2 (en) aerial deployment device
JPH0216602B2 (en)
JPH04197898A (en) Truss structure
KR102657456B1 (en) Expansion drive unit and drone comprising thereof
JPH05221392A (en) Unfolding truss structure
JPH04197897A (en) Unfolding structure used in space
JP3261667B2 (en) Variable shape structure
JPS61109680A (en) Joint structure of arm, etc. for multi-joint type robot
JP4586299B2 (en) Variable shape roof structure and shape control method thereof