JPS5920800A - Unfolding mechanism of unfolding article of spaceship - Google Patents

Unfolding mechanism of unfolding article of spaceship

Info

Publication number
JPS5920800A
JPS5920800A JP57129871A JP12987182A JPS5920800A JP S5920800 A JPS5920800 A JP S5920800A JP 57129871 A JP57129871 A JP 57129871A JP 12987182 A JP12987182 A JP 12987182A JP S5920800 A JPS5920800 A JP S5920800A
Authority
JP
Japan
Prior art keywords
hinge
unfolding
planar
axis
plane body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57129871A
Other languages
Japanese (ja)
Other versions
JPH021720B2 (en
Inventor
純 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57129871A priority Critical patent/JPS5920800A/en
Publication of JPS5920800A publication Critical patent/JPS5920800A/en
Publication of JPH021720B2 publication Critical patent/JPH021720B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は打上げ時には折畳まれていて所定の軌道投入
時又は軌道において展開する例えばアンテナ、太陽電池
パネル等の宇宙船の展開物を展開させる機構に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mechanism for deploying deployable objects of a spacecraft, such as antennas and solar panels, which are folded at the time of launch and are deployed at the time of entering or in a predetermined orbit.

従来の概念として折畳まれた展開物を展開させる場合、
展開物の平面体相互間を1軸回転自在なヒンジで結合し
て展開させる方式であり、いわゆる可屈ダブルコルゲー
ション面のように展開時に2方向に展開する2次元展開
方式の場合、1軸回転自在なヒンジを用いる従来の方式
では以下述べるような問題点がある。第1図(alは展
開物の展開前を、第1図(blは展開物の展開途中を、
又第1図(C1は展開物の展開後をそれぞれ示す図であ
り、複数個の平行四辺形平面体(1a)〜(1d)およ
び衛星(2)をそれぞれ1軸回転自在はヒンジ(3a)
〜(3e)を用いて結合している。平行四辺形平面体(
la)の回転角θ1が90度の時が第1図(alに示す
展開前の状態であり0度の時が第1図telに示す展開
後の状態であり第1図(blにおいて展開時に1軸回転
自在なヒンジ(ab)を介して結合されている平面体(
la) 。
When unfolding a folded object according to the conventional concept,
This is a method in which the planar bodies of the deployable object are connected with each other using a hinge that can rotate freely on one axis.In the case of a two-dimensional unfolding method that unfolds in two directions when unfolding, such as a so-called flexible double corrugation surface, it is possible to rotate on one axis. The conventional system using a flexible hinge has the following problems. Figure 1 (al is before the unfolded object is unfolded, Figure 1 (bl is the unfolded object during the unfolding,
In addition, Fig. 1 (C1 is a diagram showing the unfolded object after it has been deployed, and the hinge (3a) allows each of the plurality of parallelogram planar bodies (1a) to (1d) and the satellite (2) to rotate freely on one axis.
~(3e) is used to bond. Parallelogram plane body (
When the rotation angle θ1 of la) is 90 degrees, it is the state before deployment as shown in Figure 1 (al), and when it is 0 degrees, it is the state after deployment as shown in Figure 1 tel, Planar bodies (
la).

(1b)それぞれの回転角01.θ2が常に等しく変動
し、これと同様の条件が平面体(lb) + (1(り
 、平面体(1す、 (ltl)にも適用でき、これら
の条件から展゛開時における平面体(la)〜(Id)
の位置関係は決足さnる。後述するように平面体(]d
)、(1a)間の距離りは展開物の展開前、展開中、展
開後で変動するので、展開物の平面体相互を1軸回転自
在なヒンジで結合する従来の方式は2次元的に展開する
展開機構の場合1円滑な展開運動を達成しイMないとい
う欠点がある。
(1b) Each rotation angle 01. θ2 always varies equally, and the same conditions can be applied to the plane body (lb) + (1 (ri), plane body (1s, (ltl)), and from these conditions, the plane body ( la)~(Id)
The positional relationship between the two is determined. As described later, a plane body (]d
) and (1a) change before, during, and after the unfolding of the developable object, so the conventional method of connecting the planar objects of the developable object with a hinge that can freely rotate on one axis is two-dimensional. In the case of a deploying mechanism that deploys, there is a drawback that it is difficult to achieve a smooth deploying motion.

この発明はこのような問題点に対処し得る宇宙船の展開
物展開機構を提案するもので以下第2(2)を用いてこ
の発明を詳述する。第2図(alけ1軸回転自在なヒン
ジを示す図であり2個の平面体(la) 。
This invention proposes a deployable object deployment mechanism for a spacecraft that can deal with such problems, and this invention will be described in detail below using Section 2 (2). FIG. 2 is a diagram showing a hinge that can freely rotate on one axis, and includes two planar bodies (la).

(lb)の板厚T、上ヒンジ径り、ヒンジ回転中心(4
a)から平面体端部までのヒンジクリアランスHに工り
形状諸元が定義さnる。
(lb) plate thickness T, upper hinge diameter, hinge rotation center (4
Machining shape specifications are defined as the hinge clearance H from a) to the end of the plane body.

第2図(blは1軸回転自在なヒンジを3個(3a) 
+(ab) + (3C)組み合わせたヒンジ(5)を
示す図であり。
Figure 2 (bl is three hinges (3a) that can rotate freely on one axis.
+(ab) + (3C) A diagram showing a combined hinge (5).

2個の平面体(la) l (lb)を結合している。It connects two planar bodies (la) and l (lb).

第2図(C1け提案する展開物展開機構の展開後を示す
Nであり、衛星(2)に1軸回転自在なヒンジ(3a)
〜(31)を介して平行四辺形平面体(1a)〜(11
)を取り付ける。ここで1軸回転自在なヒンジ(3b)
 + (3d) 5Can r (sh)は平面体下方
に取り付けられ、1軸回転自在なヒンジ(3す+ (a
c) r (ae) t (3g) l (ai)は平
面体上方に取り付けられている。各平面体は1軸回転自
在なヒンジ(3す〜(3i) を介し°C対称に展開す
るので、展開時における平面体(lす〜(1りの位置関
係/fi決定される。この時平面体(lす+ (、lf
)間ノ%m L+ オj D ”F If 体(”d)
 + (11Jf’rJI)FhNm L2を求めてみ
る。第2図(dlにおいて衛星(2)と第1の平面体(
1a)によ#)構成さj、る回転角θ1 を示す。
Figure 2 (C1) shows the proposed deployable object deployment mechanism after deployment;
Parallelogram plane body (1a) ~ (11) via ~(31)
). Here, the hinge (3b) can rotate freely on one axis.
+ (3d) 5Can r (sh) is a hinge (3s + (a
c) r (ae) t (3g) l (ai) is attached above the plane body. Since each planar body unfolds symmetrically by °C via hinges (3i) that can freely rotate on one axis, the positional relationship/fi of the plane body (lsu~(1) at the time of unfolding is determined. Planar body (l+ (, lf
) between %m L+ Oj D ”F If body (”d)
+ (11Jf'rJI)FhNm Let's find L2. Figure 2 (dl) shows the satellite (2) and the first planar body (
1a) shows the rotation angle θ1 constructed by j.

第2hte+において第3の平面体(lc)と第4の平
面体(ld)とにエリ構成される回転角θ2を示す。第
2図(flにおいて第1の平面体(la上第2の平面体
(1す#第5の平面体(1す、第6の平面体(if)と
により構成される角度θ5を示す。第2図(g)におい
て第1の平面体(la)と第6の平面体(if、)によ
り構成される回転角θ4を示す。第2図(C1において
軸(6a)、 y軸(6b)および上記2軸と直交右手
座標系を構成するLりな図示しない2軸を考える。
The rotation angle θ2 formed between the third plane body (lc) and the fourth plane body (ld) in the second hte+ is shown. FIG. 2 (fl) shows the angle θ5 formed by the first plane body (la, the second plane body (1), the fifth plane body (1), and the sixth plane body (if)). FIG. 2(g) shows the rotation angle θ4 formed by the first planar body (la) and the sixth planar body (if,). ) and two axes (not shown) forming a right-handed coordinate system orthogonal to the above two axes.

上記座標系において頂点(7a)の座標を仮に(Xc 
In the above coordinate system, let us assume that the coordinates of vertex (7a) are (Xc
.

7c r zc)および頂点(7a) t (!: オ
F) T12点(7b) p (7c)から構成される
直線の傾きと直交する傾きを有する直線と頂点(7b)
 t (7c)から構成される直線との交点(7d、l
 (1)座vA’fr: (Xu、7u+zg) トT
;Erト回WE角I2は次のように定義さnる。
7c r zc) and the vertex (7a) t (!: OF) T12 point (7b) p (7c) A straight line and vertex (7b) with a slope orthogonal to the slope of the straight line composed of p (7c)
The intersection point (7d, l) with the straight line composed of t (7c)
(1) Locus vA'fr: (Xu, 7u+zg) ToT
The angle I2 is defined as follows.

ここではNは段数すなわちxI)1i1万同に配列さγ
Lる平面体の数を示す。座標(Xc、Yc+Zc)は頂
点(7b)の座標を(xA、yA、zA)とすれば次の
関係を崩している。
Here, N is the number of stages, i.e.
Indicates the number of L planar bodies. The coordinates (Xc, Yc+Zc) break the following relationship if the coordinates of the vertex (7b) are (xA, yA, zA).

X C=XA yc=y、 −PI              ・・
・(2)ZC=ZA ここでPl は各平面体のy軸方向の辺の長さである。
X C=XA yc=y, -PI...
-(2) ZC=ZA Here, Pl is the length of the side of each planar body in the y-axis direction.

座標(xA + 7A l zA )は次のように書け
る。
The coordinates (xA + 7A l zA) can be written as follows.

ことでHはヒンジクリアランス、θはヒンジ直径、P2
は各平面体のX軸方向の辺の長さ、Tは平面体板厚、θ
aは平面体の小さい万の頂角である。
Therefore, H is the hinge clearance, θ is the hinge diameter, and P2
is the length of the side in the X-axis direction of each plane body, T is the thickness of the plane body, θ
a is the small apex angle of the plane.

=tた頂点(7b) 、 (7c)を結ぶ直線の傾きを
αとしそれに直交する傾きをα′ とするとそれらは次
式よって座標(XM17MIZM)は次式で示し得る。
If the slope of the straight line connecting the vertices (7b) and (7c) with =t is α and the slope perpendicular to it is α', then the coordinates (XM17MIZM) can be expressed as the following equation.

以上によりθ2が足義された。As described above, θ2 was established.

θ3は次のように定義される。θ3 is defined as follows.

θ5=ARC!TAN (−α〕        ・・
・(6)回転角θ4は頂点(7e)の座標を(X217
21Z2)およ、び頂点(7e)をとおり頂点(7f)
 、 (7g)から構成される直線の傾きと直交する傾
きを有する直線と頂点(7f) 、 (7g)から構成
さルる直線との交点(7h)の座標を(XN1.7N 
I ”N )とすれば次のように足義される。
θ5=ARC! TAN (-α) ・・
・(6) The rotation angle θ4 is the coordinate of the vertex (7e) (X217
21Z2) and the vertex (7f) through the vertex (7e)
The coordinates of the intersection point (7h) of the straight line having a slope perpendicular to the slope of the straight line composed of , (7g) and the straight line composed of vertices (7f) and (7g) are (XN1.7N
I ”N ), then the foot is interpreted as follows.

座標(x2+72+22)は頂点(7f)の座標(xj
 +7t +z、)と次の関係を有している。
The coordinates (x2+72+22) are the coordinates (xj
+7t +z,) and has the following relationship.

X2=X1 72−−71               ・・・(
8)Z2=Z 1 ここで座標(t、y1+z+)は次のように書ける。
X2=X1 72--71...(
8) Z2=Z 1 Here, the coordinates (t, y1+z+) can be written as follows.

Z + =HX cos(θ+ )  2 X s i
 n (θ1)さらに座標(XNI 7N、 ZN )
は次のように書ける。
Z + =HX cos(θ+) 2 X s i
n (θ1) and coordinates (XNI 7N, ZN)
can be written as follows.

YN−yI+(!’  (XN−xj )z N=I?
 l +P 25in(θa)coo(θすX(x、−
xN)2+ (Y、−xN)2(P2sin(θa)s
in(θ1)2+(P2cos(θa)〕2以上により
θ4が定義された。
YN-yI+(!' (XN-xj)z N=I?
l +P 25in(θa) coo(θsuX(x, -
xN)2+ (Y, -xN)2(P2sin(θa)s
θ4 was defined by in(θ1)2+(P2cos(θa))2 or more.

ここで頂点(71)の座標を(xp、yp)とするとL
lは次式で示される。
Here, if the coordinates of vertex (71) are (xp, yp), L
l is expressed by the following formula.

L1== (xp−Xt )2+(Yp−7+ )2−
dllただし 刈1−cos(2θs))+2 ((Psin(θ2 
))HXCO8(θ2))である。
L1== (xp-Xt)2+(Yp-7+)2-
dll However, 1-cos(2θs))+2((Psin(θ2
))HXCO8(θ2)).

Llは頂点(7j) 、 (7k)、を結ぶ直線と頂点
(71)。
Ll is the straight line connecting the vertices (7j) and (7k), and the vertex (71).

(7m)を結ぶ直線と平行な傾きを有しかつ上記2直線
の中心を通る直線、と頂点(7n)を通り上記直線と直
交する傾きを持つ直線との交点(XQ、、7Q、)と頂
点(7n)の座標(xB、yB)との距離およ′び点(
7d)の座標(XM、yM)と頂点(7a)の座標(”
CI 7o)間の距離を用いて次式のように示し得る。
The intersection point (XQ,, 7Q,) between a straight line that has an inclination parallel to the straight line connecting (7m) and passes through the center of the above two straight lines, and a straight line that passes through the vertex (7n) and has an inclination perpendicular to the above straight line. The distance from the vertex (7n) to the coordinates (xB, yB) and the point (
7d) coordinates (XM, yM) and the vertex (7a) coordinates (”
It can be expressed as follows using the distance between CI 7o).

・・・I ここで ! Q −X B ・・・α9 Q、B ・・・0Q Pl             ・・負ηMe  α・
−α αIp1 yM−ア。−6l  a           ”制で
ある。いまH−2闘、D=5闘、 Pl =Pz、=1
0(ltm、  θ −60°、T=5mm、N=3の
場合の01に対応するLlお工びL2の変化を表1に示
す。
...I here! Q -X B...α9 Q, B...0Q Pl...Negative ηMe α・
-α αIp1 yM-a. -6l a" system. Now H-2 battles, D = 5 battles, Pl = Pz, = 1
Table 1 shows the changes in L1 and L2 corresponding to 01 in the case of 0(ltm, θ -60°, T=5 mm, and N=3).

表1 このように平面体(la)、  (if)、平面体(i
b)。
Table 1 In this way, plane bodies (la), (if), plane bodies (i
b).

(le)、平面体(le)+  (1h) +平面体(
ld)、  (li)間の距離は最大値と最小値を有す
る。これらを結ぶヒンジを第2図(blで説明したヒン
ジ(5a)〜(5d)を用いることにより展開中も平面
体(la) 、 (1f) +平面体(ib) T (
”e) 、平面体(le) 、 (lh) 、平面体(
ld) 。
(le), plane body (le) + (1h) + plane body (
The distance between ld) and (li) has a maximum value and a minimum value. By using the hinges (5a) to (5d) that connect these parts as explained in Figure 2 (bl), the plane body (la), (1f) + plane body (ib) T (
"e), Planar body (le), (lh), Planar body (
ld).

(li)は剛に結合された状態で円滑な展開運動を達成
し得る。第2図 は提案する展開物展開機構の展開前を
示す図であり、衛星(2)に1軸回転自在なヒンジ(3
a)〜(31)を介して平面体(1a)〜(11)が接
続されておりかつ1軸回転自在なヒ“ンジを初数個組み
合わせたヒンジ(5a)〜(5d)により平面体相互を
保持している。
(li) can achieve smooth unfolding movement while being rigidly connected. Figure 2 is a diagram showing the proposed deployable object deployment mechanism before deployment, with the satellite (2) having a hinge (3
a) Planar bodies (1a) to (11) are connected through (31), and the plane bodies are mutually connected by hinges (5a) to (5d), which are a combination of the first few hinges that can rotate freely on one axis. is held.

従ってこの発明によれば2次元的((展開する展開機構
の場合生ずる平面体相互間の距離の変動は1軸回転自在
なヒンジを複数個組み合わせたヒンジで対応することが
可能であり円滑な各平面体の対称層′開も達成できる。
Therefore, according to the present invention, it is possible to cope with the variation in the distance between plane bodies that occurs in the case of a two-dimensional unfolding mechanism by using a hinge that is a combination of a plurality of hinges that can rotate freely on one axis, and smooth A symmetric layer opening of a planar body can also be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは従来の概念による展開物の展開前を示す
図、第1図(blは従来の概念による展開物の展開中を
示す図、第1図(C)は従来の概念による展開物の展開
後を図す図、第2図(alは1軸回転自在なヒンジを示
す図、第2図(blはこの発明による1軸回転自在なヒ
ンジを複数個組み合わせたヒンジを示す図、第2図(c
lはこの発明による展開物の展開後を示す図、第2図(
dl〜(g)は展開物の展開角を示す図、第2図(h)
けこの発明による展開物の展開前を示す図であり(1)
は平行四辺形平面体、(2)は衛星。 (3)は1軸回転自在なヒン゛ジ、(4)はヒンジ回転
中心。 (5)は1軸回転自在なヒンジを複数個組み合わせ友ヒ
ンジ、(6)は座標系、(7)は平行四辺形平面体の各
頂点である。 なお、−図中同一あるいは相当部分に一同一符号を付し
である。 昂 1 虚(α) 第 2 図(σ) 路 2  I!11b) 第 2図(d+ 第 2 tAけ) 第 2図(8)
Figure 1 (al is a diagram showing the development before development according to the conventional concept, Figure 1 (bl is a diagram showing the development of the development according to the conventional concept, and Figure 1 (C) is a diagram showing the development according to the conventional concept. FIG. 2 (Al is a diagram showing a hinge that can freely rotate on one axis; FIG. 2 (BL is a diagram that shows a hinge that combines a plurality of hinges that can freely rotate on one axis according to the present invention. Figure 2 (c
1 is a diagram showing the developed product according to the present invention after development, and FIG. 2 (
dl ~ (g) is a diagram showing the development angle of the developed object, Fig. 2 (h)
FIG. 1 is a diagram showing the unfolded product according to Keko's invention before development (1)
is a parallelogram plane body, and (2) is a satellite. (3) is a hinge that can rotate freely on one axis, and (4) is the center of rotation of the hinge. (5) is a friend hinge made up of a plurality of hinges that can freely rotate on one axis, (6) is a coordinate system, and (7) is each vertex of a parallelogram plane body. In addition, the same reference numerals are given to the same or corresponding parts in the figures. Excitement 1 Imaginary (α) Fig. 2 (σ) Path 2 I! 11b) Figure 2 (d+ 2nd tAke) Figure 2 (8)

Claims (1)

【特許請求の範囲】[Claims] 宇宙船に取付けられている展開物と宇宙空間で展開させ
るように構成した宇宙船の展開物展開機構において、複
数個の平面体からなる展開物の各平面体が同一平面上で
、所定の配置をなすように展開物の平面体相互間を1軸
回転自在の第1のヒンジ、および1軸回転自在な第1の
ヒンジを複数個組み合わせ几第2のヒンジを用いて結合
し、上記第1および第2のヒンジの作用にエリ展開の過
程において平面体相互が対称形を保持しつつ展開するよ
うにしたことを特徴とする宇宙船の展開物展開機構。
In a deployable object deployment mechanism of a spacecraft configured to be deployed in outer space with a deployable object attached to a spacecraft, each planar object of the deployable object consisting of a plurality of planar objects is placed on the same plane and arranged in a predetermined manner. A first hinge that is rotatable about one axis and a plurality of first hinges that are rotatable about one axis are connected together using a second hinge to connect the planar bodies of the developed object to each other so as to form the first hinge. and a spacecraft deployable object deployment mechanism, characterized in that the planar bodies are deployed while maintaining a mutually symmetrical shape in the process of elongation deployment due to the action of the second hinge.
JP57129871A 1982-07-26 1982-07-26 Unfolding mechanism of unfolding article of spaceship Granted JPS5920800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57129871A JPS5920800A (en) 1982-07-26 1982-07-26 Unfolding mechanism of unfolding article of spaceship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57129871A JPS5920800A (en) 1982-07-26 1982-07-26 Unfolding mechanism of unfolding article of spaceship

Publications (2)

Publication Number Publication Date
JPS5920800A true JPS5920800A (en) 1984-02-02
JPH021720B2 JPH021720B2 (en) 1990-01-12

Family

ID=15020357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57129871A Granted JPS5920800A (en) 1982-07-26 1982-07-26 Unfolding mechanism of unfolding article of spaceship

Country Status (1)

Country Link
JP (1) JPS5920800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472545A (en) * 1989-02-22 1995-12-05 Malki; Jehuda Method for affixing labels to soap bars and labeled soap bars produced thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472545A (en) * 1989-02-22 1995-12-05 Malki; Jehuda Method for affixing labels to soap bars and labeled soap bars produced thereby

Also Published As

Publication number Publication date
JPH021720B2 (en) 1990-01-12

Similar Documents

Publication Publication Date Title
US10627235B2 (en) Flexural couplers for microelectromechanical systems (MEMS) devices
JPH02258499A (en) Expanding structure
US8434196B1 (en) Multi-axis compliant hinge
JPS60233249A (en) Developable truss
EP0942867A1 (en) Aft deployable thermal radiators for spacecraft
JPS5920800A (en) Unfolding mechanism of unfolding article of spaceship
JP2006188201A (en) Development structure and bonding structure for development structure
JP2980243B2 (en) Cylindrical deployment structure
JPS60147150A (en) Solar battery panel with two-dimensional deployment feature
WO2020075551A1 (en) Expandable structure
JP2633587B2 (en) Hinge mechanism for deployment and storage of curved space antenna
JPS58206499A (en) Unfolding mechanism of unfolder of spaceship
JPH07187089A (en) Two-dimensionally expandable panel device
JP2001106195A (en) Plane-expansion structure
JPH02133300A (en) Extension construction, antenna and solar cell in extension form using this construction
JPH03178900A (en) Developing type structure
JPH02283597A (en) Expanding truss structure and expansion synchronizer therefor
JP2986789B1 (en) 3D unfolded structure
JPH01109199A (en) Hinge structure used for folding tabular body
JPH06104479B2 (en) Deployable truss structure and hinge mechanism having deploying force
JP3539099B2 (en) Deployable panel structure
Lin et al. Kirigami Tessellation Based on the Two-Fold Symmetric Bricard 6R Linkage and Spherical 4R Linkage
JP4253711B2 (en) Antenna reflector
JPH02136398A (en) Deployment truss antenna
JPH0347765B2 (en)