JPH02170372A - Residual amount sensing method for lead storage battery - Google Patents

Residual amount sensing method for lead storage battery

Info

Publication number
JPH02170372A
JPH02170372A JP63324126A JP32412688A JPH02170372A JP H02170372 A JPH02170372 A JP H02170372A JP 63324126 A JP63324126 A JP 63324126A JP 32412688 A JP32412688 A JP 32412688A JP H02170372 A JPH02170372 A JP H02170372A
Authority
JP
Japan
Prior art keywords
discharge
time
discharge current
storage battery
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63324126A
Other languages
Japanese (ja)
Other versions
JP2792064B2 (en
Inventor
Hidemi Fukunaga
福永 秀美
Tadayoshi Kamaike
蒲池 忠善
Hiroshi Sugiyama
寛 杉山
Yukihiro Onoda
小野田 幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63324126A priority Critical patent/JP2792064B2/en
Publication of JPH02170372A publication Critical patent/JPH02170372A/en
Application granted granted Critical
Publication of JP2792064B2 publication Critical patent/JP2792064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To have real time sensing of residual dischargeable time by measuring the discharge current, voltage, and battery temp. at certain intervals during discharging, performing integral calculation of the discharged amount, and by computing the residual duration time upon comparing with the standard discharge characteristic data. CONSTITUTION:When power interruption is sensed by a monitoring device from a switch signal or storage battery discharge current data 10, it reads the storage battery voltage 9, temp. 8, and discharge current 10 and computes the discharged amount from the discharge current data 10 and the time from start of discharging. The discharge characteristic data at the temp. nearest the current temp. data 8 at two points before and after the discharge current 10 are taken out a memory 3 in which the standard characteristic data orientation is accommodated, and the intersecting point with the discharge current 10 is determined to be subjected to calculation of duration time, and the discharge time for the amount corresponding to the previously calculated discharged amount is subtracted to serve for computation of remaining duration time, which is indicated on a display 6, and the same processing is repeated until the power failure is recovered. This allows real time sensing of the remaining discharge duration time in the event of power failure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、無停電電源や非常用電源設備などフロート或
はトリクル使用における鉛蓄電池設備の劣化状況や停電
時の放電可能な時間を検知する鉛蓄電池の残存容量検知
方法に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention is a lead-acid battery that detects the deterioration status of lead-acid battery equipment in float or trickle use such as uninterruptible power supplies and emergency power supply equipment, and detects the dischargeable time during power outages. The present invention relates to a remaining capacity detection method.

従来の技術 従来、鉛蓄電池設備の寿命や放電時の残存容量を検知す
る方法としては、■蓄電池の電圧のみで単純にある一定
電圧に到達したかどうかにより検知する方法、■蓄電池
の電解液である硫酸の比重測定により検知する方法、■
微分内部抵抗の測定により、残存容量を検知する方法(
特公昭63168582号公報)、■鉛蓄電池の正極板
の膨脹度合いにより検知する方法(特公昭62−479
75号公報)などがある。
Conventional technology Conventionally, methods for detecting the lifespan of lead-acid battery equipment and remaining capacity at discharge include: - detecting by simply determining whether a certain voltage has been reached using only the voltage of the storage battery, and - detecting by using the electrolyte of the storage battery. A method of detecting a certain sulfuric acid by measuring its specific gravity,■
Method of detecting remaining capacity by measuring differential internal resistance (
(Japanese Patent Publication No. 63168582), ■Method of detecting by the degree of expansion of the positive electrode plate of a lead-acid battery (Japanese Patent Publication No. 62-479)
Publication No. 75).

発明が解決しようとする課題 上記従来の方法■では、鉛蓄電池の特性上、電圧と残存
容量の間に直接的な相関性はな(、放電終了近(まで蓄
電池の電圧に大きな変化がないために、放電終止電圧近
くまで残存容量を検知できずまた放電電流が変動する負
荷では、電圧変動が太き(精度も低いという問題点があ
る。
Problems to be Solved by the Invention In the conventional method (■) described above, due to the characteristics of lead-acid batteries, there is no direct correlation between voltage and remaining capacity (because there is no significant change in the voltage of the storage battery until near the end of discharge). Another problem is that in loads where the remaining capacity cannot be detected until close to the discharge end voltage and the discharge current fluctuates, the voltage fluctuations are wide (and the accuracy is low).

また従来の方法■では゛鉛蓄電池の電圧や温度・放電電
流を検出するセンサー以外に比重センサーの取り付けが
必要で、近年増加傾向にあるシール形の鉛蓄電池にはこ
の方法は採用できにくい。また従来の開放形の蓄電池で
も、充電後の比重均一化に長時間を要するので実用的で
ない。
In addition, the conventional method (2) requires the installation of a specific gravity sensor in addition to the sensor that detects the voltage, temperature, and discharge current of the lead-acid battery, making it difficult to apply this method to sealed lead-acid batteries, which have been on the rise in recent years. Furthermore, even conventional open storage batteries are not practical because it takes a long time to equalize the specific gravity after charging.

次に従来の方法■については、蓄電池の微分抵抗を測定
するためには、短時間ではあるが大電流を流し、その時
のIRドロップから求めるか、交流法による接点抵抗計
を設置しなければならないこと及び、鉛蓄電池の正極活
物質の軟化など鉛蓄電池劣化原因によっては、蓄電池の
微分抵抗が低いにもかかわらず、放電持続時間は短くな
る場合があり、検知結果の信頼性が低いという欠点があ
る。
Next, regarding the conventional method (■), in order to measure the differential resistance of a storage battery, it is necessary to pass a large current for a short time and calculate it from the IR drop at that time, or to install a contact resistance meter using the AC method. In addition, depending on the cause of lead-acid battery deterioration, such as softening of the positive electrode active material of lead-acid batteries, the discharge duration may be shortened even though the differential resistance of the storage battery is low, resulting in low reliability of detection results. be.

従来の方法■については、変移量検出センサーが必要で
あることや、変移量から蓄電池の寿命時期は検知できて
も、停電時の残存容量を検知することはできないという
欠点がある。
Conventional method (2) has disadvantages in that it requires a sensor to detect the amount of displacement, and although it is possible to detect the lifespan of the storage battery from the amount of displacement, it is not possible to detect the remaining capacity at the time of a power outage.

以上の他に上記4種の方法では、変動する負荷に対して
リアルタイムに残りの放電可能な時間を検知することが
出来ないという欠点がある。
In addition to the above, the four methods described above have a drawback in that the remaining dischargeable time cannot be detected in real time with respect to a changing load.

本発明は上記のごとき欠点を除去するとともに、特に停
電開始直後、直ちに放電電流に応じて鉛蓄電池の残りの
放電持続時間を検知し、また負荷変動が生じた場合でも
直ちに残りの放電持続時間を検知する手段を提供するこ
とを目的としている。
The present invention eliminates the above-mentioned drawbacks, and also detects the remaining discharge duration of a lead-acid battery immediately after the start of a power outage according to the discharge current. The purpose is to provide a means of detection.

課題を解決するための手段 本発明は、停電などによる蓄電池の放電時に定時間ごと
に鉛蓄電池の放電電流・電圧・電池温度の測定と、前記
電流・電圧・温度から放電電気量の積分演算を行うとと
もに、記憶装置内に格納された標準の鉛蓄電池の放電特
性データーと比較演算を繰り返すことにより、放電終止
電圧までの残存持続時間を逐次計算し得るものである。
Means for Solving the Problems The present invention measures the discharge current, voltage, and battery temperature of a lead-acid battery at regular intervals when discharging the storage battery due to a power outage, etc., and performs an integral calculation of the amount of discharged electricity from the current, voltage, and temperature. At the same time, by repeating the comparison operation with the discharge characteristic data of a standard lead-acid battery stored in the storage device, the remaining duration up to the discharge end voltage can be successively calculated.

また同時に、放電初期及び中期の蓄電池電圧も標準のデ
ーターとの比較演算を逐次行い、蓄電池の劣化度を検知
し得るものである。
At the same time, the storage battery voltage at the initial and middle stages of discharge is sequentially compared with standard data to detect the degree of deterioration of the storage battery.

作   用 本発明は、上記方法により、蓄電池設備に比重計や変移
量検出センサーなどを取り付けることな(、また従来よ
りも高い精度で、停電が発生後、直ちに負荷に応じた蓄
電池の残りの放電持続時間が検知できる。
The present invention uses the method described above to detect the remaining discharge of the storage battery according to the load immediately after a power outage occurs, without having to attach a hydrometer or a displacement detection sensor to the storage battery equipment (and with higher accuracy than before). Duration can be detected.

実施例 以下本発明の実施例を示す。Example Examples of the present invention will be shown below.

第1図は本発明の実施例を示す蓄電池設備の監視装置の
放電持続時間検知部分のブロック図である。第1図にお
いて、(1)は制御部であるマイクロプロセッサ−(2
)は停電の検知および停電後、蓄電池の放電可能な時間
を逐次演算し、表示するためのプログラムを記憶してい
るプログラムメモリ、(3)は蓄電池の温度別の標準放
電特性データー配列を格納したメモリーである。(4)
は入出力インターフェイスで、キーボード5などの操作
機器や、蓄電池の残りの放電持続時間などを表示する表
示装置(6)や、温度データー(8)、蓄電池電圧デー
ター(9)、放電電流データー(10)、のアナログデ
ーターをコンピューターに取り込むA/Dコンバーター
(7)などを接続する。
FIG. 1 is a block diagram of a discharge duration detection portion of a storage battery equipment monitoring device showing an embodiment of the present invention. In FIG. 1, (1) is a microprocessor (2) which is a control unit.
) is a program memory that stores a program for detecting a power outage and sequentially calculating and displaying the dischargeable time of a storage battery after a power outage, and (3) stores a standard discharge characteristic data array for each storage battery temperature. It is memory. (4)
is an input/output interface that includes operating devices such as the keyboard 5, a display device (6) that displays the remaining discharge duration of the storage battery, temperature data (8), storage battery voltage data (9), and discharge current data (10). ), connect an A/D converter (7) that imports analog data into the computer.

次にこの監視装置による停電時の放電持続時間検知の演
算処理プロセスについて第2図のフローチャートにて説
明する。
Next, the arithmetic processing process for detecting the discharge duration during a power outage by this monitoring device will be explained with reference to the flowchart of FIG. 2.

■、先ず監視装置が、スイッチ信号や蓄電池放電電流デ
ーター(10)などにより停電を検知(11)すると蓄
電池電圧(9)、温度(8)、放電電流(10)を読み
込む(12)。
(1) First, when the monitoring device detects a power outage (11) based on a switch signal, storage battery discharge current data (10), etc., it reads the storage battery voltage (9), temperature (8), and discharge current (10) (12).

2、放電電流データー(10)と放電開始がらの時間よ
り放電電気量を計算する(13)。
2. Calculate the amount of electricity discharged from the discharge current data (10) and the time from the start of discharge (13).

3、標準特性データー配列を格納したメモリー(3)の
中から現在の温度データー(8)に最も近い温度の放電
特性データーの放電電流(1o)の前後2点のデーター
を取り出し、放電電流(10)との交点を求め、持続時
間の演算をする(14)。
3. From the memory (3) that stores the standard characteristic data array, extract the data at two points before and after the discharge current (1o) of the discharge characteristic data at the temperature closest to the current temperature data (8), and calculate the discharge current (10 ) and calculate the duration (14).

4、(13)で計算した放電電気、11を分の放電時間
を差し引き残りの持続時間を計算する(15)。
4. Calculate the remaining duration by subtracting the discharge time of 11 minutes from the discharge electricity calculated in (13) (15).

5、(15)で計算した残りの持続時間を表示装置(1
7)に表示する゛(16’) 、。
5. Display the remaining duration calculated in (15) on the display device (1
7) Displayed in ゛(16').

6、停電が回復したがどうが判断しく18)、回復して
いない場合は(12)の処理にもどり、おなし処理を繰
り返し、残りの放電持続時間を表示する。
6. The power outage has recovered, but it is difficult to judge.18) If the power has not recovered, return to the process of (12), repeat the calming process, and display the remaining discharge duration.

7.停電が回復した場合は、正常時の監視モードにもど
る(19)。
7. When the power is restored, the system returns to the normal monitoring mode (19).

第1表は、48V30Ahの蓄電池設備を定電流負荷を
用いて疑似的に停電状態とし、第3図の放電パターンで
放電し、前記本発明の方法により、検知した残りの放電
持続時間と実際の放電持続時間の誤差を示したものであ
る。第1表において残存時間の値はそれぞれの放電電流
値で、終止電圧まで放電した場合の値である。このよう
に本発明の方法により予測検知した残りの放電持続時間
の値は実際の値との誤差が15分以内の結果が得られた
Table 1 shows the remaining discharge duration detected by the method of the present invention when a 48V30Ah storage battery facility is put into a pseudo power outage state using a constant current load, and discharged according to the discharge pattern shown in Figure 3. This shows the error in discharge duration. In Table 1, the remaining time values are the respective discharge current values and are the values when discharged to the final voltage. As described above, the value of the remaining discharge duration predicted and detected by the method of the present invention was found to have an error within 15 minutes from the actual value.

(広千衆台) 第1表 発明の効果 以上詳述したように、本発明の方法は停電などに際して
直ちに鉛蓄電池の残りの放電持続時間を負荷変動が生じ
てもリア・ルタイムに検知でき、残りの時間に応じて適
切な対策をとることができ、実用的に極めて有効な手段
である。
(Kohsenshudai) Table 1 Effects of the Invention As detailed above, the method of the present invention can immediately detect the remaining discharge duration of a lead-acid battery in the event of a power outage, etc., in real time even if load fluctuations occur. Appropriate measures can be taken depending on the remaining time, making it an extremely effective means in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法による蓄電池設備の監視装置のブ
ロック図、第2図は残存放電時間検知の演算処理プロセ
スを示すフローチャートを示す。 (1)・・・・・・マイクロブレセッサー (3)・・
・・・・記憶装置、(7)・・・・・・A/Dコンバー
ター代理人の氏名 弁理士 粟野重孝 ほか1名第 l
 ロ
FIG. 1 is a block diagram of a storage battery equipment monitoring device according to the method of the present invention, and FIG. 2 is a flowchart showing the arithmetic processing process for detecting remaining discharge time. (1)...Microbrecessor (3)...
...Storage device, (7)...Name of A/D converter agent Patent attorney Shigetaka Awano and 1 other person No.1
B

Claims (1)

【特許請求の範囲】[Claims] あらかじめ、温度別に鉛蓄電池の放電電流と終止電圧別
の放電持続時間の関係を記憶装置の格納した標準放電特
性データと、放電時の鉛蓄電池の電圧・放電電流・蓄電
池温度とから放電電気量の積分演算をするとともに、前
記標準特性データーとの比較演算により、残りの放電可
能な時間の演算をすることを特徴とする鉛蓄電池の残存
容量検知方法。
In advance, the amount of discharged electricity is determined from the standard discharge characteristic data stored in the storage device, which shows the relationship between the discharge current of the lead-acid battery at each temperature and the discharge duration at each final voltage, and the voltage, discharge current, and storage battery temperature of the lead-acid battery at the time of discharge. A method for detecting remaining capacity of a lead-acid battery, comprising performing an integral calculation and calculating a remaining dischargeable time by comparing the standard characteristic data with the standard characteristic data.
JP63324126A 1988-12-22 1988-12-22 Method for detecting remaining capacity of lead-acid battery Expired - Lifetime JP2792064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63324126A JP2792064B2 (en) 1988-12-22 1988-12-22 Method for detecting remaining capacity of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324126A JP2792064B2 (en) 1988-12-22 1988-12-22 Method for detecting remaining capacity of lead-acid battery

Publications (2)

Publication Number Publication Date
JPH02170372A true JPH02170372A (en) 1990-07-02
JP2792064B2 JP2792064B2 (en) 1998-08-27

Family

ID=18162440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324126A Expired - Lifetime JP2792064B2 (en) 1988-12-22 1988-12-22 Method for detecting remaining capacity of lead-acid battery

Country Status (1)

Country Link
JP (1) JP2792064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189471A (en) * 1992-08-05 1994-07-08 Merlin Gerin Method for determining backup period of battery
JP2000350373A (en) * 1999-06-01 2000-12-15 Canon Inc Battery drive system and battery drive system control method, electronic device and electronic device control method, battery device and battery device control method and battery unit and record medium
JP2003157912A (en) * 2001-08-13 2003-05-30 Hitachi Maxell Ltd Method and device for cell capacity detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109264A (en) * 1984-10-31 1986-05-27 Mitsubishi Electric Corp Storage cell monitoring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109264A (en) * 1984-10-31 1986-05-27 Mitsubishi Electric Corp Storage cell monitoring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189471A (en) * 1992-08-05 1994-07-08 Merlin Gerin Method for determining backup period of battery
JP2000350373A (en) * 1999-06-01 2000-12-15 Canon Inc Battery drive system and battery drive system control method, electronic device and electronic device control method, battery device and battery device control method and battery unit and record medium
JP2003157912A (en) * 2001-08-13 2003-05-30 Hitachi Maxell Ltd Method and device for cell capacity detection

Also Published As

Publication number Publication date
JP2792064B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US6157169A (en) Monitoring technique for accurately determining residual capacity of a battery
EP1049231B1 (en) Parameter measuring method, charge/discharge control method and apparatus and life predicting method for secondary batteries and power storage apparatus using the same
US4725784A (en) Method and apparatus for determining the state-of-charge of batteries particularly lithium batteries
JP5520580B2 (en) Storage battery cell short-circuit detection method and detection device
JP4030217B2 (en) Abnormality determination device and abnormality determination method for battery pack
JPH03503936A (en) Charging status indication
JPH08138759A (en) Deterioration detection method and deterioration detection device for battery set
CN1228540A (en) Monitoring technique for accurately determining residual capacity of battery
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
JP2007311255A (en) Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program
JP3195130B2 (en) Battery cell power failure detection device
US4320334A (en) Battery state-of-charge indicator
JP2003068366A (en) Detector for detecting abnormalities in sensor
JPH02170372A (en) Residual amount sensing method for lead storage battery
KR960027130A (en) Battery charging control device and method for electric vehicle
JPH10253725A (en) Method and equipment for measuring battery state
JP2964482B2 (en) Method for detecting remaining capacity of lead-acid battery
JP2936441B2 (en) Calculation method of capacity deterioration rate of storage battery and deterioration diagnosis device
JPH03203523A (en) Battery activating method and device
JPH02262078A (en) Method for detecting residual capacity of lead storage battery
JP3237229B2 (en) Secondary battery system
JP3426019B2 (en) Method and apparatus for estimating remaining capacity of Ni-MH battery
JP3792874B2 (en) Lead-acid battery life determination device, life prediction device, life determination method, and life prediction method
JP2976808B2 (en) Storage battery deterioration diagnosis device
Ross et al. Development of a battery runtime prediction algorithm and a method for determining its accuracy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11