JPH02169766A - Production of water-swelling fiber having high liquid retention - Google Patents

Production of water-swelling fiber having high liquid retention

Info

Publication number
JPH02169766A
JPH02169766A JP31312588A JP31312588A JPH02169766A JP H02169766 A JPH02169766 A JP H02169766A JP 31312588 A JP31312588 A JP 31312588A JP 31312588 A JP31312588 A JP 31312588A JP H02169766 A JPH02169766 A JP H02169766A
Authority
JP
Japan
Prior art keywords
fiber
fibers
water
acrylonitrile
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31312588A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hosako
宝迫 芳彦
Yoshinori Furuya
古谷 ▲き▼典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP31312588A priority Critical patent/JPH02169766A/en
Publication of JPH02169766A publication Critical patent/JPH02169766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To obtain the subject fiber useful for physiological goods having excellent liquid retention under load by treating specific acrylonitrile-based fiber with alkali in aqueous solution of highly concentrated alkali metal in specific condition. CONSTITUTION:Acrylonitrile-based fiber composed of acrylonitrile-based polymer containing >=80wt.% acrylonitrile and 0.2-0.7mmol/g carboxylic acid group and having >=5.0 dry strength and >=10% fiber shrinkage at 120 deg.C wet heat is treated with alkali of >=10mol/1000g, preferably 13mol/1000g aqueous solution of highly concentrated alkali metal at >=120 deg.C for >=10min, preferably 20-50 min to afford the aimed fiber.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は加重下における高度な保液性を有する水膨潤性
繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to water-swellable fibers having high liquid retention properties under load.

近年、高度の水膨潤性を有する重合体が、その特殊機能
に着目され幅広い用途分野に適用されつつある。例えば
、かかる重合体の瞬Iff多量吸水能力を利用しておむ
つ、生理用品等に、或はその水分保持能力を利用して土
壌改良材、インスタント土のう等に、また人体組織との
親和性に着目して軟質コンタクトレンズ、人工臓器、外
科用縫合材等に適用が試みられ、それらの用途のうち既
に実用化段階に入ったものもある。
In recent years, highly water-swellable polymers have attracted attention for their special functions and are being applied to a wide range of fields of use. For example, such polymers can be used to make diapers, sanitary products, etc. by using their instantaneous large amount of water absorption ability, to make soil conditioners, instant sandbags, etc. by using their water retention ability, and by focusing on their affinity with human tissue. Attempts have been made to apply it to soft contact lenses, artificial organs, surgical suture materials, etc., and some of these applications have already entered the stage of practical use.

〈従来の技術〉 このように広範な適用の可能性を有する水膨潤性重合体
(ヒドロゲル)は、その用途に応じて繊維形態となす方
が好まし込場合が少なくなく、かかる繊維状のヒドロゲ
ルも込くつか知られている。ところが、かかる既存の天
然もしくは合成の繊維においては、ある程度の水膨潤性
能を有するとは言うもののその水膨潤度は極めて低いも
のであったり或いは水溶性であったり、いずれにしても
自重の数倍から数百倍の水を吸収保持し、しかも水不溶
性である水膨潤性繊維の範祷からはほど遠いものでしか
なかった。
<Prior Art> Water-swellable polymers (hydrogel), which have a wide range of applicability, are often preferable to be in the form of fibers depending on their uses, and such fibrous hydrogels It is also known. However, although such existing natural or synthetic fibers have a certain degree of water swelling ability, their degree of water swelling is extremely low, or they are water soluble, and in any case, their water swelling capacity is several times their own weight. However, it was far from the scope of water-swellable fibers, which absorb and retain hundreds of times more water than conventional fibers, and are water-insoluble.

特公昭52−42916号公報において、アクリル系繊
維に特定の架橋構造と多量の塩の形のカルボキシル基と
を導入せしめてなる高膨潤性繊維状構造体が示されては
いる。しかし、かかる繊維状構造体においては、極めて
多量の塩の形のカルボキシル基を導入せしめており、ま
た#il維の内外層全体に亘ってヒドロゲル化している
ために、確かに高度の水膨潤性能を付与し得たに面、非
常だ脆く繊維の概念からはほど遠い物性のものでしかな
かった。即ち、依然として満足すべき性能を有する水膨
潤性繊維は存在していないと込うのが実態であり、高度
の水膨潤性付与と繊維物性保持とは二律背反する課題で
あった。
Japanese Patent Publication No. 52-42916 discloses a highly swellable fibrous structure obtained by introducing a specific crosslinked structure and a large amount of carboxyl groups in the form of salt into acrylic fibers. However, in such a fibrous structure, an extremely large amount of carboxyl groups in the form of salt is introduced, and the entire inner and outer layers of the #il fibers are hydrogelated, so they certainly have a high degree of water swelling performance. However, it was extremely brittle and had physical properties far from the concept of fibers. In other words, the reality is that water-swellable fibers with satisfactory performance still do not exist, and imparting high water-swellability and maintaining fiber physical properties are contradictory issues.

このような問題を解決する方法として特開昭60−19
4175号公報において潜在乃至顕在捲縮を有するアク
リロニトリル系重合体からなる繊維を特定の高濃度アル
カリ水溶液または電解質塩類を共存せしめた低濃度アル
カリ金属水酸化物水性溶液中で親水架極化せしめること
によって繊維の外層部のみヒドロゲル化した水膨潤性繊
維の製造法が提案されている。
As a method to solve such problems, JP-A-60-19
In Japanese Patent No. 4175, a fiber made of an acrylonitrile polymer having latent or actual crimp is hydrophilically polarized in a specific high concentration alkaline aqueous solution or a low concentration alkali metal hydroxide aqueous solution coexisting with electrolyte salts. A method for producing water-swellable fibers has been proposed in which only the outer layer of the fibers is hydrogelated.

この手法は、親水架橋処理条件を適度に調整することに
よって処理前の繊維物性を維持することを目的としたも
のであるが、十分な繊維物性は維持されず、高度な水膨
潤性繊維を得る上ではいまだ十分な手法とは言えな−。
This method aims to maintain the fiber properties before treatment by appropriately adjusting the hydrophilic crosslinking treatment conditions, but sufficient fiber properties are not maintained and highly water-swellable fibers are obtained. The above method is still not sufficient.

〈発明が解決しようとする課題〉 本発明は親水架橋化を行なったあとも十分な繊維物性を
保持しながら高度な水膨潤性、特に加重下における保液
性に優れた水膨潤性繊維を製造する方法を提供するもの
である。
<Problems to be Solved by the Invention> The present invention produces water-swellable fibers that maintain sufficient fiber properties even after hydrophilic crosslinking and have high water-swellability, particularly excellent liquid retention under load. This provides a method to do so.

く課題を解決するための手段〉 本発明はアクリロニトリルを80重重量板上、カルボン
酸基をQ、2〜0.7 m mat/f含有するアクリ
ロニトリル系重合体からなシ、乾強度50f/d 以上
、かつ120℃の湿熱下における繊維収縮率が10%以
上であるアクリロニトリル系繊維を10 mot710
009 以上の高濃度アルカリ金属水溶液中で120℃
以上で10分以上アルカリ処理することを特徴とする高
度の保液性を有する水膨潤性繊維の製造法にある。
Means for Solving the Problems> The present invention is based on an acrylonitrile polymer having a carboxylic acid group of Q, 2 to 0.7 m mat/f, and a dry strength of 50 f/d. 10 mot710 acrylonitrile fibers having the above properties and a fiber shrinkage rate of 10% or more under moist heat at 120°C.
120℃ in a high concentration alkali metal aqueous solution of 009 or higher
The above provides a method for producing water-swellable fibers having a high level of liquid retention, which is characterized by carrying out an alkali treatment for 10 minutes or more.

本発明に係るアクリロニトリル(以下ANという)系重
合体とは、ANを共重合成分として含有する重合体の総
称であり、A1J単独重合体又はANと他の1種もしく
は2種以上のエチレン系不飽和化合物との共重合体、或
いはANと他の重合体、例えば澱粉、ポリビニルアルコ
ール等のグラフト共重合体、AN系重合体と他の重合体
、例えばポリ塩化ビニル系、ポリアミド系、ポリオレフ
ィン系、ポリスチレン系、ポリビニルアルコール系、セ
ルo−ス11:O混合重合体等を挙げることができる。
The acrylonitrile (hereinafter referred to as AN)-based polymer according to the present invention is a general term for polymers containing AN as a copolymerization component, and is an A1J homopolymer or AN and one or more other ethylene-based polymers. Copolymers with saturated compounds, or graft copolymers of AN and other polymers, such as starch, polyvinyl alcohol, AN polymers and other polymers, such as polyvinyl chloride, polyamide, polyolefin, Examples include polystyrene, polyvinyl alcohol, and cellulose 11:O mixed polymers.

かくの如きAN系重合体におけるANの含有率は、50
重量係以上であることが望ましく、かかる推奨範囲に満
たないAN含有率の重合体からなる繊維を出発物質とし
て用いる場合には、アルカリ処理後の繊維に十分な物性
が得られないだけでなくアルカリ加水分解処理忙よって
充分親水化されな込ためである。ま九、AN系重合体の
共重合成分である前記エチレン系不飽和化合物の種類或
いは重合体の分子量等の重合体組成面では特忙制約は認
められず、最終製品の要求性能、単量体の共重合性等に
応じて任意に選択することができる。
The content of AN in such an AN-based polymer is 50
It is desirable that the AN content be higher than the weight ratio, and if a fiber made of a polymer with an AN content lower than this recommended range is used as a starting material, not only will the fiber after alkali treatment not have sufficient physical properties, but the alkali This is because the hydrolysis process is too busy to make it sufficiently hydrophilic. 9. There are no special constraints on the polymer composition, such as the type of the ethylenically unsaturated compound that is a copolymerization component of the AN polymer or the molecular weight of the polymer, and the required performance of the final product and monomer It can be arbitrarily selected depending on the copolymerizability and the like.

AN;F−重合体を高濃度アルカリ金属水溶液下におい
て熱処理することによって、ニドIJルMが加水分解さ
れ、カルボン酸基となり、高度な水膨潤性を有すること
は古くから知られた公知の事実であるが、さらにAN系
重合体に予めカルボン酸基を含有せしめることによって
同一アルカリ水溶液下において同一条件で熱処理を施し
た場合、得られた繊維の水膨潤性が飛躍的に増大する事
実を見い出した。
AN: It is a long-known fact that when a F-polymer is heat-treated in a highly concentrated alkali metal aqueous solution, NiDOIJLEM is hydrolyzed and becomes a carboxylic acid group, which has a high degree of water swelling. However, it was discovered that if an AN-based polymer is pre-contained with a carboxylic acid group and then heat-treated in the same alkaline aqueous solution under the same conditions, the water swelling property of the resulting fiber increases dramatically. Ta.

本発明に係るAM系重合体のカルボン酸基の含有量は(
12〜0.7mmO2/lの範囲にあることが好ましく
、このカルボン酸基は重合体中において酸型または塩型
、どちらの型で存在してもよい。
The content of carboxylic acid groups in the AM polymer according to the present invention is (
It is preferably in the range of 12 to 0.7 mmO2/l, and this carboxylic acid group may be present in the polymer in either the acid form or the salt form.

このカルボン酸基の含有量がQ、 2 m mol/r
未満ではアルカリ処理を行なっても加重下における高度
な保液性を得られなくなり、また逆1c(L7mmol
/f/を超えると高度な水膨潤性は有するものの得られ
た繊維は木来有するAN系繊維の優れた物性を損なう結
果となる。
The content of this carboxylic acid group is Q, 2 mmol/r
If it is less than 1c (L7mmol
If /f/ is exceeded, the resulting fibers will have a high degree of water swelling but will lose the excellent physical properties of the AN-based fibers possessed by Kiku.

AN系重合体へのカルボン酸基を含有せしめる手法とし
ては、アクリル酸、メタアクリル酸等カルボン酸基を有
するビニル単量体をANと共重合することによって得ら
れ、このAI系重合体を繊維に賦形することによって本
発明に係るAN系繊維が得られる。繊維中のカルボン酸
基の含有量の調整は共重合反応系においてカルボン酸基
を有するビニル単量体量の調整または予め多量のカルボ
キシル基を有するAN系重合体を調整し、カルボキシル
基を含有しないAN系重合体と混合することによっても
得られる。
A method for incorporating a carboxylic acid group into an AN-based polymer is to copolymerize a vinyl monomer having a carboxylic acid group, such as acrylic acid or methacrylic acid, with AN. The AN-based fiber according to the present invention can be obtained by shaping the fiber into the following. The content of carboxylic acid groups in the fiber can be adjusted by adjusting the amount of vinyl monomers having carboxylic acid groups in the copolymerization reaction system, or by preparing an AN-based polymer having a large amount of carboxyl groups in advance so that it does not contain carboxyl groups. It can also be obtained by mixing with AN polymer.

これらのAN系重合体の製造およびこの重合体よυ々る
AN系繊維の製造は公知の方法から任意に選択すること
によシ可能である。
The production of these AN-based polymers and the production of AN-based fibers using these polymers can be carried out by any method selected from known methods.

本発明1c91.るAN系繊維は120℃の湿熱下にお
ける繊維収縮率が104J以上かつS、 Q t/a以
上の乾強度を有することが必要である。
This invention 1c91. The AN-based fiber must have a fiber shrinkage rate of 104 J or more under moist heat at 120°C and a dry strength of S, Q t/a or more.

120℃の湿熱下における繊維の収縮率が10憾未満で
は高濃度アルカリ金属水溶液中でアルカリ処理を行なっ
た繊維が十分な繊維物性を有しないためであり、好まし
くけ15チ以上である。120℃の湿熱下における繊維
収縮率を10係以上にするためには一般に染色鮮明性、
強伸度バランスを良好にするために施される湿熱緩和処
理を行なわないか、または湿熱緩和処理圧力を低下する
ことによって容易に達成される。
This is because if the shrinkage rate of the fiber under moist heat at 120° C. is less than 10, the fiber treated with alkali in a highly concentrated alkali metal aqueous solution will not have sufficient fiber physical properties, and it is preferably 15 or more. In order to increase the fiber shrinkage rate under humid heat at 120°C to a factor of 10 or higher, dyeing clarity,
This can be easily achieved by not performing the heat-and-moisture relaxation treatment that is performed to improve the balance of strength and elongation, or by lowering the pressure of the heat-and-moisture relaxation treatment.

また本発明に係るAN系繊維の要件としては5.0P/
d以上の乾強度を有することが必要である。加重下にお
ける高度な保液性を有する水膨潤性繊維を得るためには
高濃度アルカリ金属水溶液中の高温下でアルカリ処理を
施す必要がある。アルカリ処理後の繊維は繊維強度が低
下するのはやむをえない事象であり、この防止策として
は被処理fJ!維の強度を予めs、or7’a以上に設
定することがもつとも有利な手法と言える。繊維の高強
度化の手法としては高倍率延伸を施すことが一般的であ
す、トータル9倍以上の延伸を施すことによって5.’
 Ot / eL以上の乾強度が達成される。本発明に
係るAM系織繊維効果は高濃度アルカリ金属水溶液中に
おける高温下でのアルカリ処理を行なう際に、繊維が収
縮することによって、繊維内層部の親水化を防止する効
果を有し、収縮によって生じる繊維強度の低下を予め高
強度タイプの繊維を使用することによってアルカリ処理
後の繊維に十分な物性を与えることにある。本発明に係
る繊維の形状は特に規制されるものではなく、特許請求
範囲第1項前記の要件を満足するものであれば、単一成
分からなるもの、あるいは二成分および三成分以上の混
合体繊維または複合繊維いづれも本発明の出発繊維とし
て採用することが可能である。さらに繊維の断面形状お
よびデニール等も任意に選択が可能である。
In addition, the requirements for the AN-based fiber according to the present invention are 5.0P/
It is necessary to have a dry strength of d or more. In order to obtain water-swellable fibers that have a high level of liquid retention under load, it is necessary to perform alkali treatment at high temperatures in a highly concentrated alkali metal aqueous solution. It is an unavoidable phenomenon that fiber strength decreases after alkali treatment, and as a preventive measure, the treated fJ! It can also be said that it is an advantageous method to set the fiber strength to s, or 7'a or more in advance. As a method of increasing the strength of fibers, it is common to perform high-strength stretching.5. '
A dry strength of Ot/eL or higher is achieved. The AM-based woven fiber effect according to the present invention has the effect of preventing hydrophilization of the inner layer of the fiber by shrinking the fiber when performing alkali treatment at high temperature in a highly concentrated alkali metal aqueous solution. The aim is to provide sufficient physical properties to the fibers after alkali treatment by using high-strength type fibers in advance to overcome the decrease in fiber strength caused by this process. The shape of the fiber according to the present invention is not particularly restricted, and as long as it satisfies the requirements set forth in claim 1, it can be made of a single component, or a mixture of two components, three or more components. Either fibers or composite fibers can be employed as the starting fibers of the present invention. Furthermore, the cross-sectional shape and denier of the fibers can be arbitrarily selected.

さらに特開昭60−194175号公報で要求される潜
在乃至顕在捲縮も本発明にお騒て特に必要とするもので
はない。
Further, the present invention does not particularly require latent or actual crimp as required in Japanese Patent Application Laid-Open No. 60-194175.

繊維は短繊維、長繊維、繊維トウ、糸、編織物、不織布
等いかなる形態のものであっても後続の加水分解処理に
供することができ、かかるAN系繊維を出発物質として
加重下における高度な保液性を有するAN系繊維を形成
せしめるためには、高濃度アルカリ金属水溶液中で高温
下におけるアルカリ処理を行なう必要がある。
Fibers can be subjected to subsequent hydrolysis treatment in any form, such as short fibers, long fibers, fiber tows, threads, knitted fabrics, and non-woven fabrics. In order to form AN fibers with liquid retention properties, it is necessary to perform alkali treatment at high temperatures in a highly concentrated alkali metal aqueous solution.

本発明に用いられる高濃度アルカリ金属水溶液は10 
mol/1000を以上の濃度が必要であり、さらに好
ましくは13 mol/10009  以上である。1
0 mol/1000f  未満では加重下における高
度な保液性を得ることができず、さらに低濃度にお込で
は被処理線維が溶解し十分な繊維物性を有する水膨潤性
繊維が得られないためである。ここに言うアルカリ金属
水酸化物とは、Na、に等のアルカリ金属類の水酸化物
またはOa等のアルカリ土類金属水酸化物またはそれら
の混合物を挙げることができる。アルカリ処理温度は高
す方が好ましく、高濃度アルカリ水溶液の沸とう状態で
行なうことが有利であり実際の温度は120℃以上とな
る。この温度が120℃未満では、十分な親水架橋処理
が施されず、高度な保液性を得られないだけでなくアル
カリ処理時におりで繊維が収縮せず、アルカリ処理後の
繊維は欅、雑物性を損なったもろbものとなる。さらに
アルカリ処理時間は10分以上、好ましくは20分から
50分の間で設定される。
The high concentration alkali metal aqueous solution used in the present invention is 10
A concentration of at least 13 mol/10009 is required, more preferably at least 13 mol/10009. 1
This is because if it is less than 0 mol/1000f, it is not possible to obtain a high level of liquid retention under load, and if it is added to a lower concentration, the treated fibers will dissolve and water-swellable fibers with sufficient fiber properties cannot be obtained. be. The alkali metal hydroxide referred to herein includes hydroxides of alkali metals such as Na, hydroxides of alkaline earth metals such as Oa, or mixtures thereof. It is preferable to raise the alkali treatment temperature, and it is advantageous to carry out the treatment in a boiling state of a highly concentrated alkaline aqueous solution, and the actual temperature is 120° C. or higher. If this temperature is lower than 120℃, sufficient hydrophilic crosslinking treatment will not be performed, and not only will high liquid retention properties not be obtained, but the fibers will not shrink in the cage during alkali treatment, and the fibers after alkali treatment will be zelkova, miscellaneous. It becomes a fragile product with impaired physical properties. Furthermore, the alkali treatment time is set at 10 minutes or more, preferably between 20 and 50 minutes.

この推奨範囲をはずれると加重下における十分な保液性
を得られない。また、アルカリ処理を行う上での被処理
繊維と処理液量の割合は出発繊維の品質、または最終的
な保液性能等から適時選択されるが、かかる条件におい
て水性溶液との接触が容易ならどのような割合でも可能
であるが、おおむね10倍以上〜100倍未満が選択さ
れる。
If it deviates from this recommended range, sufficient liquid retention under load cannot be obtained. In addition, the ratio of the fibers to be treated and the amount of treatment liquid used in alkaline treatment is selected appropriately based on the quality of the starting fibers, the final liquid retention performance, etc., but if contact with the aqueous solution is easy under these conditions, then Any ratio is possible, but approximately 10 times or more to less than 100 times is selected.

さらに、AN系繊MIKアルカリ水性溶液を作用せしめ
る方法としては、任意の繊維畏に切断された短繊維を水
性溶液中に懸濁せしめ、スクリュー型攪拌装置、ミキサ
ー等の剪断装置或いはニーダ−等の混練装置等を使用し
て攪拌乃至混練する方法、長FI1.維、繊維トウ、糸
、編織物、不織布等の連続した繊維をアルカリ水性溶液
中にて緊張下もしくは無緊張下に走行させる方法、或い
は短繊維、長繊維等を網状容器中に充填してアルカリ水
性溶液中にて振盪する方法等公知の不均一系処理方法か
ら広く選択することができる。
Furthermore, as a method for applying the MIK alkaline aqueous solution to AN-based fibers, short fibers cut into arbitrary fibers are suspended in an aqueous solution, and then cut using a shearing device such as a screw type stirring device, a mixer, or a kneader. Method of stirring or kneading using a kneading device etc., long FI1. A method in which continuous fibers such as fibers, fiber tows, threads, knitted fabrics, non-woven fabrics, etc. are run under tension or without tension in an alkaline aqueous solution, or short fibers, long fibers, etc. are filled in a mesh container and an alkali solution is run. A wide range of known heterogeneous treatment methods can be selected, such as a method of shaking in an aqueous solution.

かくして得られた水膨潤性繊維は、水洗処理等により繊
維中に残留するアルカリ金属水酸化物を除去した後、必
要ならば公知の方法により塩型カルボキシル基をアルカ
リ金属又はアンモニウムの塩に変える等の処理を施し、
次いで所望により乾燥処理に付して乾燥生成物に形成せ
しめる。
The thus obtained water-swellable fibers are washed with water to remove the alkali metal hydroxide remaining in the fibers, and then, if necessary, the salt-type carboxyl groups are converted to alkali metal or ammonium salts by known methods. After processing,
It is then optionally subjected to a drying treatment to form a dry product.

かくの如き高度の水膨潤性及び優れた物性を兼ね備えた
本発明の水膨潤性繊維は、単独で、又は既存の天然、半
合成もしくは合成繊維等と混紡、混抄することにより、
卓越した吸湿性、吸水性、保水性を有する新規な繊維素
材或いは繊維製品としておむつ、生理用品、濾紙等に、
或いは水と混和性のない有機溶剤からの脱水材、シール
材、カチオン交換am等に、さらに既存のヒドロゲル粉
粒体と間様インスタント土のう、人工土壌、水どけ、保
温・保冷材等に適用することができる。
The water-swellable fiber of the present invention, which has such high water-swellability and excellent physical properties, can be used alone or by blending or making with existing natural, semi-synthetic or synthetic fibers, etc.
As a new fiber material or textile product with outstanding moisture absorption, water absorption, and water retention properties, it is used for diapers, sanitary products, filter paper, etc.
Alternatively, it can be applied to dehydration materials from organic solvents that are immiscible with water, sealing materials, cation exchange am, etc. Furthermore, it can be applied to existing hydrogel powders, interstitial instant sandbags, artificial soil, drainage, heat/cold insulation materials, etc. be able to.

〈実施例〉 以下、本発明を実施例により説明する。<Example> The present invention will be explained below using examples.

尚、以下の実施例に記載する保液性、カルボキシル基(
−000X)]は下記の方法にて測定、算出したもので
ある。
In addition, liquid retention and carboxyl group (
-000X)] was measured and calculated using the following method.

(1)保液性(t/1−F) 試料繊維約CL1fを純水中に浸漬し25℃に保ち24
時間後、ナイロン濾布(200メツシユ)に包み、遠心
脱水機(10G×10分、但しGは重力加速度)Kより
繊維間の水を除去する。このようにして調整した試料の
重量を測定する(Lg)。次に、該試料を80℃の真空
乾燥機中で恒量になるまで乾燥して重量を測定する( 
W2 g)。以上の測定結果から、次式によって算出し
た。従って、氷水膨潤度は、#i!維の自重の何倍の水
を吸収保持するかを示す数値である。
(1) Liquid retention (t/1-F) Sample fiber approximately CL1f was immersed in pure water and kept at 25℃ for 24 hours.
After a period of time, the fibers were wrapped in a nylon filter cloth (200 mesh) and the water between the fibers was removed using a centrifugal dehydrator (10G x 10 minutes, where G is gravitational acceleration). The weight of the sample thus prepared is measured (Lg). Next, the sample is dried in a vacuum dryer at 80°C until it reaches a constant weight, and the weight is measured (
W2g). From the above measurement results, it was calculated using the following formula. Therefore, the degree of ice-water swelling is #i! This value indicates how many times the weight of the fiber can absorb and retain water.

W宜 (2)  カルボン酸基量(m mol/g )?11
Pをジメチルホルムアミド50−に溶解し、イオン交換
樹脂通し、遊離酸にした後、α01N水酸化カリウムメ
タノール溶液で中和滴定し測定した。
W Yi (2) Amount of carboxylic acid group (m mol/g)? 11
P was dissolved in 50-dimethylformamide and passed through an ion exchange resin to form a free acid, and then neutralized and titrated with α01N potassium hydroxide methanol solution for measurement.

実施例1 AM91重量係、アクリル酸メチル6.4重量係からな
り、カルボン酸基量が0.3 mmoL/lのAN系重
合体24重量部をジメチルアセトアミド(DMAC)7
6重量部に溶解し、粘度600ボイズの紡糸原液を得た
。この原液をDMAcと水の混合凝固液中に吐出し繊維
に形成せしめた後湿熱6倍、乾熱2倍、トータル12倍
の延伸を施し乾強度&2f/cl、伸度12,0チ、1
20℃の温熱下における収縮率15係の繊維を得た。こ
の繊維10tを水酸化ナトリウム16 mol/100
0LN)水溶液190を中沸騰状態(130℃)で所定
の時間アルカリ処理を施し第1麦に示す水膨潤性繊維を
得た。
Example 1 24 parts by weight of an AN-based polymer consisting of AM91 by weight and methyl acrylate by 6.4 parts by weight and having a carboxylic acid group content of 0.3 mmoL/l was mixed with dimethylacetamide (DMAC) 7 parts by weight.
It was dissolved in 6 parts by weight to obtain a spinning dope having a viscosity of 600 voids. This stock solution was discharged into a mixed coagulation solution of DMAc and water to form fibers, and then stretched 6 times with wet heat, 2 times with dry heat, and 12 times in total to achieve a dry strength of &2f/cl, an elongation of 12.0 inches, and
A fiber having a contraction rate of 15 when heated at 20° C. was obtained. 10 tons of this fiber was mixed with 16 mol/100 sodium hydroxide.
0LN) aqueous solution 190 was subjected to alkali treatment in a medium boiling state (130° C.) for a predetermined period of time to obtain water-swellable fibers shown in No. 1 Wheat.

第  1 表 第  2 表 実施例2 実施例1で用いたと同様のAN系繊維を10?水酸化ナ
トリウム濃度変更したアルカリ金属水酸化物水溶液19
0f中沸騰状順で20分間アルカリ処理を施し第2表に
示すような水膨潤性繊維を得た。
Table 1 Table 2 Example 2 The same AN fiber as used in Example 1 was used in 10? Alkali metal hydroxide aqueous solution 19 with changed sodium hydroxide concentration
Alkali treatment was carried out for 20 minutes at boiling temperature at 0 f to obtain water-swellable fibers as shown in Table 2.

実施例6 実施例1で用いたと同様のAN系繊維102を水酸化ナ
トリウム16 mol/100054、水溶液190を
中で種々の温度で20分間アルカリ処理し、第3表に示
すような水膨潤性繊維を得だ。
Example 6 AN-based fibers 102 similar to those used in Example 1 were treated with alkali for 20 minutes at various temperatures in an aqueous solution containing 16 mol/100,054 sodium hydroxide and 190 ml to form water-swellable fibers as shown in Table 3. I got it.

第3表 実施例1,2.3の結果より明らかなように本発明に係
る水膨潤性繊維は卓趙した保水性を有すると共に、強伸
度とも通常衣料、インテリア用途に供されるAM系織繊
維比べて遜色のな込物性を有して込ることか理解される
As is clear from the results of Examples 1 and 2.3 in Table 3, the water-swellable fibers according to the present invention have outstanding water retention properties, as well as strength and elongation of AM type fibers, which are usually used for clothing and interior applications. It is understood that it has a material properties that are inferior to those of woven fibers.

一方、本発明の推奨範囲を外れたアルカリ処理条件下で
は高度な保水性能を有して々いだけでなく繊維物性にお
いても不十分な場合が見られる。
On the other hand, under alkaline treatment conditions outside the recommended range of the present invention, not only high water retention performance may be required, but also the fiber properties may be insufficient.

実施例4 AN/アクリル酸メチル/メタアクリル酸の三元共重合
体を過硫酸アンモニウム/酸性亜硫酸ソーダのレドック
ス重合触媒を用い、水分懸濁連続重合方式にて重合を行
なり1メタアクリル酸の添加量を調整し、カルボン酸基
量の異なる4種の重合体を調整した。得られた重合体2
4重量部、DMA076重量部に溶解し、実施例1と同
様な手法で第4表に示す繊維を得た。得られた繊維io
tを40係水酸化ナトリウム水溶液190℃に浸漬し、
攪拌しながら沸騰状態で20分アルカリ処理を施した。
Example 4 A terpolymer of AN/methyl acrylate/methacrylic acid was polymerized using a redox polymerization catalyst of ammonium persulfate/acidic sodium sulfite in a water suspension continuous polymerization method, and 1 methacrylic acid was added. The amount was adjusted to prepare four types of polymers having different amounts of carboxylic acid groups. Obtained polymer 2
The fibers shown in Table 4 were obtained by dissolving 4 parts by weight and 76 parts by weight of DMA in the same manner as in Example 1. The obtained fiber io
t is immersed in a 40% sodium hydroxide aqueous solution at 190°C,
Alkali treatment was performed for 20 minutes in a boiling state while stirring.

アルカリ処理後の繊維は水洗浄、余分な塩を取り除くと
ともに中和し、乾燥後第4表に示すような水膨潤性繊維
を得た。
The fibers treated with alkali were washed with water to remove excess salt and neutralized, and after drying, water-swellable fibers as shown in Table 4 were obtained.

第  4  表 本例で明らかのように繊維を形成するAN系重合体中の
カルボン酸基量が増加するにつれてアルカリ処理後の繊
維の保液性は飛躍的に増大する。しかし本発明の推奨範
囲を超えるα8mmoL/f のカルボン酸基を有する
AN系重合体からなる繊維は親水架橋後高度な保水性を
有するものの繊維強度が低く実用にたえないものであっ
た。
Table 4 As is clear from this example, as the amount of carboxylic acid groups in the AN polymer forming the fiber increases, the liquid retention of the fiber after alkali treatment increases dramatically. However, fibers made of AN-based polymers having a carboxylic acid group of α8 mmoL/f exceeding the recommended range of the present invention had high water retention properties after hydrophilic crosslinking, but the fiber strength was too low to be of practical use.

実施例5 実施例1で用いたカルボン酸基をα5 m mOL/を
含有するAN系重合体24重量部をジメチルホルムアミ
ド76重量部に溶解し、紡糸原液を得た。この紡糸原液
をDMAQと水の混合液からなる凝固浴中に直径α10
■のノズルより吐出し繊維に賦型後、延伸倍率を変更し
、種々の乾強度および潜水収縮率を有するAN系繊維を
得た。これらの繊維109をi 6 mol/1000
+Pの水酸化ナトリウム水溶液190を中に浸漬し沸騰
状態で20分アルカリ処理を施すことによって第5表に
示すような繊維を得た。
Example 5 24 parts by weight of the AN polymer containing α5 m mOL/ of carboxylic acid groups used in Example 1 was dissolved in 76 parts by weight of dimethylformamide to obtain a spinning dope. This spinning stock solution was placed in a coagulation bath consisting of a mixture of DMAQ and water with a diameter of α10.
After shaping the fibers discharged from the nozzle (2), the stretching ratio was changed to obtain AN fibers having various dry strengths and submerged shrinkage rates. i 6 mol/1000 of these fibers 109
Fibers as shown in Table 5 were obtained by immersing the fibers in a +P sodium hydroxide aqueous solution of 190 ml and subjecting them to an alkali treatment in a boiling state for 20 minutes.

第  5 表 比較例 実施例1に得られたAN系繊維を2.35 kgGの湿
熱下で緩和処理を施し120℃湿熱下における収縮率を
0チにした。この繊a1oyを水酸化ナトリウム16 
mol/10011111F 、水溶液190を中に浸
漬し沸騰状態で20分、アルカリ処理を行なったところ
、保液性は709/f−Fと高い値を示すもののアルカ
リ処理後の繊維強度は1、39 / lと実用に供し難
いものであった。
Table 5 Comparative Examples The AN-based fiber obtained in Example 1 was subjected to a relaxation treatment under moist heat of 2.35 kgG, so that the shrinkage rate under moist heat at 120° C. was reduced to 0. Add this fiber a1oy to 16% sodium hydroxide.
mol/10011111F, aqueous solution 190 was immersed in it and alkali treatment was performed in boiling state for 20 minutes. Although the liquid retention property showed a high value of 709/f-F, the fiber strength after alkali treatment was 1.39/f-F. 1, making it difficult to put it to practical use.

実施例5および比較例に示すようにアルカリ処理前の繊
維の温度を高めかつ潜水収縮率を10係以上に保持する
ことが、アルカリ処理後の繊維物性、特に乾強度を実用
に供するものにするために必要であることがわかる。
As shown in Example 5 and Comparative Example, increasing the temperature of the fiber before alkali treatment and maintaining the submerged shrinkage rate at a factor of 10 or higher makes the physical properties of the fiber after alkali treatment, especially the dry strength, practical. It turns out that it is necessary for

〈発明の効果〉 本発明による水膨潤性繊維は従来のアクリロニトリル系
繊維の優れた物性を保有し、しかも加重下における高度
な保液性を有することからおむつ、生理用品等幅広い産
業用途分野に利用することが可能であシ、本発明の有す
る産業上の意義は極めて高すものである。
<Effects of the Invention> The water-swellable fibers of the present invention possess the excellent physical properties of conventional acrylonitrile fibers and also have high liquid retention properties under load, so they can be used in a wide range of industrial applications such as diapers and sanitary products. Therefore, the industrial significance of the present invention is extremely high.

代理人 弁理士 吉 澤 敏 夫Agent: Patent Attorney Toshio Yoshizawa

Claims (1)

【特許請求の範囲】[Claims] アクリロニトリルを80重量%以上、カルボン酸基を0
.2〜0.7mmol/g含有するアクリロニトリル系
重合体からなり、乾強度5.0g/d以上かつ120℃
の湿熱下における繊維収縮率が10%以上であるアクリ
ロニトリル系繊維を10mol/1000g以上の高濃
度アルカリ金属水溶液中で120℃以上で10分以上ア
ルカリ処理することを特徴とする高度の保液性を有する
水膨潤性繊維の製造法。
80% by weight or more of acrylonitrile, 0 carboxylic acid groups
.. Consisting of an acrylonitrile polymer containing 2 to 0.7 mmol/g, with a dry strength of 5.0 g/d or more and 120°C
Acrylonitrile fibers with a fiber shrinkage rate of 10% or more under moist heat are treated with alkali in a highly concentrated alkali metal aqueous solution of 10 mol/1000 g or more at 120°C or more for 10 minutes or more. A method for producing a water-swellable fiber comprising:
JP31312588A 1988-12-12 1988-12-12 Production of water-swelling fiber having high liquid retention Pending JPH02169766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31312588A JPH02169766A (en) 1988-12-12 1988-12-12 Production of water-swelling fiber having high liquid retention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31312588A JPH02169766A (en) 1988-12-12 1988-12-12 Production of water-swelling fiber having high liquid retention

Publications (1)

Publication Number Publication Date
JPH02169766A true JPH02169766A (en) 1990-06-29

Family

ID=18037416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31312588A Pending JPH02169766A (en) 1988-12-12 1988-12-12 Production of water-swelling fiber having high liquid retention

Country Status (1)

Country Link
JP (1) JPH02169766A (en)

Similar Documents

Publication Publication Date Title
CA1082382A (en) Fluid absorbent cellulose fibers containing alkaline salts of polymers of acrylic acid, methacrylic acid or an acryloamidoalkane sulfonic acid with aliphatic esters of acrylic acid or methacrylic acid
JPS6260503B2 (en)
CN111868322B (en) Beating acrylic fiber containing carboxyl group, process for producing the fiber, and structure containing the fiber
KR20040028969A (en) Method for producing cellulose shaped bodies with super-absorbent properties
US4377648A (en) Cellulose-polyacrylonitrile-DMSO-formaldehyde solutions, articles, and methods of making same
RU2181798C2 (en) Method for obtaining molded cellulose body and molded cellulose body
IE44622B1 (en) Hydrophilic fibres and filaments of synthetic acrylonitrile polymers
JPS5810509B2 (en) Novel water-swellable fiber and method for producing the same
KR20010043656A (en) Crosslinked acrylic hygroscopic fiber and process for producing the same
US5109092A (en) Filaments and fibers of acryling polymers which contain carboxyl groups and process for their production
KR100475423B1 (en) Absorbent acrylic fiber
CN105113222A (en) Superabsorbent fibers prepared from polyvinyl alcohol fibers and preparing method and application thereof
JPH022969B2 (en)
JPH02169766A (en) Production of water-swelling fiber having high liquid retention
JPH04257313A (en) Production of precursor fiber for carbon fiber
JPS6262174B2 (en)
JP2019143284A (en) Shrinkable moisture absorption acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber
JPS6260502B2 (en)
JP2019085688A (en) Hygroscopic acrylonitrile-based fiber, method for producing the same and fiber structure containing the same
JPS5857974B2 (en) Water absorption/water retention agent and its manufacturing method
IE44494B1 (en) Hydrohilic fibres and filaments of synthetic polymers
JPS62215011A (en) Rapidly shrinkable fiber and production thereof
US3737507A (en) Process for acrylic fibers of improved properties
JPS6081309A (en) Preparation of acrylic yarn having alkali resistance
JP2022151751A (en) Acrylic deodorant, antibacterial and hygroscopic heating fiber and method for producing the same