JP2019143284A - Shrinkable moisture absorption acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber - Google Patents

Shrinkable moisture absorption acrylonitrile-based fiber, manufacturing method of the fiber and fiber structure containing the fiber Download PDF

Info

Publication number
JP2019143284A
JP2019143284A JP2019022604A JP2019022604A JP2019143284A JP 2019143284 A JP2019143284 A JP 2019143284A JP 2019022604 A JP2019022604 A JP 2019022604A JP 2019022604 A JP2019022604 A JP 2019022604A JP 2019143284 A JP2019143284 A JP 2019143284A
Authority
JP
Japan
Prior art keywords
fiber
acrylonitrile
shrinkable
hygroscopic
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019022604A
Other languages
Japanese (ja)
Other versions
JP2019143284A5 (en
JP7177986B2 (en
Inventor
拓三 小見山
Takuzo Komiyama
拓三 小見山
健太 水谷
Kenta Mizutani
健太 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Publication of JP2019143284A publication Critical patent/JP2019143284A/en
Publication of JP2019143284A5 publication Critical patent/JP2019143284A5/ja
Application granted granted Critical
Publication of JP7177986B2 publication Critical patent/JP7177986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

To provide a shrinkable moisture absorption acrylonitrile-based fiber capable of being produced with simple processes, for overcoming situation that shrinkable acrylic fiber is known conventionally, but it has no moisture absorption property and a problem in comfortableness, a crosslinked acrylate-based fiber has no shrinkability and low productivity even though it is excellent in moisture absorption property, and further enhancing moisture absorption property of an acrylic fiber containing acrylic acid as a copolymer component is difficult.SOLUTION: There is provided a shrinkable moisture absorption acrylonitrile-based fiber constituted by a polymer having practically no crosslinking structure by a covalent bond, containing 0.2 to 4.5 mmol/g of carboxyl group in the fiber, having saturation moisture absorption rate at 20°C×65% RH of 3 wt.% or more, boiling water shrinkage rate of 5 to 50%, and water swelling degree of 10 times or less.SELECTED DRAWING: None

Description

本発明は、収縮性吸湿アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体に関する。 The present invention relates to a shrinkable hygroscopic acrylonitrile fiber, a method for producing the fiber, and a fiber structure containing the fiber.

収縮性アクリル繊維は、加熱により収縮を発現する繊維であり、バルキー糸やスライバーニットなどにおいてはその収縮性を利用してかさ高さを発現させているが、吸湿性に乏しく、静電気が起こりやすいあるいは蒸れやすいなど快適性の点で改良する必要があった。 Shrinkable acrylic fiber is a fiber that develops shrinkage when heated, and bulky yarns and sliver knits use its shrinkage to develop bulkiness, but it has poor hygroscopicity and is prone to static electricity. Or it was necessary to improve in terms of comfort, such as being easily stuffy.

一方、吸湿性繊維に関しては近年の快適性に対する意識の高まりから、繊維分野においても開発が盛んに行なわれている。例えば、アクリル繊維を化学変性することにより得られる架橋アクリレート系繊維が知られている(特許文献1)。該繊維は架橋構造とカルボキシル基を含有しており、優れた吸湿性能を有する。 On the other hand, hygroscopic fibers have been actively developed in the fiber field due to the recent increase in awareness of comfort. For example, a crosslinked acrylate fiber obtained by chemically modifying an acrylic fiber is known (Patent Document 1). The fiber contains a crosslinked structure and a carboxyl group, and has excellent moisture absorption performance.

しかしながら、該繊維は架橋を有していることから収縮性を付与することが困難である。また、該繊維の製造においては、ヒドラジンによる架橋構造を導入する工程およびカルボキシル基を導入するための加水分解工程が必要であるほか、各工程の後には、反応に用いた薬剤の残留物を除去する工程が必要である。しかも、これらのそれぞれ工程では高温、長時間が必要である。このため、該繊維の製造を連続処理で行うことは難しく、生産性の低いバッチ処理で行っていた。従って、従来の架橋アクリレート系繊維は、生産性が低く、その製造コストは高いままであった。 However, since the fiber has crosslinks, it is difficult to impart shrinkage. In addition, in the production of the fiber, a step of introducing a crosslinked structure with hydrazine and a hydrolysis step for introducing a carboxyl group are necessary, and after each step, residues of the chemical used in the reaction are removed. The process to do is necessary. In addition, each of these processes requires a high temperature and a long time. For this reason, it is difficult to produce the fibers by continuous processing, and batch processing with low productivity has been performed. Therefore, the conventional crosslinked acrylate fiber has low productivity and its production cost remains high.

また、カルボキシル基を有するアクリル繊維という点においては、アクリル酸などのカルボキシル基を有する単量体を共重合成分とするアクリロニトリル系重合体からなるアクリル繊維が知られている。しかし、アクリル酸を多量に共重合させると紡糸が困難となるため、高い吸湿性を発現させることは難しかった。また、架橋構造を有さないため、染色におけるアルカリソーピングなどのアルカリ条件下で溶出しやすくなるなど、衣料用途向けとする場合には問題となっていた。 Further, in terms of acrylic fibers having a carboxyl group, acrylic fibers made of an acrylonitrile-based polymer having a monomer having a carboxyl group such as acrylic acid as a copolymerization component are known. However, if acrylic acid is copolymerized in a large amount, spinning becomes difficult, and it has been difficult to achieve high hygroscopicity. In addition, since it does not have a cross-linked structure, it has been a problem when it is used for apparel applications such as elution under alkaline conditions such as alkaline soaping in dyeing.

特開平5−132858号公報JP-A-5-132858

上述したように、従来、収縮性のアクリル繊維は知られているが吸湿性が無く、快適性に問題が有った。また、架橋アクリレート系繊維は吸湿性に優れているものの、収縮性に乏しく、製造工程が多く生産性が低いものであった。さらに、アクリル酸を共重合成分とするアクリル繊維は吸湿性を高めることが難しいものであった。本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は、従来よりも簡便な工程で連続生産することができ、収縮性を持った吸湿性アクリロニトリル系繊維を提供することにある。 As described above, conventionally, shrinkable acrylic fibers are known, but they are not hygroscopic and have a problem in comfort. Moreover, although the crosslinked acrylate fiber is excellent in hygroscopicity, it has poor shrinkage, has many production steps, and has low productivity. Furthermore, it has been difficult to increase the hygroscopicity of acrylic fibers containing acrylic acid as a copolymer component. The present invention has been made in view of the current state of the prior art, and the object thereof is to provide a hygroscopic acrylonitrile fiber having shrinkage, which can be continuously produced by a simpler process than before. There is.

本発明者は、上述の目的を達成するために鋭意検討を進めた結果、アクリロニトリル系重合体を溶解した紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を加水分解し、さらに延伸処理を行うことにより、架橋構造を有さずとも、実用的な繊維物性を保持しつつ、収縮性を持った吸湿アクリロニトリル系繊維が得られることを見出し、本発明の完成に到達した。 As a result of diligent investigations to achieve the above-mentioned object, the present inventor obtained a spinning stock solution in which an acrylonitrile-based polymer was dissolved from a nozzle, and was obtained through the steps of coagulation, water washing and stretching. By hydrolyzing the dried fiber and further performing a stretching treatment, it was found that a moisture-absorbing acrylonitrile-based fiber having shrinkage while retaining practical fiber properties can be obtained without having a crosslinked structure. The invention has been completed.

即ち、本発明は以下の手段により達成される。
(1) 共有結合による架橋構造を実質的に有さない重合体で構成されている吸湿性アクリロニトリル系繊維であって、繊維中に0.2〜4.5mmol/gのカルボキシル基を含有し、20℃×65%RHでの飽和吸湿率が3重量%以上であり、沸水収縮率が5〜50%であり、かつ水膨潤度が10倍以下であることを特徴とする収縮性吸湿アクリロニトリル系繊維。
(2) カルボキシル基が繊維全体にわたって均一に存在していることを特徴とする(1)に記載の収縮性吸湿アクリロニトリル系繊維。
(3) カルボキシル基を含有する重合体からなる表層部とアクリロニトリル系重合体からなる中心部とからなる芯鞘構造を有していることを特徴とする(1)に記載の収縮性吸湿アクリロニトリル系繊維。
(4) カルボキシル基の中和度が25%以上であることを特徴とする(1)〜(3)のいずれかに記載の収縮性吸湿アクリロニトリル系繊維。
(5) アクリロニトリル系重合体を含有する紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を加水分解した後に延伸することを特徴とする(2)に記載の収縮性吸湿アクリロニトリル系繊維の製造方法。
(6) アクリロニトリル系重合体を含有する紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を熱処理することで緻密化させた繊維または緻密化後さらに弛緩処理した繊維を加水分解することを含むことを特徴とする(3)に記載の収縮性吸湿アクリロニトリル系繊維の製造方法。
(7) 未乾燥繊維の水分率が20〜250重量%であることを特徴とする(5)または(6)に記載の収縮性吸湿アクリロニトリル系繊維の製造方法。
(8) (1)〜(4)のいずれかに記載の収縮性吸湿アクリロニトリル系繊維を含有する繊維構造体。
That is, the present invention is achieved by the following means.
(1) A hygroscopic acrylonitrile-based fiber composed of a polymer that does not substantially have a covalently crosslinked structure, containing 0.2 to 4.5 mmol / g carboxyl group in the fiber, A shrinkable hygroscopic acrylonitrile system characterized by having a saturated moisture absorption at 20 ° C. × 65% RH of 3% by weight or more, a boiling water shrinkage of 5 to 50%, and a water swelling degree of 10 times or less. fiber.
(2) The shrinkable moisture-absorbing acrylonitrile fiber according to (1), wherein the carboxyl group is uniformly present throughout the fiber.
(3) The shrinkable moisture-absorbing acrylonitrile system according to (1), which has a core-sheath structure composed of a surface layer part made of a polymer containing a carboxyl group and a central part made of an acrylonitrile polymer. fiber.
(4) The shrinkable hygroscopic acrylonitrile fiber according to any one of (1) to (3), wherein the neutralization degree of the carboxyl group is 25% or more.
(5) A spinning stock solution containing an acrylonitrile-based polymer is spun from a nozzle, and is then stretched after hydrolyzing undried fibers obtained through the respective steps of coagulation, washing with water and stretching (2) The manufacturing method of the shrinkable hygroscopic acrylonitrile fiber as described in 1 above.
(6) After spinning a spinning stock solution containing an acrylonitrile-based polymer from a nozzle, the undried fibers obtained through the respective steps of coagulation, washing with water and stretching are heat-treated, or after densification The method for producing a shrinkable hygroscopic acrylonitrile fiber according to (3), comprising hydrolyzing the relaxed fiber.
(7) The method for producing shrinkable hygroscopic acrylonitrile fiber according to (5) or (6), wherein the moisture content of the undried fiber is 20 to 250% by weight.
(8) A fiber structure containing the shrinkable hygroscopic acrylonitrile fiber according to any one of (1) to (4).

本発明の収縮性吸湿アクリロニトリル系繊維は、共有結合による架橋構造を実質的に有さないため、実用的な収縮性を発現できるものである。また、本発明の収縮性吸湿アクリロニトリル系繊維は、製造にあたり架橋導入工程が不要なため、製造工程を大幅に減らすことができ、その結果、通常のアクリル繊維製造設備を利用した連続的連続生産が可能であり、生産性の高いものである。かかる本発明の収縮性吸湿アクリロニトリル系繊維は収縮性と吸湿性を兼ね備えることから、カーペット、タオル、ニット、毛糸、パイル、毛布、シーツ、クッション材などに利用することができる。 Since the shrinkable hygroscopic acrylonitrile fiber of the present invention has substantially no covalently crosslinked structure, it can exhibit practical shrinkage. In addition, since the shrinkable hygroscopic acrylonitrile fiber of the present invention does not require a cross-linking introduction process in production, the production process can be greatly reduced. As a result, continuous continuous production using a normal acrylic fiber production facility is possible. It is possible and productive. Since the shrinkable hygroscopic acrylonitrile fiber of the present invention has both shrinkability and hygroscopicity, it can be used for carpets, towels, knits, wool yarns, piles, blankets, sheets, cushion materials and the like.

本発明の収縮性吸湿アクリロニトリル系繊維は、従来の架橋アクリレート系繊維とは異なり、共有結合による架橋構造を実質的に有さないことを特徴とするものである。このことにより、架橋導入工程が不要になり、その結果、製造工程を大幅に少なくすることができ、従来よりも簡便な工程で生産することができる。従って、従来の架橋アクリレート系繊維の製造のようなバッチ処理に限らず、連続製造が可能である。また、共有結合による架橋構造を実質的に有さないため、実用的な収縮性を発現できるものである。なお、本発明において、「共有結合による架橋構造を実質的に有さない」とは、後述する<チオシアン酸ナトリウム水溶液への溶解度>が95%以上であることを指す。 Unlike the conventional crosslinked acrylate fiber, the shrinkable hygroscopic acrylonitrile fiber of the present invention is characterized by substantially not having a covalently crosslinked structure. This eliminates the need for a cross-linking introduction step, and as a result, the number of manufacturing steps can be greatly reduced, and production can be performed with a simpler process than in the past. Accordingly, continuous production is possible without being limited to batch processing such as production of conventional crosslinked acrylate fibers. In addition, since it does not substantially have a cross-linked structure due to a covalent bond, practical shrinkage can be expressed. In the present invention, “substantially has no cross-linked structure due to a covalent bond” means that a <solubility in an aqueous sodium thiocyanate solution> described later is 95% or more.

本発明の収縮性吸湿アクリロニトリル系繊維は、カルボキシル基を含有するものであり、その含有量としては、後述する方法により求められる値において、0.2〜4.5mmol/gであり、好ましくは0.5〜4.0mmol/g、より好ましくは0.5〜3.5mmol/g、さらに好ましくは0.8〜2.0mmol/gである。また、本発明の収縮性吸湿アクリロニトリル系繊維が芯鞘構造である場合には、好ましくは0.2〜2mmol/g、より好ましくは0.5〜1.0mmol/gである。カルボキシル基量が上記範囲の下限に満たない場合には、後述する吸湿性能が得られないことがあり、上限を超える場合には、繊維の親水性が高くなりすぎて、後述する水膨潤度を越えて、水に激しく膨潤したり、溶解したりして、取り扱いが困難となる。 The shrinkable hygroscopic acrylonitrile fiber of the present invention contains a carboxyl group, and the content thereof is 0.2 to 4.5 mmol / g in a value determined by the method described later, preferably 0. 0.5 to 4.0 mmol / g, more preferably 0.5 to 3.5 mmol / g, and still more preferably 0.8 to 2.0 mmol / g. Moreover, when the shrinkable hygroscopic acrylonitrile fiber of the present invention has a core-sheath structure, it is preferably 0.2 to 2 mmol / g, more preferably 0.5 to 1.0 mmol / g. When the amount of carboxyl groups is less than the lower limit of the above range, the moisture absorption performance described later may not be obtained. When the amount exceeds the upper limit, the hydrophilicity of the fiber becomes too high, and the degree of water swelling described later is increased. Beyond that, it swells and dissolves violently in water, making it difficult to handle.

本発明の収縮性吸湿アクリロニトリル系繊維は、20℃、相対湿度65%雰囲気下での飽和吸湿率として3重量%以上を有するものであり、好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは15重量%以上を有するものであることが望ましい。飽和吸湿率が上記下限値に満たない場合には、各種繊維構造体に適用しても有意な吸湿性能を付与することが難しい。上限については、繊維物性を維持する観点から35重量%以下、さらには30重量%以下であることが望ましい。 The shrinkable hygroscopic acrylonitrile fiber of the present invention has a saturated moisture absorption rate of 3% by weight or more at 20 ° C. and a relative humidity of 65%, preferably 5% by weight or more, more preferably 10% by weight or more. Further, it is desirable to have more than 15% by weight. When the saturated moisture absorption rate is less than the lower limit, it is difficult to impart significant moisture absorption performance even when applied to various fiber structures. The upper limit is preferably 35% by weight or less, and more preferably 30% by weight or less from the viewpoint of maintaining fiber properties.

また、本発明の収縮性吸湿アクリロニトリル系繊維は、沸水収縮率が5%〜50%であり、好ましくは8%〜45%、より好ましくは12%〜40%であることが望ましい。沸水収縮率が5%に満たない場合には、各種繊維構造体に適用しても有意な収縮性能を付与することが難しい。また、沸水収縮率が50%を超える場合には、実用的な繊維物性を維持することが難しくなる。 The shrinkable hygroscopic acrylonitrile fiber of the present invention has a boiling water shrinkage of 5% to 50%, preferably 8% to 45%, more preferably 12% to 40%. When the boiling water shrinkage rate is less than 5%, it is difficult to provide significant shrinkage performance even when applied to various fiber structures. Further, when the boiling water shrinkage rate exceeds 50%, it is difficult to maintain practical fiber properties.

本発明の収縮性吸湿アクリロニトリル系繊維は、後述する方法により求められる水膨潤度が10倍以下であり、好ましくは8倍以下、より好ましくは5倍以下であることが望ましい。本発明の収縮性吸湿アクリロニトリル系繊維は上述のように共有結合による架橋構造を実質的に有していないこともあり、水膨潤度が10倍を超えてしまうと、繊維が脆くなって一部が脱落したり、場合によっては溶解したりして、取り扱いが困難となる。下限については特に制限は無いが、本発明の収縮性吸湿アクリロニトリル系繊維が20℃、相対湿度65%雰囲気下での飽和吸湿率として3重量%以上を有する観点から少なくとも0.03倍以上になり、通常の場合0.3倍以上となると思われる。 It is desirable that the shrinkable hygroscopic acrylonitrile fiber of the present invention has a water swelling degree of 10 times or less, preferably 8 times or less, more preferably 5 times or less, which is obtained by the method described later. The shrinkable hygroscopic acrylonitrile fiber of the present invention may not substantially have a covalently crosslinked structure as described above, and when the water swelling degree exceeds 10 times, the fiber becomes brittle. Drops off or dissolves in some cases, making handling difficult. The lower limit is not particularly limited, but at least 0.03 times or more from the viewpoint that the shrinkable hygroscopic acrylonitrile fiber of the present invention has a saturated moisture absorption rate of 3% by weight or more at 20 ° C. and a relative humidity of 65%. In normal cases, it seems to be 0.3 times or more.

また、本発明の収縮性吸湿アクリロニトリル系繊維においては、カルボキシル基が繊維全体にわたって均一に存在していることがより望ましい。ここで、繊維全体にわたって均一に存在しているとは、後述する測定方法によって測定される繊維断面におけるマグネシウム元素の含有割合の変動係数CVが50%以下であることを意味する。カルボキシル基が局在化していると、その部分が吸湿、吸水によって脆化しやすくなる。カルボキシル基が繊維全体にわたって存在していることによって、吸湿・吸水しても脆化が抑制され、架橋構造を有さずとも実用に耐えうる繊維物性が得られやすくなる。このような点から上記のCV値としては好ましくは30%以下、より好ましくは20%以下、さらに好ましくは15%以下であることが望ましい。 Moreover, in the shrinkable hygroscopic acrylonitrile fiber of the present invention, it is more desirable that the carboxyl group exists uniformly throughout the fiber. Here, being uniformly present throughout the fiber means that the coefficient of variation CV of the magnesium element content in the fiber cross section measured by the measurement method described later is 50% or less. When the carboxyl group is localized, the portion is easily embrittled by moisture absorption and water absorption. The presence of the carboxyl group throughout the fiber suppresses embrittlement even if it absorbs moisture or absorbs water, and makes it easy to obtain fiber properties that can withstand practical use without having a crosslinked structure. From this point, the CV value is preferably 30% or less, more preferably 20% or less, and still more preferably 15% or less.

ただし、求められる物性や用途などによって、本発明の収縮性吸湿アクリロニトリル系繊維は、カルボキシル基が実質的に繊維表面のみに均一に存在している芯鞘構造を採用することができる。この場合は、芯鞘構造は、カルボキシル基を含有する重合体からなる表層部と、アクリロニトリル系重合体からなる中心部とから構成される。このように中心部とそれを包囲する表層部とからなる芯鞘構造を有することにより、中心部で硬い弾力性のある実用的な繊維物性を得ながら、カルボキシル基濃度の高い表層部で吸湿速度を有意に高めることができる。 However, the shrinkable hygroscopic acrylonitrile fiber of the present invention can adopt a core-sheath structure in which carboxyl groups are present substantially uniformly only on the fiber surface depending on the required physical properties and applications. In this case, the core-sheath structure is composed of a surface layer portion made of a polymer containing a carboxyl group and a central portion made of an acrylonitrile-based polymer. By having a core-sheath structure consisting of the central part and the surface layer surrounding the central part in this way, the moisture absorption rate is obtained at the surface layer part with a high carboxyl group concentration while obtaining practical fiber properties that are hard and elastic at the central part. Can be significantly increased.

この芯鞘構造の繊維の横断面における表層部の占める面積は、20〜80%が好ましく、30〜70%がより好ましい。表層部の占める面積が少ないと、吸湿性等の機能を十分に発揮できないおそれがあり、表層部の占める面積が多いと、中心部が細くなって実用的な繊維物性が得られないおそれがある。 The area occupied by the surface layer portion in the cross section of the fiber having the core-sheath structure is preferably 20 to 80%, and more preferably 30 to 70%. If the area occupied by the surface layer is small, there is a possibility that functions such as hygroscopicity cannot be sufficiently exhibited. If the area occupied by the surface layer is large, the central part may become thin and practical fiber physical properties may not be obtained. .

カルボキシル基の状態としては、より高い吸湿性能を求める場合には、対イオンがH以外のカチオンであることが好ましい。より具体的には、対イオンがH以外のカチオンである割合、すなわち、中和度が好ましくは25%以上、より好ましくは35%以上、さらに好ましくは50%以上であることが望ましい。 As the state of the carboxyl group, the counter ion is preferably a cation other than H when higher moisture absorption performance is desired. More specifically, it is desirable that the ratio in which the counter ion is a cation other than H, that is, the degree of neutralization is preferably 25% or more, more preferably 35% or more, and still more preferably 50% or more.

カチオンの例としては、Li、Na、K等のアルカリ金属、Be、Ca、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等の金属、NH、アミン等の陽イオンなどが挙げられ、複数種類の陽イオンが混在していてもよい。中でも、Li、Na、K、Mg、Ca、Zn等が好適である。 Examples of cations include alkali metals such as Li, Na and K, alkaline earth metals such as Be, Ca and Ba, metals such as Cu, Zn, Al, Mn, Ag, Fe, Co and Ni, NH 4 , Examples include cations such as amines, and a plurality of types of cations may be mixed. Of these, Li, Na, K, Mg, Ca, Zn and the like are preferable.

また、上記の場合においては、酢酸、イソ吉草酸等の酸性ガス、ホルムアルデヒド等のアルデヒドに対する優れた消臭性能も発現できる。また、MgやCaのイオンであれば難燃性能が高く、AgやCuのイオンであれば抗菌性能に関して高い効果を得ることができる。 Further, in the above case, excellent deodorizing performance against acid gases such as acetic acid and isovaleric acid, and aldehydes such as formaldehyde can be exhibited. Moreover, if it is Mg or Ca ion, a flame retardance performance is high, and if it is Ag or Cu ion, a high effect can be acquired regarding antibacterial performance.

一方、カルボキシル基の対イオンとしてHを多くすると、アンモニア、トリエチルアミン、ピリジン等のアミン系ガス等の消臭性能や抗ウイルス性能、抗アレルゲン性能を強めることができる。 On the other hand, when H is increased as the counter ion of the carboxyl group, deodorizing performance, antiviral performance, and antiallergen performance of amine gases such as ammonia, triethylamine, and pyridine can be enhanced.

上述してきた本発明の収縮性吸湿アクリロニトリル系繊維の製造方法としては、アクリロニトリル系重合体を溶解した紡糸原液を、ノズルから紡出し、凝固、水洗、延伸の各工程を経て得られた未乾燥状態の繊維を加水分解及び延伸処理を施して得る方法を挙げることができる。以下に、かかる製造方法について詳述する。 As a method for producing the shrinkable hygroscopic acrylonitrile fiber of the present invention described above, a spinning stock solution in which an acrylonitrile polymer is dissolved is spun from a nozzle, and is obtained in an undried state obtained through steps of coagulation, water washing and stretching. The method of obtaining the fiber of this by hydrolyzing and extending | stretching can be mentioned. Below, this manufacturing method is explained in full detail.

まず、原料となるアクリロニトリル系重合体は、重合組成としてアクリロニトリルを好ましくは40重量%以上、より好ましくは50重量%以上、さらに好ましくは85重量%以上含有するものである。従って、該アクリロニトリル系重合体としては、アクリロニトリル単独重合体のほかに、アクリロニトリルと他のモノマーとの共重合体も採用できる。共重合体における他のモノマーとしては、特に限定はないが、ハロゲン化ビニル及びハロゲン化ビニリデン;(メタ)アクリル酸エステル;メタリルスルホン酸、p−スチレンスルホン酸等のスルホン酸基含有モノマー及びその塩、アクリルアミド、スチレン、酢酸ビニル等が挙げられる。なお(メタ)の表記は、該メタの語の付いたもの及び付かないものの両方を表す。 First, the acrylonitrile-based polymer as a raw material contains acrylonitrile as a polymerization composition, preferably 40% by weight or more, more preferably 50% by weight or more, and still more preferably 85% by weight or more. Therefore, as the acrylonitrile-based polymer, a copolymer of acrylonitrile and another monomer can be employed in addition to the acrylonitrile homopolymer. Other monomers in the copolymer are not particularly limited, but vinyl halides and vinylidene halides; (meth) acrylic acid esters; sulfonic acid group-containing monomers such as methallyl sulfonic acid and p-styrene sulfonic acid, and the like Salt, acrylamide, styrene, vinyl acetate and the like can be mentioned. The notation (meta) represents both those with and without the meta word.

次に、かかるアクリロニトリル系重合体を用いて、湿式紡糸により繊維化を行うが、溶剤として、ロダン酸ソーダ等の無機塩を用いた場合で説明すれば以下のようになる。まず、上述のアクリロニトリル系重合体を溶剤に溶解して紡糸原液を作製する。該紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て、延伸後の未乾燥繊維(以下、ゲル状アクリロニトリル系繊維ともいう)の水分率を20〜250重量%、好ましくは25〜130重量%、より好ましくは30〜100重量%とする。 Next, using such an acrylonitrile-based polymer, fiber formation is performed by wet spinning, and the case where an inorganic salt such as sodium rhodanate is used as a solvent will be described as follows. First, the above acrylonitrile-based polymer is dissolved in a solvent to prepare a spinning dope. The spinning solution is spun from a nozzle and then subjected to coagulation, water washing, and stretching processes, and the moisture content of the undried fiber after stretching (hereinafter also referred to as gel-like acrylonitrile fiber) is 20 to 250% by weight, preferably 25 to 130% by weight, more preferably 30 to 100% by weight.

ここで、加水分解処理を施される原料繊維として未乾燥状態のゲル状アクリロニトリル系繊維を使用した場合、前述の様にカルボキシル基を繊維全体にわたって均一に存在させることが可能となる。一方、未乾燥状態のゲル状アクリロニトリル系繊維をさらに熱処理することで緻密化させた繊維や、緻密化後さらに弛緩処理した繊維を原料繊維として加水分解処理を施した場合には、カルボキシル基が繊維表層部に局在化した芯鞘構造とすることができる。 Here, when an undried gel acrylonitrile fiber is used as the raw fiber to be subjected to the hydrolysis treatment, the carboxyl groups can be uniformly present throughout the fiber as described above. On the other hand, when hydrolyzed fiber that has been densified by further heat-treating gel-like acrylonitrile fiber in an undried state, or fiber that has been further densified after densification, the carboxyl group is a fiber. It can be set as the core-sheath structure localized in the surface layer part.

ゲル状アクリロニトリル系繊維を原料繊維とする場合、該繊維の水分率が20重量%未満の場合には、後述する加水分解処理において薬剤が繊維内部に浸透せず、カルボキシル基を繊維全体にわたって生成させることができなくなる場合がある。250重量%を超える場合には繊維内部に水分を多く含み、繊維強度が低くなりすぎるため、可紡性が低下し好ましくない。繊維強度の高さをより重視する場合には、25〜130重量%の範囲内とするのが望ましい。また、ゲル状アクリロニトリル系繊維の水分率を上記範囲内に制御する方法は多数あるが、例えば、凝固浴温度としては−3℃〜15℃、好ましくは−3℃〜10℃、延伸倍率としては5〜20、好ましくは7〜15倍程度が望ましい。 When gel-like acrylonitrile fiber is used as the raw fiber, when the moisture content of the fiber is less than 20% by weight, the chemical does not penetrate into the fiber in the hydrolysis treatment described later, and carboxyl groups are generated throughout the fiber. May not be possible. If it exceeds 250% by weight, the fiber contains a large amount of moisture, and the fiber strength becomes too low. When the fiber strength is more important, it is desirable that the fiber strength is within the range of 25 to 130% by weight. There are many methods for controlling the moisture content of the gel-like acrylonitrile fiber within the above range. For example, the coagulation bath temperature is −3 ° C. to 15 ° C., preferably −3 ° C. to 10 ° C., and the draw ratio is About 5 to 20, preferably about 7 to 15 times is desirable.

また、ゲル状アクリロニトリル系繊維をさらに熱処理する場合には、例えば、110℃での乾熱処理と60℃での湿熱処理を交互に行うことにより、繊維内部のボイドが消失して緻密化した繊維が得られる。又その後120℃×10分オートクレーブ処理を行うことで、ある程度繊維構造が弛緩した繊維が得られる。これらの繊維を原料に用いて後述の加水分解処理を行うと繊維表層部から反応が進行して芯鞘構造のような構造をとりやすくなる。なお、反応が進行するにつれて、水膨潤度が上がりやすくなる傾向があり、得られる繊維の取り扱いが困難となる場合がある。 Further, when the gel-like acrylonitrile fiber is further heat-treated, for example, by alternately performing a dry heat treatment at 110 ° C. and a wet heat treatment at 60 ° C., the void inside the fiber disappears and the dense fiber is obtained. can get. Further, by performing an autoclave treatment at 120 ° C. for 10 minutes thereafter, fibers with a somewhat relaxed fiber structure can be obtained. When these fibers are used as raw materials and a hydrolysis treatment described later is performed, the reaction proceeds from the fiber surface layer portion, and a structure such as a core-sheath structure is easily obtained. As the reaction proceeds, the degree of water swelling tends to increase, and handling of the resulting fiber may be difficult.

ゲル状アクリロニトリル系繊維、またはさらに熱処理を施された繊維は、次に加水分解処理を施される。かかる加水分解処理の手段としては、アルカリ金属水酸化物、アルカリ金属炭酸塩、アンモニア等の塩基性水溶液、あるいは、硝酸、硫酸、塩酸等の水溶液を含浸、または浸漬した状態で加熱処理する手段が挙げられる。具体的な処理条件としては、上述したカルボキシル基量の範囲などを勘案し、処理薬剤の濃度、反応温度、反応時間等の諸条件を適宜設定すればよいが、一般的には、0.5〜20重量%、好ましくは1.0〜15重量%の処理薬剤を含浸、絞った後、湿熱雰囲気下で、温度100〜140℃、好ましくは110〜135℃で10〜60分処理する条件の範囲内で設定することが工業的、繊維物性的にも好ましい。なお、湿熱雰囲気とは、飽和水蒸気または過熱水蒸気で満たされた雰囲気のことを言う。該処理により、ゲル状アクリロニトリル系繊維、またはさらに熱処理を施された繊維中のニトリル基が加水分解され、カルボキシル基が生成される。 The gel-like acrylonitrile fiber or the fiber that has been further heat-treated is then subjected to a hydrolysis treatment. As a means for such hydrolysis treatment, there is a means for heat treatment in a state of impregnation or immersion in a basic aqueous solution such as alkali metal hydroxide, alkali metal carbonate or ammonia, or an aqueous solution such as nitric acid, sulfuric acid or hydrochloric acid. Can be mentioned. Specific treatment conditions may be set as appropriate in consideration of the above-described range of carboxyl group amount and the like, and various conditions such as the concentration of the treatment agent, reaction temperature, and reaction time may be set as appropriate. After impregnating and squeezing up to 20% by weight, preferably 1.0 to 15% by weight of a treatment agent, under conditions of treatment at a temperature of 100 to 140 ° C., preferably 110 to 135 ° C. for 10 to 60 minutes in a moist heat atmosphere. It is preferable in terms of industrial and fiber properties to set within the range. The wet heat atmosphere refers to an atmosphere filled with saturated steam or superheated steam. By this treatment, the nitrile group in the gel-like acrylonitrile fiber or the fiber subjected to further heat treatment is hydrolyzed to generate a carboxyl group.

上述のようにして加水分解処理を施された繊維中には、加水分解処理に用いられたアルカリ金属水酸化物、アルカリ金属炭酸塩、アンモニア等の種類に応じたアルカリ金属やアンモニウムなどのカチオンを対イオンとする塩型カルボキシル基が生成しているが、引き続き、必要に応じてカルボキシル基の対イオンを変換する処理を行ってもよい。硝酸塩、硫酸塩、塩酸塩などの金属塩水溶液によるイオン交換処理を行えば、所望の金属イオンを対イオンとする塩型カルボキシル基とすることができる。さらに、水溶液のpHや金属塩濃度・種類を調整することで、異種の対イオンを混在させたり、その割合を調整したりすることも可能である。 In the fiber subjected to the hydrolysis treatment as described above, a cation such as alkali metal or ammonium corresponding to the type of alkali metal hydroxide, alkali metal carbonate, ammonia or the like used in the hydrolysis treatment is contained. Although the salt-type carboxyl group used as a counter ion has been generated, a treatment for converting the counter ion of the carboxyl group may be performed as necessary. When ion exchange treatment is performed with an aqueous metal salt solution such as nitrate, sulfate, or hydrochloride, a salt-type carboxyl group having a desired metal ion as a counter ion can be obtained. Furthermore, by adjusting the pH of the aqueous solution and the concentration and type of the metal salt, it is possible to mix different types of counter ions and to adjust the ratio thereof.

以上のようにして加水分解処理を施された繊維やさらにイオン交換処理を施された繊維は続いて延伸処理が施され、この処理により収縮性が付与される。延伸倍率は通常1.1〜2.0倍に設定される。延伸倍率が1.1倍より低いと収縮性が低くなることがあり、逆に2.0倍より大きいと繊維物性が悪くなることがある。また、該延伸処理は加熱下で行われるが、その温度は、上述の加水分解処理の温度よりも低いことが好ましい。加熱手段としてはスチームなどの湿熱であってもよいし、乾熱ローラーなどの乾熱であってもよい。 The fiber subjected to the hydrolysis treatment as described above and the fiber further subjected to the ion exchange treatment are subsequently subjected to a stretching treatment, and the shrinkage is imparted by this treatment. The draw ratio is usually set to 1.1 to 2.0 times. If the draw ratio is lower than 1.1 times, the shrinkage may be lowered. Conversely, if the draw ratio is higher than 2.0 times, the fiber properties may be deteriorated. Moreover, although this extending | stretching process is performed under a heating, it is preferable that the temperature is lower than the temperature of the above-mentioned hydrolysis process. The heating means may be wet heat such as steam or dry heat such as a dry heat roller.

以上のようにして本発明の収縮性吸湿アクリロニトリル系繊維が得られるが、上述の各処理は通常のアクリル繊維の連続生産設備を流用することで連続的に実施することができる。また、必要に応じて、水洗や乾燥、特定の繊維長に切断するなどの処理を追加してもよい。以上、ロダン酸ソーダ等の無機塩を溶剤に用いた場合について説明してきたが、有機溶剤を用いる場合でも上記条件は同じである。ただし、溶剤の種類が異なっているので、凝固浴温度については、その溶剤に適した温度を選択して、ゲル状アクリロニトリル系繊維の水分率を上記範囲内に制御する。 As described above, the shrinkable hygroscopic acrylonitrile fiber of the present invention can be obtained. However, each of the above-mentioned treatments can be carried out continuously by diverting a normal acrylic fiber continuous production facility. Moreover, you may add processes, such as washing with water, drying, and cut | disconnecting to specific fiber length as needed. As described above, the case where an inorganic salt such as sodium rhodanate is used as a solvent has been described, but the above conditions are the same even when an organic solvent is used. However, since the types of solvents are different, the coagulation bath temperature is controlled by selecting a temperature suitable for the solvent and controlling the moisture content of the gel-like acrylonitrile fiber within the above range.

また、本発明の収縮性吸湿アクリロニトリル系繊維の製造に際しては、紡糸原液中に機能性材料を添加しても構わない。かかる機能性材料としては、酸化チタン、カーボンブラック、顔料、抗菌剤、消臭剤、吸湿剤、制電剤、樹脂ビーズなどを挙げることができる。 In the production of the shrinkable hygroscopic acrylonitrile fiber of the present invention, a functional material may be added to the spinning dope. Examples of such functional materials include titanium oxide, carbon black, pigments, antibacterial agents, deodorants, hygroscopic agents, antistatic agents, and resin beads.

ここで、上述の製造方法によって得られる本発明の収縮性吸湿アクリロニトリル系繊維においては未乾燥状態のゲル状アクリロニトリル系繊維を加水分解処理することから、繊維表面から順次加水分解するのではなく、薬剤が繊維内奥部にも浸透し、繊維全体にわたって均一に加水分解するものと考えられる。さらに微視的に見ると、一般にアクリロニトリル系繊維にはアクリロニトリル系重合体が配向している結晶部分と構造が乱れている非晶部分とが混在している。このため、結晶部分はその外側から加水分解されるが、非晶部分は全体的に加水分解されると考えられる。この結果、加水分解後においては、微視的には、結晶部分ではその一部が加水分解を受けないままニトリル基濃度の高い部分として残り、非晶部分はカルボキシル基濃度が高い部分になるものと考えられる。 Here, in the shrinkable hygroscopic acrylonitrile fiber of the present invention obtained by the above-described production method, the gel-like acrylonitrile fiber in an undried state is hydrolyzed, so that the chemical is not sequentially hydrolyzed from the fiber surface. Is considered to penetrate into the inner part of the fiber and hydrolyze uniformly throughout the fiber. Further, when viewed microscopically, generally, an acrylonitrile-based fiber is mixed with a crystalline portion where an acrylonitrile-based polymer is oriented and an amorphous portion where the structure is disordered. For this reason, the crystal part is hydrolyzed from the outside, but the amorphous part is considered to be hydrolyzed as a whole. As a result, after the hydrolysis, microscopically, a part of the crystalline part remains as a part with a high nitrile group concentration without being hydrolyzed, and an amorphous part becomes a part with a high carboxyl group concentration. it is conceivable that.

以上より、上述の製造方法によって得られる本発明の収縮性吸湿アクリロニトリル系繊維の構造は、カルボキシル基濃度が高い部分とニトリル基濃度の高い部分が繊維全体にわたって均一に存在している構造であると推測される。そして、このような構造であるがゆえに、共有結合による架橋構造を実質的に有さずとも、吸湿・吸水時の繊維物性の低下が抑制されると考えられる。 From the above, the structure of the shrinkable hygroscopic acrylonitrile fiber of the present invention obtained by the above-described production method has a structure in which a portion having a high carboxyl group concentration and a portion having a high nitrile group concentration are present uniformly throughout the fiber. Guessed. And since it is such a structure, even if it does not have a crosslinked structure by a covalent bond substantially, it is thought that the fall of the fiber physical property at the time of moisture absorption and water absorption is suppressed.

また、本発明の収縮性吸湿アクリロニトリル系繊維が、上記のように、未乾燥状態のゲル状アクリロニトリル系繊維をさらに熱処理することで緻密化させた繊維や、緻密化後さらに弛緩処理した繊維を原料繊維として採用することによって、芯鞘構造をとる場合でも、表層部でカルボキシル基が均一に存在しており、中心部は硬い弾力性のある構造であるため、共有結合による架橋構造を得ずとも、同様に繊維物性の低下が少ないと考えられる。 In addition, as described above, the shrinkable hygroscopic acrylonitrile fiber of the present invention is a fiber obtained by further densifying the gel-like acrylonitrile fiber in an undried state as described above, or a fiber further relaxed after densification. By adopting as a fiber, even when taking a core-sheath structure, the carboxyl group is uniformly present in the surface layer part, and the central part is a hard and elastic structure, so it is possible to obtain a crosslinked structure by covalent bond Similarly, it is considered that there is little decrease in fiber properties.

また、本発明の収縮性吸湿アクリロニトリル系繊維においては、上述のような構造を有するため、通常のアクリロニトリル系繊維の特性が残っており、さらに、共有結合による架橋構造なども有していないため、加水分解後においても延伸が可能であり、これによって収縮性も付与できるものと考えられる。 In the shrinkable hygroscopic acrylonitrile fiber of the present invention, since it has the structure as described above, the characteristics of ordinary acrylonitrile fiber remain, and further, since it does not have a cross-linked structure due to covalent bond, etc. It is considered that the film can be stretched even after hydrolysis, and that shrinkage can be imparted.

なお、上述のような未乾燥状態のゲル状アクリロニトリル系繊維や、該繊維をさらに熱処理することで緻密化させた繊維や、緻密化後さらに弛緩処理した繊維といった乾燥させていない繊維を用いずに、乾燥後のアクリロニトリル系繊維に加水分解処理を施した場合には、乾燥により緻密化の程度がより進んでしまっているために、薬剤が繊維内奥部にはほぼ浸透せず、繊維表層部においてより局所的な加水分解が行われることになる。このようにして得られた繊維は、繊維表層部の水への溶出等が起こり、実用に耐えないものとなる。 Without using undried fibers such as gel acrylonitrile fibers in the undried state as described above, fibers densified by further heat treatment of the fibers, and fibers further relaxed after densification When the acrylonitrile fiber after drying is hydrolyzed, the degree of densification has further progressed due to drying, so that the drug hardly penetrates into the inner part of the fiber, and the fiber surface layer part. In this case, more local hydrolysis is performed. The fibers obtained in this manner are eluted from the fiber surface layer portion into water, etc., and cannot be practically used.

上述してきた本発明の収縮性吸湿アクリロニトリル系繊維は単独で又は、他の素材と組み合わせることにより多くの用途で有用な繊維構造体として利用できる。該繊維構造物においては、本発明の収縮性吸湿アクリロニトリル系繊維の含有率を好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは20重量%以上とすることが、本発明の収縮性吸湿アクリロニトリル系繊維の効果を得る観点から望ましい。また、他の素材の種類としては特に制限はなく、公用されている天然繊維、有機繊維、半合成繊維、合成繊維が用いられ、さらには無機繊維、ガラス繊維等も用途によっては採用し得る。具体的な例としては、綿、麻、絹、羊毛、ナイロン、レーヨン、ポリエステル、アクリル繊維などを挙げることができる。 The shrinkable hygroscopic acrylonitrile fiber of the present invention described above can be used as a fiber structure useful in many applications, either alone or in combination with other materials. In the fiber structure, the content of the shrinkable hygroscopic acrylonitrile fiber of the present invention is preferably 5% by weight or more, more preferably 10% by weight or more, and further preferably 20% by weight or more. It is desirable from the viewpoint of obtaining the effect of the shrinkable hygroscopic acrylonitrile fiber. Moreover, there is no restriction | limiting in particular as a kind of other raw material, The natural fiber, organic fiber, semi-synthetic fiber, synthetic fiber currently used are used, Furthermore, inorganic fiber, glass fiber, etc. can be employ | adopted depending on a use. Specific examples include cotton, hemp, silk, wool, nylon, rayon, polyester, acrylic fiber, and the like.

該繊維構造体の外観形態としては、糸、不織布、紙状物、シート状物、積層体、綿状体(球状や塊状のものを含む)等がある。該構造物内における本発明の繊維の含有形態としては、他素材との混合により、実質的に均一に分布させたもの、複数の層を有する構造の場合には、いずれかの層(単数でも複数でも良い)に集中して存在せしめたものや、夫々の層に特定比率で分布せしめたもの等がある。 Appearance forms of the fiber structure include yarns, non-woven fabrics, paper-like materials, sheet-like materials, laminates, and cotton-like materials (including spherical and massive materials). As the form of inclusion of the fiber of the present invention in the structure, in the case of a structure having a plurality of layers distributed substantially uniformly by mixing with other materials, any layer (single or even A plurality of them may be present in a concentrated manner, and others may be distributed at a specific ratio in each layer.

上記に例示した繊維構造体の外観形態や含有形態、該繊維構造体を構成する他の素材、および該繊維構造体と組み合わせる他の部材をいかなるものとするかは、最終製品の種類(例えば、カーペット、タオル、ニット、毛糸、パイル、毛布、シーツ、クッション材など)に応じて要求される機能、特性、形状や、かかる機能を発現することへの本発明の収縮性吸湿アクリロニトリル系繊維の寄与の仕方等を勘案して適宜決定される。 The appearance form and content of the fiber structure exemplified above, other materials constituting the fiber structure, and other members combined with the fiber structure are determined depending on the type of the final product (for example, Contribution of the shrinkable moisture-absorbing acrylonitrile fiber of the present invention to the functions, characteristics, and shapes required for carpets, towels, knits, yarns, piles, blankets, sheets, cushion materials, etc. It is decided as appropriate in consideration of the manner of

以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。実施例中、部及び百分率は特に断りのない限り重量基準で示す。また、各特性の測定は以下の方法により実施した。 Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are shown on a weight basis unless otherwise specified. Each characteristic was measured by the following method.

<チオシアン酸ナトリウム水溶液への溶解度>
乾燥した試料約1gを精秤し(W1[g])、100mlの58%チオシアン酸ナトリウム水溶液を加え、80℃で1時間浸漬させた後にろ過、水洗し、乾燥する。乾燥後の試料を精秤し(W2[g])次式によって溶解度を算出する。
溶解度[%]=(1−W2/W1)×100
かかる溶解度が95%以上である場合、共有結合による架橋構造を実質的に有さないと判断する。
<Solubility in aqueous sodium thiocyanate>
About 1 g of the dried sample is precisely weighed (W1 [g]), 100 ml of 58% aqueous sodium thiocyanate solution is added, soaked at 80 ° C. for 1 hour, filtered, washed with water, and dried. The dried sample is precisely weighed (W2 [g]), and the solubility is calculated by the following equation.
Solubility [%] = (1-W2 / W1) × 100
When the solubility is 95% or more, it is determined that the crosslinked structure due to the covalent bond is substantially absent.

<カルボキシル基量の測定>
試料を約1g秤量し、1mol/l塩酸50mlに30分浸漬後、水洗し浴比1:500で純水に15分間浸漬する。浴pHが4以上となるまで水洗した後、熱風乾燥機にて105℃で5時間乾燥させる。乾燥した試料を約0.2g精秤し(W3[g])、これに100mlの水と0.1mol/l水酸化ナトリウム15ml、塩化ナトリウム0.4gを加えて攪拌する。次いで金網を用いて試料を漉しとり、水洗する。得られたろ液(水洗液も含む)にフェノールフタレイン液を2〜3滴を加え、0.1mol/l塩酸で常法に従って滴定を行い消費された塩酸量(V1[ml])を求め、次式により全カルボキシル基量を算出する。
全カルボキシル基量[mmol/g]=(0.1×15−0.1×V1)/W3
<Measurement of carboxyl group content>
About 1 g of a sample is weighed, immersed in 50 ml of 1 mol / l hydrochloric acid for 30 minutes, washed with water, and immersed in pure water at a bath ratio of 1: 500 for 15 minutes. After washing with water until the bath pH becomes 4 or more, it is dried at 105 ° C. for 5 hours in a hot air dryer. About 0.2 g of the dried sample is precisely weighed (W3 [g]), and 100 ml of water, 15 mol of 0.1 mol / l sodium hydroxide, and 0.4 g of sodium chloride are added and stirred. Next, the sample is scraped using a wire mesh and washed with water. Add 2 to 3 drops of phenolphthalein solution to the obtained filtrate (including washing water), titrate with 0.1 mol / l hydrochloric acid according to a conventional method to determine the amount of hydrochloric acid consumed (V1 [ml]), The total amount of carboxyl groups is calculated by the following formula.
Total carboxyl group amount [mmol / g] = (0.1 × 15−0.1 × V1) / W3

<飽和吸湿率の測定>
試料を熱風乾燥機で105℃、3時間乾燥して重量を測定する(W4[g])。次に該試料を20℃×65%RHの条件に調節した恒温恒湿器に24時間入れておく。このようにして吸湿させた試料の重量を測定する。(W5[g])。以上の測定結果から、次式によって算出する。
飽和吸湿率[%]=(W5−W4)/W4×100
<Measurement of saturated moisture absorption>
The sample is dried with a hot air dryer at 105 ° C. for 3 hours and the weight is measured (W4 [g]). Next, the sample is placed in a thermo-hygrostat adjusted to 20 ° C. × 65% RH for 24 hours. The weight of the sample thus absorbed is measured. (W5 [g]). From the above measurement results, calculation is performed according to the following equation.
Saturated moisture absorption [%] = (W5−W4) / W4 × 100

<水膨潤度>
試料を純水中に浸漬した後、卓上遠心脱水機で1200rpmにて5分間脱水する。脱水後の試料の重量を測定(W6[g])後、かかる試料を105℃で5時間乾燥して重量を測定(W7[g])し、次式により水膨潤度を算出する。
水膨潤度[倍]=W6/W7−1
<Water swelling degree>
After the sample is immersed in pure water, it is dehydrated at 1200 rpm for 5 minutes with a tabletop centrifugal dehydrator. After measuring the weight of the sample after dehydration (W6 [g]), the sample is dried at 105 ° C. for 5 hours to measure the weight (W7 [g]), and the water swelling degree is calculated by the following equation.
Water swelling degree [times] = W6 / W7-1

<中和度>
熱風乾燥機にて105℃で3時間乾燥した試料を約0.2g精秤し(W8[g])、これに100mlの水と0.1mol/l水酸化ナトリウム15ml、塩化ナトリウム0.4gを加えて攪拌する。次いで金網を用いて試料を漉しとり、水洗する。得られたろ液(水洗液も含む)にフェノールフタレイン液を2〜3滴を加え、0.1mol/l塩酸で常法に従って滴定を行い消費された塩酸量(V2[ml])を求める。次式によって、試料に含まれるH型カルボキシル基量を算出し、その結果と上述の全カルボキシル基量から中和度を求める。
H型カルボキシル基量[mmol/g]=(0.1×15−0.1×V2)/W8
中和度[%]=[(全カルボキシル基量−H型カルボキシル基量)/全カルボキシル基量]×100
<Degree of neutralization>
About 0.2 g of a sample dried for 3 hours at 105 ° C. with a hot air dryer (W8 [g]) was weighed, and 100 ml of water, 15 ml of 0.1 mol / l sodium hydroxide, and 0.4 g of sodium chloride were added thereto. In addition, stir. Next, the sample is scraped using a wire mesh and washed with water. Add 2-3 drops of phenolphthalein solution to the obtained filtrate (including washing solution) and titrate with 0.1 mol / l hydrochloric acid according to a conventional method to determine the amount of consumed hydrochloric acid (V2 [ml]). The amount of H-type carboxyl groups contained in the sample is calculated by the following formula, and the degree of neutralization is obtained from the result and the total amount of carboxyl groups described above.
H-type carboxyl group amount [mmol / g] = (0.1 × 15−0.1 × V2) / W8
Degree of neutralization [%] = [(total carboxyl group amount−H type carboxyl group amount) / total carboxyl group amount] × 100

<沸水収縮率>
試料繊維を20℃×65%RHの雰囲気下で24時間静置することで調湿し、繊維長(L1)を測定する。次いで、該試料繊維を沸騰した水中で30分間収縮させ、収縮後の繊維長(L2)を測定し、次式に従って沸水収縮率を計算する。
沸水収縮率(%)=(L1−L2)/L1×100
<Boiling water shrinkage>
The sample fiber is conditioned for 24 hours in an atmosphere of 20 ° C. × 65% RH, and the fiber length (L1) is measured. Next, the sample fiber is contracted in boiling water for 30 minutes, the fiber length (L2) after contraction is measured, and the boiling water contraction rate is calculated according to the following equation.
Boiling water shrinkage (%) = (L1-L2) / L1 × 100

<繊維構造内のカルボキシル基の分布状態>
繊維試料を、繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することにより、カルボキシル基の対イオンをマグネシウムとする。マグネシウム塩型とした繊維試料を、エネルギー分散型X線分光器(EDS)により繊維断面の外縁から中心にかけて概ね等間隔で10点の測定点を選び、各測定点におけるマグネシウム元素の含有割合を測定する。得られた各測定点の数値から次式により変動係数CV[%]を算出する。
変動係数CV[%]=(標準偏差/平均値)×100
<Distribution state of carboxyl group in fiber structure>
A fiber sample is subjected to an ion exchange treatment by immersing it in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved, and washed with water and dried to obtain carboxyl groups. The counter ion of is magnesium. A magnesium salt type fiber sample is selected from 10 points at roughly equal intervals from the outer edge to the center of the fiber cross section using an energy dispersive X-ray spectrometer (EDS), and the magnesium element content at each measurement point is measured. To do. A coefficient of variation CV [%] is calculated from the obtained numerical value of each measurement point according to the following equation.
Coefficient of variation CV [%] = (standard deviation / average value) × 100

<芯鞘構造の繊維の横断面における表層部の占める面積の割合>
試料繊維を、繊維重量に対して2.5%のカチオン染料(Nichilon Black G 200)および2%の酢酸を含有する染色浴に、浴比1:80となるように浸漬し、30分間煮沸処理した後に、水洗、脱水、乾燥する。得られた染色済みの繊維を、繊維軸に垂直に薄くスライスし、繊維断面を光学顕微鏡で観察する。このとき、アクリロニトリル系重合体からなる中心部は黒く染色され、カルボキシル基が多く有する表層部は染料が十分に固定されず緑色になる。繊維断面における、繊維の直径(D1)、および、緑色から黒色へ変色し始める部分を境界として黒く染色されている中心部の直径(D2)を測定し、以下の式により表層部面積割合を算出する。なお、10サンプルの表層部面積割合の平均値をもって、試料繊維の表層部面積割合とする。
表層部面積割合(%)=[{((D1)/2)π−((D2)/2)π}/((D1)/2)π]×100
<Ratio of the area which the surface layer part accounts in the cross section of the fiber of a core sheath structure>
The sample fiber was immersed in a dyeing bath containing 2.5% cationic dye (Nicilon Black G 200) and 2% acetic acid with respect to the fiber weight so as to have a bath ratio of 1:80 and boiled for 30 minutes. After washing, dewatering and drying. The obtained dyed fiber is sliced thinly perpendicular to the fiber axis, and the fiber cross section is observed with an optical microscope. At this time, the central portion made of the acrylonitrile-based polymer is dyed black, and the surface layer portion having many carboxyl groups becomes green because the dye is not sufficiently fixed. In the fiber cross section, the fiber diameter (D1) and the diameter (D2) of the center dyed black with the part starting to change from green to black as the boundary are measured, and the surface layer area ratio is calculated by the following formula To do. In addition, let the average value of the surface layer part area ratio of 10 samples be the surface layer part area ratio of a sample fiber.
Surface portion area ratio (%) = [{(( D1) / 2) 2 π - ((D2) / 2) 2 π} / ((D1) / 2) 2 π] × 100

<延伸後の未乾燥繊維の水分率の測定>
延伸後の未乾燥繊維を純水中に浸漬した後、遠心脱水機(国産遠心機(株)社製TYPE H−770A)で遠心加速度1100G(Gは重力加速度を示す)にて2分間脱水する。脱水後重量を測定(W9[g]とする)後、該未乾燥繊維を120℃で15分間乾燥して重量を測定(W10[g]とする)し、次式により計算する。
延伸後の未乾燥繊維の水分率(%)=(W9−W10)/W9×100
<Measurement of moisture content of undried fiber after drawing>
The undried fiber after stretching is immersed in pure water, and then dehydrated for 2 minutes with a centrifugal dehydrator (TYPE H-770A manufactured by Kokusan Centrifuge Co., Ltd.) at a centrifugal acceleration of 1100G (G indicates gravitational acceleration). . After dehydration, the weight is measured (W9 [g]), the undried fiber is dried at 120 ° C. for 15 minutes, and the weight is measured (W10 [g]).
Moisture content of undried fiber after stretching (%) = (W9−W10) / W9 × 100

<実施例1>
アクリロニトリル90%及びアクリル酸メチル10%からなるアクリロニトリル系重合体10部を48%のチオシアン酸ナトリウム水溶液90部に溶解した紡糸原液を、−2.5℃の凝固浴に紡出し、凝固、水洗、12倍延伸して水分率が35%のゲル状アクリロニトリル系繊維を得た。該繊維を2.0%の水酸化ナトリウム水溶液中に浸漬し、繊維重量に対する吸液量が100%になるように絞った後に、湿熱雰囲気中で、123℃×25分間加水分解処理を行い、水洗、乾燥した後、105℃のスチームで湿熱状態において1.5倍延伸をかけて本発明の収縮性吸湿アクリロニトリル系繊維を得た。得られた繊維の評価結果を表1に示す。
<Example 1>
A spinning stock solution prepared by dissolving 10 parts of an acrylonitrile-based polymer composed of 90% acrylonitrile and 10% methyl acrylate in 90 parts of a 48% aqueous sodium thiocyanate solution was spun into a -2.5 ° C. coagulation bath, coagulated, washed with water, The gel-like acrylonitrile fiber having a water content of 35% was obtained by stretching 12 times. After immersing the fiber in a 2.0% aqueous sodium hydroxide solution and squeezing so that the liquid absorption with respect to the fiber weight is 100%, a hydrolysis treatment is performed in a humid heat atmosphere at 123 ° C. for 25 minutes, After being washed with water and dried, the shrinkable hygroscopic acrylonitrile fiber of the present invention was obtained by stretching 1.5 times with steam at 105 ° C. in a wet heat state. The evaluation results of the obtained fiber are shown in Table 1.

<実施例2〜9>
表1に記載の水酸化ナトリウム水溶液の濃度と延伸倍率で実験を行った以外は実施例1と同様にして、本発明の収縮性吸湿アクリロニトリル系繊維を得た。得られた繊維の評価結果を表1に示す。
<Examples 2 to 9>
A shrinkable hygroscopic acrylonitrile fiber of the present invention was obtained in the same manner as in Example 1 except that the experiment was conducted with the concentration and draw ratio of the sodium hydroxide aqueous solution shown in Table 1. The evaluation results of the obtained fiber are shown in Table 1.

<実施例10>
加水分解処理後、室温で30分6%の硝酸水溶液での処理を加えた以外は実施例7と同様にして、本発明の収縮性吸湿アクリロニトリル系繊維を得た。得られた繊維の評価結果を表1に示す。
<Example 10>
After the hydrolysis treatment, a shrinkable hygroscopic acrylonitrile fiber of the present invention was obtained in the same manner as in Example 7 except that a treatment with a 6% nitric acid aqueous solution was added at room temperature for 30 minutes. The evaluation results of the obtained fiber are shown in Table 1.

<実施例11>
実施例4において、ゲル状アクリロニトリル系繊維の代わりに、該繊維に対して、110℃×2.5分間の乾熱処理と60℃×2.5分間の湿熱処理を交互に2回行って得た緻密化繊維を使用したこと以外は同様にして、本発明の収縮性吸湿アクリロニトリル系繊維を得た。得られた繊維の評価結果を表1に示す。
<Example 11>
In Example 4, instead of the gel-like acrylonitrile fiber, the fiber was obtained by alternately performing dry heat treatment at 110 ° C. for 2.5 minutes and wet heat treatment at 60 ° C. for 2.5 minutes twice. The shrinkable hygroscopic acrylonitrile fiber of the present invention was obtained in the same manner except that the densified fiber was used. The evaluation results of the obtained fiber are shown in Table 1.

<実施例12>
実施例11において、緻密化繊維の代わりに、該繊維に対して、さらに120℃×10分間のオートクレーブ処理行うことで弛緩させた弛緩繊維を使用したこと以外は同様にして、本発明の収縮性吸湿アクリロニトリル系繊維を得た。得られた繊維の評価結果を表1に示す。
<Example 12>
In Example 11, in place of the densified fiber, the contraction property of the present invention was similarly obtained except that the fiber was further relaxed by performing an autoclave treatment at 120 ° C. for 10 minutes. A hygroscopic acrylonitrile fiber was obtained. The evaluation results of the obtained fiber are shown in Table 1.

<比較例1>
加水分解後の延伸処理を省略したこと以外は実施例3と同様にして、収縮性が無い吸湿アクリロニトリル系繊維を得た。得られた繊維の評価結果を表1に示す。
<Comparative Example 1>
A hygroscopic acrylonitrile fiber having no shrinkability was obtained in the same manner as in Example 3 except that the stretching treatment after hydrolysis was omitted. The evaluation results of the obtained fiber are shown in Table 1.

Figure 2019143284
Figure 2019143284

表1に示すように、実施例1〜12の収縮性吸湿アクリロニトリル系繊維は、0.2〜4.5mmol/gのカルボキシル基を含有し、20℃×65%RHでの飽和吸湿率が3重量%以上であり、沸水収縮率が5%〜50%であり、かつ水膨潤度が10倍以下であるという特徴を有するものである。 As shown in Table 1, the shrinkable hygroscopic acrylonitrile fibers of Examples 1 to 12 contain 0.2 to 4.5 mmol / g of carboxyl groups, and the saturated hygroscopic rate at 20 ° C. × 65% RH is 3 It has the characteristics that it is not less than wt%, the boiling water shrinkage is 5% to 50%, and the water swelling degree is 10 times or less.

Claims (8)

共有結合による架橋構造を実質的に有さない重合体で構成されている吸湿性アクリロニトリル系繊維であって、繊維中に0.2〜4.5mmol/gのカルボキシル基を含有し、20℃×65%RHでの飽和吸湿率が3重量%以上であり、沸水収縮率が5〜50%であり、かつ水膨潤度が10倍以下であることを特徴とする収縮性吸湿アクリロニトリル系繊維。 A hygroscopic acrylonitrile-based fiber composed of a polymer having substantially no covalently crosslinked structure, containing 0.2 to 4.5 mmol / g carboxyl group in the fiber, A shrinkable hygroscopic acrylonitrile-based fiber having a saturated moisture absorption rate of 3% by weight or more at 65% RH, a boiling water shrinkage of 5 to 50%, and a water swelling degree of 10 times or less. カルボキシル基が繊維全体にわたって均一に存在していることを特徴とする請求項1に記載の収縮性吸湿アクリロニトリル系繊維。 2. The shrinkable hygroscopic acrylonitrile fiber according to claim 1, wherein carboxyl groups are uniformly present throughout the fiber. カルボキシル基を含有する重合体からなる表層部とアクリロニトリル系重合体からなる中心部とからなる芯鞘構造を有していることを特徴とする請求項1に記載の収縮性吸湿アクリロニトリル系繊維。 The shrinkable hygroscopic acrylonitrile fiber according to claim 1, which has a core-sheath structure composed of a surface layer portion made of a polymer containing a carboxyl group and a central portion made of an acrylonitrile polymer. カルボキシル基の中和度が25%以上であることを特徴とする請求項1〜3のいずれかに記載の収縮性吸湿アクリロニトリル系繊維。 The shrinkable hygroscopic acrylonitrile fiber according to any one of claims 1 to 3, wherein the neutralization degree of the carboxyl group is 25% or more. アクリロニトリル系重合体を含有する紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を加水分解した後に延伸することを特徴とする請求項2に記載の収縮性吸湿アクリロニトリル系繊維の製造方法。 3. The spinning solution containing an acrylonitrile polymer is spun from a nozzle, and then dried after hydrolyzing undried fibers obtained through the respective steps of coagulation, washing with water and stretching. A method for producing shrinkable hygroscopic acrylonitrile fiber. アクリロニトリル系重合体を含有する紡糸原液をノズルから紡出後、凝固、水洗、延伸の各工程を経て得られた未乾燥繊維を熱処理することで緻密化させた繊維または緻密化後さらに弛緩処理した繊維を加水分解することを含むことを特徴とする請求項3に記載の収縮性吸湿アクリロニトリル系繊維の製造方法。 Spinning stock solution containing acrylonitrile-based polymer is spun from the nozzle, then the dried fiber obtained through the coagulation, water washing and stretching steps is heat-treated to be densified fibers or densified and further relaxed. The method for producing shrinkable hygroscopic acrylonitrile fiber according to claim 3, comprising hydrolyzing the fiber. 未乾燥繊維の水分率が20〜250重量%であることを特徴とする請求項5または6に記載の収縮性吸湿アクリロニトリル系繊維の製造方法。 The method for producing shrinkable hygroscopic acrylonitrile fiber according to claim 5 or 6, wherein the moisture content of the undried fiber is 20 to 250% by weight. 請求項1〜4のいずれかに記載の収縮性吸湿アクリロニトリル系繊維を含有する繊維構造体。 The fiber structure containing the shrinkable hygroscopic acrylonitrile-type fiber in any one of Claims 1-4.
JP2019022604A 2018-02-15 2019-02-12 Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber Active JP7177986B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024624 2018-02-15
JP2018024624 2018-02-15

Publications (3)

Publication Number Publication Date
JP2019143284A true JP2019143284A (en) 2019-08-29
JP2019143284A5 JP2019143284A5 (en) 2021-08-12
JP7177986B2 JP7177986B2 (en) 2022-11-25

Family

ID=67773211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022604A Active JP7177986B2 (en) 2018-02-15 2019-02-12 Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber

Country Status (1)

Country Link
JP (1) JP7177986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024873A1 (en) 2019-08-02 2021-02-11 凸版印刷株式会社 Gas barrier film and method for manufacturing gas barrier film

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158321A (en) * 1979-05-30 1980-12-09 Mitsubishi Rayon Co Ltd Acrylic synthetic fiber and its production
JPS5777313A (en) * 1980-09-13 1982-05-14 Hoechst Ag Filament and fiber comprising acrylic polymer having carboxyl group and production thereof
JPS57167453A (en) * 1981-04-01 1982-10-15 Teijin Ltd Production of fiber having both tapered ends
JPH05179508A (en) * 1991-11-22 1993-07-20 Mitsubishi Rayon Co Ltd Acrylonitrile-based fiber and its production
JPH05295614A (en) * 1992-04-10 1993-11-09 Mitsubishi Rayon Co Ltd Production of acrylonitrile-based fiber
JPH08325940A (en) * 1995-06-05 1996-12-10 Japan Exlan Co Ltd Production of crosslinked acrylic fiber
JPH10273821A (en) * 1997-03-27 1998-10-13 Japan Exlan Co Ltd Water absorbing acrylic fiber
JPH11293516A (en) * 1998-04-13 1999-10-26 Mitsubishi Rayon Co Ltd Superfine acrylic fiber having water absorption properties, its sheet-like product, and split acrylic fiber having water absorption properties
JP2000017101A (en) * 1998-07-01 2000-01-18 Japan Exlan Co Ltd Porous, moisture absorbing/releasing polymer and its production
JP2005154958A (en) * 2003-11-27 2005-06-16 Japan Exlan Co Ltd Fibrillated acrylic fiber, method for producing the same and structure containing the fiber
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same
JP2015224408A (en) * 2014-05-29 2015-12-14 日本エクスラン工業株式会社 Crosslinked acrylate fiber good in dispersibility
JP2017173308A (en) * 2016-03-22 2017-09-28 三洋化成工業株式会社 Fiber for adsorbing radioactive nuclide and sheet for adsorbing radioactive nuclide
WO2018047344A1 (en) * 2016-09-12 2018-03-15 日本エクスラン工業株式会社 Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber
WO2019230640A1 (en) * 2018-05-31 2019-12-05 日本エクスラン工業株式会社 Carboxyl group-containing beaten acrylonitrile-based fibers, production method for said fibers, and structure containing said fibers

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158321A (en) * 1979-05-30 1980-12-09 Mitsubishi Rayon Co Ltd Acrylic synthetic fiber and its production
JPS5777313A (en) * 1980-09-13 1982-05-14 Hoechst Ag Filament and fiber comprising acrylic polymer having carboxyl group and production thereof
JPS57167453A (en) * 1981-04-01 1982-10-15 Teijin Ltd Production of fiber having both tapered ends
JPH05179508A (en) * 1991-11-22 1993-07-20 Mitsubishi Rayon Co Ltd Acrylonitrile-based fiber and its production
JPH05295614A (en) * 1992-04-10 1993-11-09 Mitsubishi Rayon Co Ltd Production of acrylonitrile-based fiber
JPH08325940A (en) * 1995-06-05 1996-12-10 Japan Exlan Co Ltd Production of crosslinked acrylic fiber
JPH10273821A (en) * 1997-03-27 1998-10-13 Japan Exlan Co Ltd Water absorbing acrylic fiber
JPH11293516A (en) * 1998-04-13 1999-10-26 Mitsubishi Rayon Co Ltd Superfine acrylic fiber having water absorption properties, its sheet-like product, and split acrylic fiber having water absorption properties
JP2000017101A (en) * 1998-07-01 2000-01-18 Japan Exlan Co Ltd Porous, moisture absorbing/releasing polymer and its production
JP2005154958A (en) * 2003-11-27 2005-06-16 Japan Exlan Co Ltd Fibrillated acrylic fiber, method for producing the same and structure containing the fiber
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same
JP2015224408A (en) * 2014-05-29 2015-12-14 日本エクスラン工業株式会社 Crosslinked acrylate fiber good in dispersibility
JP2017173308A (en) * 2016-03-22 2017-09-28 三洋化成工業株式会社 Fiber for adsorbing radioactive nuclide and sheet for adsorbing radioactive nuclide
WO2018047344A1 (en) * 2016-09-12 2018-03-15 日本エクスラン工業株式会社 Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber
WO2019230640A1 (en) * 2018-05-31 2019-12-05 日本エクスラン工業株式会社 Carboxyl group-containing beaten acrylonitrile-based fibers, production method for said fibers, and structure containing said fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024873A1 (en) 2019-08-02 2021-02-11 凸版印刷株式会社 Gas barrier film and method for manufacturing gas barrier film

Also Published As

Publication number Publication date
JP7177986B2 (en) 2022-11-25

Similar Documents

Publication Publication Date Title
TWI727079B (en) Modified acrylonitrile-based fiber, method for manufacturing fiber of the same, and fiber structure containing fiber thereof
JP4962619B2 (en) Antistatic acrylic fiber and method for producing the same
TWI237669B (en) Acrylic composite fiber, the manufacturing method therefor, and the fiber complex by using the same
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
TWI739033B (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP5696944B2 (en) Antistatic acrylic fiber excellent in color development and production method thereof
JP7177988B2 (en) Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3369508B2 (en) Hygroscopic fiber
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JP4675515B2 (en) Core spun yarn
JPH02160915A (en) Antimicrobial acrylic synthetic fiber and production thereof
JP7187911B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7219418B2 (en) Crimped moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
CN109580705B (en) Moisture-releasing and cooling fiber and fiber structure containing the same
JP3716984B2 (en) Method for producing hygroscopic fiber
JPH07150471A (en) Porous acrylonitrile fiber
JP2022151751A (en) Acrylic deodorant, antibacterial and hygroscopic heating fiber and method for producing the same
JPH07150470A (en) Porous acrylonitrile fiber
JP2002294564A (en) Ultra fine acrylic fiber and fabric
JPH03234808A (en) Acrylic fiber with good water retentivity and its production
JPH04272220A (en) Acrylic hollow sheath-core fiber
JPH07229065A (en) Acrylic synthetic fiber structure processed by silk fibroin
JPH02229209A (en) Antimicrobial acrylic synthetic fiber and production thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7177986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150