JPH02167837A - Production of parent material of optical fiber - Google Patents

Production of parent material of optical fiber

Info

Publication number
JPH02167837A
JPH02167837A JP32182588A JP32182588A JPH02167837A JP H02167837 A JPH02167837 A JP H02167837A JP 32182588 A JP32182588 A JP 32182588A JP 32182588 A JP32182588 A JP 32182588A JP H02167837 A JPH02167837 A JP H02167837A
Authority
JP
Japan
Prior art keywords
oxygen
optical fiber
parent material
glass
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32182588A
Other languages
Japanese (ja)
Other versions
JPH0729806B2 (en
Inventor
Yoshiharu Konya
義治 紺谷
Kazuaki Yoshizawa
吉沢 和秋
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP32182588A priority Critical patent/JPH0729806B2/en
Publication of JPH02167837A publication Critical patent/JPH02167837A/en
Publication of JPH0729806B2 publication Critical patent/JPH0729806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a parent material of optical fiber having slight defect related to oxygen by hydrolyzing a gaseous silicon compound containing chlorine in flame comprising fixed ratio of oxygen to hydrogen, stacking resultant fine powder of glass on a carrier and making resultant porous glass parent material to a transparent glass. CONSTITUTION:A silicon compound such as SiCl4 is hydrolyzed in oxyhydrogen flame containing Cl2 and <=1 oxygen/hydrogen molar ratio, then generated glass fine particles are stacked on a carrier. Thus, resultant porous glass parent material is subjected to heat and dehydration treatment in a tube furnace and melted to a transparent glass to afford the aimed parent material of optical fiber. Said parent material of the optical fiber has not defect related to oxygen, thus an optical fiber suitable for long-distance transmission having excellent transmission loss and hydrogen characteristics is obtained from said parent material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバー母材の製造方法、特には長距離伝
送に適した光ファイバーを得るのに好適とされる酸素関
与欠陥の少ない光ファイバー母材の製造方法に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing an optical fiber preform, and in particular to a method for manufacturing an optical fiber preform with few oxygen-related defects, which is suitable for obtaining an optical fiber suitable for long-distance transmission. This relates to a manufacturing method.

(従来の技術と解決されるべき課題) 石英系の光ファイバー母材の製造についてはガス状のけ
い素化合物を酸水素火炎中で加水分解してガラス微粉末
を発生させ、これを耐火性の担体上に堆積させて多孔質
ガラス母材をつくり、これを加熱溶融し透明ガラス化し
て光ファイバー母材とする方法が公知とされている。
(Conventional technology and issues to be solved) Regarding the production of quartz-based optical fiber base materials, gaseous silicon compounds are hydrolyzed in an oxyhydrogen flame to generate fine glass powder, which is then used as a fire-resistant carrier. A method is known in which a porous glass base material is created by depositing the same on top of the glass, and this is heated and melted to form transparent glass to obtain an optical fiber base material.

しかし、この方法では酸水素火炎中の酸素ガスに起因し
て、得られる光ファイバー母材に酸素関与欠陥が生成す
るために、これから作られる光ファイバーに光の伝送損
失が生じるという不利があり、これは特に長距離伝送と
して工、55μ層分散シフトファイバーにおいては1.
5μs帯の伝送損失に悪影響を与え、また水素特性も劣
化させることが知られている。
However, this method has the disadvantage that oxygen-related defects are generated in the resulting optical fiber base material due to oxygen gas in the oxyhydrogen flame, resulting in light transmission loss in the optical fiber that is manufactured from this. Especially for long-distance transmission, 1.
It is known that it adversely affects transmission loss in the 5 μs band and also deteriorates hydrogen characteristics.

このため、けい素化合物の火炎加水分解により形成され
る多孔質ガラス母材の形成時にこの酸素関与欠陥の発生
を防止することが必要とされるのであるが、この方法に
ついては未だに見出されていない。
Therefore, it is necessary to prevent the occurrence of oxygen-related defects during the formation of a porous glass matrix formed by flame hydrolysis of silicon compounds, but a method for this has not yet been found. do not have.

(課題を解決する手段) 本発明はこのような不利を解決した光ファイバー母材の
製造方法に関するものであり、これはガス状のけい素化
合物を酸水素火炎中で加水分解させて得たガラス微粉末
を担体上に堆積させて多孔質ガラス母体を作り、これを
透明ガラス化して光ファイバー母材を製造する方法にお
いて、ガス状のけい素化合物を塩素を含み、モル比で酸
素/水素比を1以下とした酸水素火炎中で加水分解させ
てガラス微粒子を生成させることを特徴とするものであ
る。
(Means for Solving the Problems) The present invention relates to a method for producing an optical fiber base material that solves the above-mentioned disadvantages. In a method for producing an optical fiber matrix by depositing powder on a carrier to make a porous glass matrix and converting it into transparent glass, a gaseous silicon compound containing chlorine and having an oxygen/hydrogen molar ratio of 1 are used. It is characterized by producing glass fine particles by hydrolysis in an oxyhydrogen flame as described below.

すなわち1本発明者らは酸素関与欠陥の生成を防止した
石英系光ファイバー母材の製造方法について種々検討し
た結果、けい素化合物の酸水素火炎中での加水分解によ
り生成したガラス微粒子を担体上に堆積させて得た多孔
質ガラス母材はすでに酸素関与欠陥をもつものとされる
が、これは酸水素火炎中に存在する過剰酸素によるもの
であり、したがってこの酸素関与欠陥の発生を防止する
ためには酸水素火炎に供給される酸素量を減少させれば
よく、特にはこへに供給する酸素量を燃焼運論量として
の酸素/水素モル比1よりも小さくシ。
Namely, as a result of various studies on manufacturing methods for quartz-based optical fiber base materials that prevent the formation of oxygen-related defects, the present inventors found that glass particles produced by hydrolysis of a silicon compound in an oxyhydrogen flame were placed on a carrier. The porous glass base material obtained by the deposition is said to already have oxygen-related defects, but this is due to the excess oxygen present in the oxyhydrogen flame. Therefore, in order to prevent the occurrence of these oxygen-related defects, For this purpose, the amount of oxygen supplied to the oxyhydrogen flame may be reduced, and in particular, the amount of oxygen supplied to the flame should be made smaller than the oxygen/hydrogen molar ratio of 1 as the combustion stoichiometric quantity.

好ましくはこの比を理論値の1/2に近づければよいが
、このように酸素を減少させると火炎が不安定となり、
爆発の危険性もあるけれども、こ\に助燃ガスとして塩
素ガスを供給すれば火炎が安定し、爆発の危険性もなく
なることを見出し、したがって酸素関与欠陥のない多孔
質ガラス母材を安定して得ることができることを確認し
て本発明を完成させた。
Preferably, this ratio should be close to 1/2 of the theoretical value, but reducing oxygen in this way will cause the flame to become unstable.
Although there is a risk of explosion, it was discovered that if chlorine gas is supplied as an auxiliary combustion gas, the flame will be stabilized and the risk of explosion will be eliminated. The present invention was completed after confirming that it could be obtained.

以下にこれを詳述する。This will be explained in detail below.

(作用) 本発明の方法による光ファイバー母材の製造は酸水素火
炎を形成するガス組成を除いては公知の方法で行なえば
よい。
(Function) The production of the optical fiber preform by the method of the present invention may be carried out by any known method except for the gas composition for forming the oxyhydrogen flame.

したがって、多孔質ガス母材の製造はけい素化合物を酸
水素火炎中で加水分解させ、こトに生成したガラス微粉
末を担体上に堆積させればよい。
Therefore, the porous gas base material can be produced by hydrolyzing a silicon compound in an oxyhydrogen flame and depositing the resulting glass fine powder on a carrier.

このけい素化合物としては一般式R,S i X、。This silicon compound has the general formula R, SiX,.

(式中Rはメチル基、エチル基等の一価炭化水素基また
は水素原子、Xは塩素、フッ素などのハロゲン原子また
はメトキシ基、エトキシ基などのアルコキシ基1mはO
〜4の整数)で示されるもの、たとえば5iC1いSi
F4、H81C1,、S i HいCH,S i Cl
、、CH−S i(OCHs )3、Si  (OCH
,)4、Si  (OC2Hり4などが例示されるが、
一般的には5iC14が用いられる。
(In the formula, R is a monovalent hydrocarbon group such as a methyl group or an ethyl group or a hydrogen atom, and X is a halogen atom such as chlorine or fluorine or an alkoxy group such as a methoxy group or an ethoxy group.
~4 integer), such as 5iC1Si
F4, H81C1,, S i H CH, S i Cl
,,CH-Si(OCHs)3,Si(OCHs)
, )4, Si (OC2Hri4 etc. are exemplified, but
Generally, 5iC14 is used.

このけい素化合物の火炎加水分解はこのけい素化合物を
酸水素火炎中に供給し、この加水分解で発生した微粉末
シリカを耐火性の担体、例えば右英。
The flame hydrolysis of the silicon compound involves feeding the silicon compound into an oxyhydrogen flame, and using the finely powdered silica generated in this hydrolysis as a refractory carrier, such as a refractory carrier.

炭素、炭化けい素などで作られた1回転している担体上
に地積させればよく、これによれば担体上に微粉状シリ
カが均一に堆積した多孔質シリカ母材を得ることができ
る。
It may be deposited on a rotating carrier made of carbon, silicon carbide, etc., and by this method, a porous silica base material in which finely powdered silica is uniformly deposited on the carrier can be obtained.

本発明の方法はこの酸水素火炎を形成させる酸素と水素
との混合比を酸素/水素モル比が1以下として酸素過剰
による酸素関与欠陥の発生を防止するものであるが、こ
の酸素/水素モル比は0゜5以下とすると後記する塩素
ガスの添加によっても火炎が不安定となるので、これは
1〜0.5の範囲で、できるだけ0.5に近いものとす
ることがよい。
The method of the present invention prevents the occurrence of oxygen-related defects due to excess oxygen by setting the mixing ratio of oxygen and hydrogen that forms this oxyhydrogen flame to an oxygen/hydrogen molar ratio of 1 or less. If the ratio is 0.5 or less, the flame will become unstable even with the addition of chlorine gas, which will be described later, so it is preferably in the range of 1 to 0.5 and as close to 0.5 as possible.

また、本発明の方法では上記した酸素/水素モル比から
なるガスにこの酸素/水素モル比では不安定になる火炎
を安定させるために助燃ガスとしての塩素ガスが添加さ
れるので、これによって酸水素火炎は安定したものとな
るのであるが、こ)に添加される塩素量は酸素の不足を
補足する量とすればよい。このように塩素ガスを添加す
ると酸素/水素モル比がl以下とされた酸水素火炎も安
定したものとなるのでけい素化合物のこの酸水素火炎中
での加水分解は順調に行なうことができ、したがってこ
\に発生したガラス微粒子を担体上に堆積−させれば多
孔質ガラス母材を容易に得ることができるし、こトに得
られた多孔質ガラス母材はこの酸水素火炎が過剰の酸素
を含有するものでないので酸素関与欠陥をもたないもの
になり、したがってこれを透明ガラス化して得られる石
英系光ファイバー母材も酸素関与欠陥をもたないものと
なり、これから作られた光ガラスファイバーは伝送損失
が低く、耐水素特性も良好なものになるという有利性が
与えられる。
In addition, in the method of the present invention, chlorine gas is added to the gas having the above-mentioned oxygen/hydrogen molar ratio in order to stabilize the flame, which becomes unstable at this oxygen/hydrogen molar ratio. The hydrogen flame becomes stable, but the amount of chlorine added to this flame may be set to compensate for the lack of oxygen. By adding chlorine gas in this way, the oxyhydrogen flame with an oxygen/hydrogen molar ratio of 1 or less becomes stable, so that the hydrolysis of silicon compounds in this oxyhydrogen flame can be carried out smoothly. Therefore, by depositing the glass particles generated in this way on a carrier, a porous glass base material can be easily obtained. Since it does not contain oxygen, it does not have oxygen-related defects, and therefore the quartz-based optical fiber base material obtained by transparent vitrification also does not have oxygen-related defects, and optical glass fibers made from this material do not have oxygen-related defects. has the advantages of low transmission loss and good hydrogen resistance.

(実施例) つぎに本発明の実施例をあげる。(Example) Next, examples of the present invention will be given.

実施例 酸水素火炎バーナーに四塩化けい素0.25Q/分(4
0℃)、酸素3.Cl!/分、水素5.0Ω/分、塩素
2.5Q分を供給し点火して四塩化けい素を加水分解さ
せ、発生したガラス微粉末を回転しつつあるSiC製の
担体上に堆積させて外9i70IIn+、長さ500n
wn、かさ密度0.16g/iの多孔質ガラス母材を作
った。
Example Silicon tetrachloride 0.25Q/min (4
0°C), oxygen 3. Cl! /min, hydrogen 5.0Ω/min, and chlorine 2.5Q min are supplied and ignited to hydrolyze silicon tetrachloride, and the generated glass fine powder is deposited on a rotating SiC carrier and removed. 9i70IIn+, length 500n
A porous glass base material having a bulk density of 0.16 g/i was prepared.

ついでこの多孔質ガラス母材を管状炉内において1,2
00℃で脱水処理し、1,500℃で溶融し透明ガラス
化して光ファイバー用母材としたのち、フッ素をドープ
してクラッドを成形し、線引きしてシングルモードファ
イバーを作成した。
Next, this porous glass base material was heated 1, 2 times in a tube furnace.
The material was dehydrated at 00°C, melted at 1,500°C, and made into transparent glass to obtain an optical fiber base material.The material was then doped with fluorine to form a cladding, and drawn to create a single mode fiber.

つぎにこのように得た光ファイバーについてその0.8
−11.34.1.55.での伝送損失を測定したとこ
ろ、2.0 d B/km、 0.38 d B/km
、0.18dB/kmの結果が得られ、これには1.5
μm帯での酸素関与欠陥はみられなかっ゛たし、またこ
のものはE S R8+11定においても酸素関与欠陥
はみられず、さらに200℃、4時間の水素処理での1
.54即の損失増加も0.1 d B/kmと非常に小
さい値を示した。
Next, regarding the optical fiber obtained in this way, its 0.8
-11.34.1.55. When the transmission loss was measured at 2.0 dB/km, 0.38 dB/km
, a result of 0.18 dB/km is obtained, which includes 1.5
No oxygen-related defects were observed in the μm band, and no oxygen-related defects were observed in the ESR8+11 test.
.. 54 The immediate loss increase also showed a very small value of 0.1 dB/km.

比較例 上記した実施例における酸水素火炎バーナーに供給する
ガスを四塩化けい素0.11Q/分、酸素3.2Q1分
、水素2.OQ1分、塩素OQ1分としたほかは実施例
と同様に処理して直径60IIm、長さ300naの多
孔質ガラス母材を作り、これから実施例と同一条件でシ
ングルモードファイバーを作ってこのものの0.8即、
1.3μm、1.55μ寵での伝送損失を測定したとこ
ろ、これは3.0d B/km、 0.45 d B/
km、0.30 d B/km(71値を示し、1.5
−帯に酸素関与欠陥による吸収がみられたし、これはま
たESR測定でも酸素関与欠陥が認められ、さらに20
0℃、4時間の水素処理での1.54μ層の損失増加も
0.5 d B/に+*となった。
Comparative Example The gases supplied to the oxyhydrogen flame burner in the above-mentioned examples were silicon tetrachloride 0.11Q/min, oxygen 3.2Q/min, and hydrogen 2. A porous glass base material with a diameter of 60 II m and a length of 300 na was prepared by processing in the same manner as in the example except that the OQ was 1 minute and the chlorine OQ was 1 minute. A single mode fiber was made from this under the same conditions as in the example. 8 Immediately,
When we measured the transmission loss at 1.3μm and 1.55μm, it was 3.0dB/km, 0.45dB/
km, 0.30 dB/km (showing a value of 71, 1.5
Absorption due to oxygen-related defects was observed in the − band, and oxygen-related defects were also observed in the ESR measurement, and 20
The increase in loss of the 1.54μ layer after hydrogen treatment at 0° C. for 4 hours was also 0.5 dB/+*.

(発明の効果) 本発明の方法は前記したようにけい素化合物の酸水素火
炎中での加水分解を酸14/水素モル比を1以下とし塩
素ガスを添加した火炎中で行なうものであるが、これに
よれば過剰の酸素が存在しないので得られる多孔質ガラ
ス母材が酸素関与欠陥をもたないものとむるので、これ
から得られる光ファイバー母材も酸素関与欠陥をもたな
いものとムリ、したがってこれから作られた光ファイバ
ーは転送損失、水素特性のすぐれた、長距離伝送に適し
たものになるという有利性が与えられる。
(Effects of the Invention) As described above, in the method of the present invention, the hydrolysis of a silicon compound in an oxyhydrogen flame is carried out in a flame in which the acid 14/hydrogen molar ratio is set to 1 or less and chlorine gas is added. According to this, since there is no excess oxygen, the porous glass base material obtained is assumed to have no oxygen-related defects, so it is impossible to expect that the optical fiber base material obtained from this will also be free of oxygen-related defects. Therefore, optical fibers made from this material have the advantage of having excellent transfer loss and hydrogen properties, making them suitable for long-distance transmission.

Claims (1)

【特許請求の範囲】[Claims] 1、ガス状のけい素化合物を酸水素火炎中で加水分解さ
せて得たガラス微粉末を担体上に堆積させて多孔質ガラ
ス母体を作り、これを透明ガラス化して光ファイバー母
材を製造する方法において、ガス状のけい素化合物を塩
素を含み、酸素/水素比を1以下とした酸水素火炎中で
加水分解させてガラス微粒子を生成させることを特徴と
する光ファイバー母材の製造方法。
1. A method for producing an optical fiber base material by depositing fine glass powder obtained by hydrolyzing a gaseous silicon compound in an oxyhydrogen flame on a carrier to create a porous glass base material, and converting this into transparent glass. A method for producing an optical fiber preform, which comprises hydrolyzing a gaseous silicon compound in an oxyhydrogen flame containing chlorine and having an oxygen/hydrogen ratio of 1 or less to produce glass particles.
JP32182588A 1988-12-20 1988-12-20 Method for manufacturing optical fiber preform Expired - Lifetime JPH0729806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32182588A JPH0729806B2 (en) 1988-12-20 1988-12-20 Method for manufacturing optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32182588A JPH0729806B2 (en) 1988-12-20 1988-12-20 Method for manufacturing optical fiber preform

Publications (2)

Publication Number Publication Date
JPH02167837A true JPH02167837A (en) 1990-06-28
JPH0729806B2 JPH0729806B2 (en) 1995-04-05

Family

ID=18136841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32182588A Expired - Lifetime JPH0729806B2 (en) 1988-12-20 1988-12-20 Method for manufacturing optical fiber preform

Country Status (1)

Country Link
JP (1) JPH0729806B2 (en)

Also Published As

Publication number Publication date
JPH0729806B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
CA2037102C (en) Method of making fused silica
JP2744695B2 (en) Improved vitreous silica products
US5154744A (en) Method of making titania-doped fused silica
US5395413A (en) Method for producing fused silica with low sodium ion contamination level
JP4350168B2 (en) Method for producing titania-doped fused silica
JPH0196039A (en) Production of optical fiber preform
EP0163752B1 (en) A method for the preparation of a synthetic quartz glass tube
JPH02167837A (en) Production of parent material of optical fiber
KR101343683B1 (en) Process for producing optical fiber base and apparatus therefor
JP2793617B2 (en) Manufacturing method of optical fiber preform
JPH0424292B2 (en)
JP2566349B2 (en) Method for manufacturing synthetic quartz glass member
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JPS59162143A (en) Production of synthetic quartz
JPH0324415B2 (en)
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
KR870000383B1 (en) Preparation for making of fiber glass preform
KR830002121B1 (en) Optical fiber
JPS5978943A (en) Manufacture of glass containing fluorine
JPS59137333A (en) Manufacture of base material for optical fiber
JPH03290330A (en) Synthetic silica glass member and production thereof
JPS6144821B2 (en)
JPH0561210B2 (en)
JPS605028A (en) Production of fluorine-containing optical glass
JPH05279050A (en) Production of rare earth element-doped quartz glass

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14