JPH02167649A - Work device - Google Patents

Work device

Info

Publication number
JPH02167649A
JPH02167649A JP32278288A JP32278288A JPH02167649A JP H02167649 A JPH02167649 A JP H02167649A JP 32278288 A JP32278288 A JP 32278288A JP 32278288 A JP32278288 A JP 32278288A JP H02167649 A JPH02167649 A JP H02167649A
Authority
JP
Japan
Prior art keywords
shape
machining
displacement
workpiece
displacement meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32278288A
Other languages
Japanese (ja)
Inventor
Sunao Kodera
直 小寺
Tomoaki Nakasuji
智明 中筋
Seiichi Hara
原 成一
Hiroyuki Matsunaga
博之 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32278288A priority Critical patent/JPH02167649A/en
Publication of JPH02167649A publication Critical patent/JPH02167649A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform shaping with high accuracy and high efficiency without detaching the body to be worked from a work device, by providing plural displacement gages on a work device, measuring a prework shape by its finite difference and constituting so as to use the same displacement gage even during working. CONSTITUTION:In case of output values being taken IA, IB by retreating a tool 1 to the position not brought into contact with the body 6 to be worked and providing two displacement gages 2a, 2b apart by (d), the deformation is cancelled by respectively containing in IA, IB even in case of a table 4 being deformed and taking the difference in the output values IA, IB and only the shape differences of two points of the body 6 to be worked apart by (d) is shown. Also the section of d<=x<=2d can be defined by a primary reference face o<=x<=d and the output values IA, IB and the whole shape can be defined. Control cutting is then performed with high accuracy by using the displacement gage 2a with the prework shape as the reference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大口径及び大長尺の加工筒の高精度切削のため
の切削装置などの加工装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a processing device such as a cutting device for high-precision cutting of a large diameter and long processing tube.

〔従来の技術〕[Conventional technology]

第3図は例えば昭和63年度精密工学会関西地方定期学
術講演論文集第41頁に示された従来の切削装置の要部
を示す構成図である。
FIG. 3 is a configuration diagram showing the main parts of a conventional cutting device, as shown in, for example, page 41 of the Proceedings of the Kansai Region Periodical Academic Lectures of the Japan Society for Precision Engineering in 1988.

図中+11は工具、(2)は変位計、(3)はこの工具
(1)。
In the figure, +11 is the tool, (2) is the displacement meter, and (3) is this tool (1).

変位計(2)がとりつけられ、工具(1)、変位計(2
)に微少変位金与える微小移動装置、(4)はこの微小
移動装置が取り付けられたテーブル、(5)はこのテー
ブル(4)の移動方向を示す矢印である。(6)は、被
加工物、(Sa)は加工する前の前加工面、  (6b
)は切削加工した後の加工面である仕上げ加工面、(7
)は、前加工面(6a)の形状及び加工しようとする目
標加工形状を記憶し、また、変位計(2)の出力値をも
とに微小移動量を計算、指令を与える計算機、(8)は
計算機(7)の指令を増幅し、微小移動装置に電圧供給
するドライブアンプである。
A displacement meter (2) is attached, and a tool (1) and a displacement meter (2) are attached.
), (4) is a table to which this micro-movement device is attached, and (5) is an arrow indicating the direction of movement of this table (4). (6) is the workpiece, (Sa) is the pre-machined surface before machining, (6b
) is the finished surface after cutting, (7
) is a computer that memorizes the shape of the pre-machined surface (6a) and the target machining shape to be machined, and also calculates the minute movement amount based on the output value of the displacement meter (2) and gives instructions; ) is a drive amplifier that amplifies the command from the computer (7) and supplies voltage to the micro-movement device.

次に、工具(1)と被加工物(6)との距離変化を前加
工面(6a)を基準にして行ない、その値に応じて工具
の切込み量補正を行なう切削法についてのべる。
Next, a cutting method will be described in which the distance between the tool (1) and the workpiece (6) is changed based on the previously machined surface (6a), and the depth of cut of the tool is corrected in accordance with the change.

第4図及び第5図は上記切削法の説明図である。FIGS. 4 and 5 are explanatory diagrams of the above cutting method.

上記切削法は、必要除去量R(x)に対する実際切込み
量E (X) e監視することにより、形状創成しよう
とするものである。すなわち、  E(x)とR(x)
が一致するように微小切込み工具台をリアルタイムで補
正すれば、目標形状に仕上げることができる。ここで、
P(X)e前加工形状、 To(x)f目標加工形状と
すると。
The above cutting method attempts to create a shape by monitoring the actual depth of cut E(X)e relative to the required removal amount R(x). That is, E(x) and R(x)
By correcting the fine cutting tool rest in real time so that they match, it is possible to finish the target shape. here,
Assuming that P(X)e is the pre-processing shape and To(x)f is the target processing shape.

補正量δ(、)は次式となる。The correction amount δ(,) is expressed by the following formula.

δ(x) = R(x) −E (x)= (P(x)
−To(x) )  E(x)     ’・・ ■し
たがって、前加工形状P (x)を正確に把握しておき
、かつ実際切込みit E (x)kインプロセスで測
定すれば補正量δ(、)を求めることができる。
δ(x) = R(x) −E (x)= (P(x)
-To(x) ) E(x) '... ■Therefore, if you accurately understand the pre-processing shape P (x) and measure the actual cutting depth it E (x)k in-process, the correction amount δ( , ) can be obtained.

実際切込み量E (x)は第5図に示すように、変位計
(2)と工具刃先の相対的な位置関係が変化しないもの
とすればこの距離をLとし、変位計出力値!(1)より
求めることができる。
The actual depth of cut E (x) is as shown in Fig. 5. Assuming that the relative positional relationship between the displacement meter (2) and the tool cutting edge does not change, let this distance be L, and the output value of the displacement meter! It can be obtained from (1).

E(x) =P(x) −(P(x+s)+I(t)−
L)  ・・・ ■ここで、Lは変位計(2)の測定基
準と切削ポイントのY軸方向の相対距離、Sは変位計(
2)の測定基準から切削ポイントのX軸方向の相対距離
、I(t)は変位計(2)の測定基準から被加工物(6
)までのY軸方向の距離である。
E(x) = P(x) −(P(x+s)+I(t)−
L) ... ■Here, L is the relative distance in the Y-axis direction between the measurement standard of the displacement meter (2) and the cutting point, and S is the relative distance of the displacement meter (2) in the Y-axis direction.
The relative distance in the X-axis direction of the cutting point from the measurement standard of 2), I(t) is the distance from the measurement standard of displacement meter (2) to the workpiece (6
) is the distance in the Y-axis direction.

次に■式をの式に代入すると δ(x)= P (x+s )+ I(t)−L 7−
To(x)    =■となる。
Next, by substituting the formula
To(x)=■.

目標加工形状To(x)に仕上げるには補正量δ(x)
がつねに0であるから、各点での変位計出力は次式とな
らなければならない。
The correction amount δ(x) is required to finish the target machining shape To(x).
Since is always 0, the displacement meter output at each point must be as follows.

I(t):To(x)+L−P (X+3 )    
   ’・・ ■つオリ、I(t)が■式を満足するよ
うに切込み制御を行なえば、目標加工形状To(x)に
仕上げることができる。
I(t):To(x)+LP(X+3)
'... (2) If the depth of cut is controlled so that I(t) satisfies the formula (2), it is possible to finish the target machining shape To(x).

したがって9本切削法にj?いて、高精度に目標加工形
状To(x)K仕上げるには、前加工形状P (x)の
高精度形状測定が不可欠である。前加工形状P (x)
は、他の形状測定器により測定され、この他の形状測定
器により測定した被加工物の前加工面(6b)の前加工
形状P (X)’を計算機(7)に入力することにより
記憶される。
Therefore, j? Therefore, in order to finish the target processed shape To(x)K with high precision, high-precision shape measurement of the pre-processed shape P (x) is essential. Pre-processing shape P (x)
is measured by another shape measuring device, and is memorized by inputting the pre-processed shape P (X)' of the pre-processed surface (6b) of the workpiece measured by this other shape measuring device into the computer (7). be done.

そのP (x)を用いて、■式を満足するように、計′
s、機(7)で計算し、ドライブアンプ(8)全通して
、微小移動装置(3)に指令を与える。
Using that P (x), calculate
s, is calculated by the machine (7), and is passed through the drive amplifier (8) to give a command to the minute movement device (3).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の切削装置では、前加工面の形状測定
システムを有しておらず、別設置の形状測定器により、
前加工形状p (x)を求めなければならない。
The conventional cutting equipment mentioned above does not have a shape measurement system for the pre-processed surface, and uses a separately installed shape measuring device to measure the shape of the pre-processed surface.
The pre-processing shape p (x) must be found.

したがって、別設置形状測定器と切削加工装置との間に
、被加工物の移動が必要となり、被加工物が大口径化、
大重量化するにつれて、その移動の時間と労力は多大な
ものとなる。
Therefore, it is necessary to move the workpiece between the separately installed shape measuring instrument and the cutting equipment, and the workpiece becomes larger in diameter.
As the weight increases, the time and effort required to move it increases.

さらに、形状測定装置で高精度に測定しても、上述の被
加工物の切削加工装置へのチャッキングの繰り返えし精
度が、加工誤差となる欠点がある。
Furthermore, even if the shape measuring device measures the shape with high accuracy, there is a drawback that the repeatability of chucking the workpiece to the cutting device described above may lead to processing errors.

また、被加工物を取りはずししなくて、オンマシンで測
定する場合においても、切削時、被加工物と工具の相対
距離を検出する変位計と異なる変位計による他の形状測
定システムにより前加工形状を6111定した場合0両
変位計の感度、精度の差違が加工誤差になるという欠点
がある。
In addition, even when measuring on-machine without removing the workpiece, the pre-processed shape can be measured using a displacement meter that detects the relative distance between the workpiece and the tool during cutting, and other shape measurement systems using a different displacement meter. If 6111 is constant, there is a drawback that the difference in sensitivity and accuracy between the two displacement meters becomes a machining error.

本発明は、かかる問題点kWj決するためになされたも
のであり、被加工物の加工装置からの着脱なしに、前加
工面形状の測定を行なえ、かつ、加工時の変位計と同じ
変位計を使うことにより、変位計のもつ測定誤差もキャ
ンセルできる測定手段付きの加工装置を提供すること金
目的としている。
The present invention has been made to solve such problems, and it is possible to measure the shape of the pre-machined surface without attaching or detaching the workpiece from the processing device, and it also uses a displacement meter that is the same as that used during machining. The object of the present invention is to provide a processing device equipped with a measuring means that can cancel measurement errors caused by a displacement meter.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る加工装置は、前加工面形状測定用として、
加工方向に一列に付設した複数の変位計とこの複数の変
位計を移動させ、この出力に基づいて加工面形状を計算
する手段と、上記複数の変位計のうち少なくとも一つの
変位計を用いて実際の加工作業ヲ実行する手段を備えた
ものである。
The processing device according to the present invention is used for measuring the shape of a pre-processed surface.
A plurality of displacement gauges attached in a row in the machining direction, a means for moving the plurality of displacement gauges and calculating a machined surface shape based on the output, and at least one displacement gauge among the plurality of displacement gauges. It is equipped with means for carrying out actual machining operations.

〔作用〕[Effect]

この発明における加工装置は、前加工形状測定手段を有
しているため、被加工物の加工装置からの着脱なしに、
前加工形状を測定でき、かつ、加工時の被加工物と工具
の相対距離を検出する変位計と同じものを用いて、前加
工形状を測定するので、変位計のもつ再現性のある測定
誤差もキャンセルすることができ、高精度の形状を得る
ことができる。
Since the processing device according to the present invention has a pre-processing shape measuring means, the workpiece can be easily removed from the processing device without being attached to or removed from the processing device.
The pre-machined shape is measured using the same displacement meter that can measure the pre-machined shape and also detects the relative distance between the workpiece and the tool during machining, so there is no reproducible measurement error caused by displacement meters. can also be canceled and a highly accurate shape can be obtained.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す切削装置の要部の構成
図、第2図は測定方法の説明図である。
FIG. 1 is a block diagram of the main parts of a cutting device showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram of a measuring method.

また1図中、(り〜(8)は従来装置と同一または相当
部分である。
In addition, in FIG. 1, (ri to (8)) are the same or equivalent parts as in the conventional device.

ただし、  (2a)(2b)は変位計であり、テーブ
ル(4)の進行方向(5)に−列に、工具(1)の左右
1個づつ設置されている。そして、その2個の変位計(
2a)(2b)の間隔ばdである。
However, (2a) and (2b) are displacement meters, and one is installed on each side of the tool (1) in the - row in the advancing direction (5) of the table (4). And those two displacement meters (
The distance between 2a) and (2b) is d.

(7)は従来切削装置の計算機の機能の他、2(固の変
位計(2)の2個の出力に基づいて、前加工面形状及び
テーブル真直度を計算する機能を有している計算機であ
る。
(7) is a calculator that has the function of calculating the pre-machined surface shape and table straightness based on the two outputs of the solid displacement meter (2) in addition to the function of the calculator of conventional cutting equipment. It is.

次に0本切削装置の前加工崩形状測定法を第2図につい
て説明する。
Next, a method of measuring the pre-processing collapse shape of the zero-cutting machine will be explained with reference to FIG.

本加工装置においては、前加工形状P (x)の測定の
ための加工面の全長の走査は、テーブル(4)の移動に
よって3こなわれる。
In this processing apparatus, the entire length of the processing surface for measuring the pre-processed shape P (x) is scanned three times by moving the table (4).

したがって、被加工物(6)とテーブル(4)間のテー
ブル走査による距離変動μが存在しても、これらに影響
されず、高精度に形状測定を行える方式でなくてはなら
ない。
Therefore, even if there is a distance variation μ due to table scanning between the workpiece (6) and the table (4), the method must be able to measure the shape with high accuracy without being affected by this.

第2図に示すように、2本の変位計(2a)と(2b)
がdだけ隔てて設置されている。変位計(2aX2b)
の出力をそれぞれIA 、 よりとする。IA とより
の差は被加工物(6)のdだけ離れた2点の形状差を示
している。
As shown in Figure 2, two displacement gauges (2a) and (2b)
are set apart by d. Displacement meter (2aX2b)
Let the outputs of be IA and , respectively. The difference between IA and twist indicates the difference in shape between two points separated by d on the workpiece (6).

もし、テーブル(4)がμだけ変形した場合でも。Even if table (4) is deformed by μ.

IA 、 ■Bそれぞれにμが含まれてかり、)A、j
Bの差をとることにより、Uはキャンセルされ、上述の
ように、被加工物(6)のdだけ離れた2点の形状差の
みを示すことになる。
μ is included in each of IA, ■B, )A, j
By taking the difference in B, U is canceled and, as described above, only the shape difference between two points separated by d on the workpiece (6) is shown.

次に、全体形状を測定する方法をのべる。被加工物(6
)のX軸方向の位置0からdまでの面金第1次参照面と
し、この第1次参照面(0≦X<d)が既知であるとす
れば、xl(d≦X2 < 2d ) の点の形状r 
(X2)は、xl(o≦x1くd、x2=x 1 +a
 )にかける既知のf(xl)を用いて次式%式% したがって、第1次参照面(0≦x(d)およびIA、
JBの出力値によりd≦x(2d  の区間を確定する
ことができる。さらに、d≦x(2d の区間を、@2
次参照面として0次の2d≦x(5d全確定でき、順次
参照面を移すことにより、全体形状を確定することがで
きる。
Next, we will explain how to measure the overall shape. Workpiece (6
) is the primary reference plane of the metal plate from position 0 to d in the X-axis direction, and if this primary reference plane (0≦X<d) is known, then xl (d≦X2 < 2d) The shape of the point r
(X2) is xl(o≦x1×d, x2=x 1 +a
) using the known f(xl)
The interval of d≦x(2d) can be determined by the output value of JB. Furthermore, the interval of d≦x(2d can be determined by @2
The 0th order 2d≦x (5d) can be fully determined as the next reference plane, and by sequentially moving the reference planes, the entire shape can be determined.

すなわち、真直度の悪いテーブル(4)ヲ用いても。That is, even if table (4) with poor straightness is used.

2個の変位計(2a)、 (2b)をテーブル進行方向
(5)に−列に設置し、上述の計算処理をすることによ
り全体形成金測定することができる。
The two displacement gauges (2a) and (2b) are installed in the negative row in the table advancing direction (5), and the above-mentioned calculation process is performed to measure the entire formed gold.

上記のように構成された切削装置で切削手順についての
べる。
This section describes the cutting procedure using the cutting device configured as described above.

1ず、前加工形状P (x)を、前述したように2個の
変位計(2a) 、 (2b)でテーブル走査すること
により測定する。この時、工具filが被加工物(6)
に接触させない位置筐で、テーブル(4)か微小移動装
置(3)により、工具+In”後退させてかく。
First, the pre-processed shape P (x) is measured by scanning the table with the two displacement meters (2a) and (2b) as described above. At this time, the tool fil is the workpiece (6)
With the tool in a position where it does not come in contact with the housing, use the table (4) or the micro-movement device (3) to move the tool +In'' backward.

次に、この測定結果の前加工形状P (X) ’e基準
に。
Next, the pre-processed shape P (X) 'e of this measurement result is used as the reference.

制御切削を行なう。制御切削の手法については。Perform controlled cutting. Regarding controlled cutting techniques.

従来方法と同一であり、この場合は変位計(2a)を用
いて行なわれる。
This is the same as the conventional method, and in this case it is carried out using a displacement meter (2a).

なか、上記実施例では、変位計を工具左右に1本づつ、
計2個用いているが、工具の進行方向に2本取付けても
よいし、精度を高めるために、それ以上用いてもよい。
In the above embodiment, one displacement meter is installed on the left and right sides of the tool.
Although a total of two are used, two may be attached in the direction of tool movement, or more may be used to improve accuracy.

さらに6本切削装置により、仕上げ加工の形状測定も同
様に行なえることはいう筐でもない。
Moreover, the six-piece cutting device can also be used to measure the shape of finishing machining.

また、変位計(2)や微小移動装置(3)の仕様は、要
求精度に応じて、適宜決定してよい。
Further, the specifications of the displacement meter (2) and the minute movement device (3) may be determined as appropriate depending on the required accuracy.

また、上記実施例では切削装置の場合金石したが、形状
を加工する他の加工装置でもよい。
Further, in the above embodiments, the cutting device was used as a metal cutting device, but other processing devices that process shapes may be used.

〔発明の効果〕〔Effect of the invention〕

本発明は、加工装置に複数の変位計を設け、前加工形状
をその差分により計測し、加工中も同一の変位計を用い
るように構成したので、被加工物の加工装置から着脱な
しに、前加工面の測定が行える。さらに差分計算により
測定時の誤差全キャンセルでき、かつ加工時と測定時に
は同じ変位計を使うため、変位計のもつ測定誤差もキャ
ンセルできるので、高精度、高能率で形状加工を行える
効果がある。
In the present invention, a processing device is provided with a plurality of displacement gauges, the pre-processed shape is measured by the difference between the two, and the same displacement gauge is used during processing. Can measure pre-processed surfaces. Furthermore, differential calculations can cancel all errors during measurement, and since the same displacement meter is used during machining and measurement, measurement errors caused by the displacement meter can also be canceled, resulting in shape machining with high accuracy and efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す切削装置の要部金石
す構成図。 第2図は測定方法の説明図。 第3図は従来の切削装置の要部を示す構成図。 第4図、第5図は前加工面基準の制御切削法の説明図で
ある。 図において11)は工具、 (21,(2a)、 (2
b)は変位計。 (3)は微小移動装置、f41tr!、テーブル、(6
)は被加工物。 (7)は計算機、(8)はドライブアンプである。 なか。 示す。 各図中。 同一符号は同−又は相当部分を
FIG. 1 is a block diagram of the main parts of a cutting device showing one embodiment of the present invention. FIG. 2 is an explanatory diagram of the measurement method. FIG. 3 is a configuration diagram showing the main parts of a conventional cutting device. FIGS. 4 and 5 are explanatory diagrams of the controlled cutting method based on the previously processed surface. In the figure, 11) is a tool, (21, (2a), (2
b) is a displacement meter. (3) is a minute movement device, f41tr! , table, (6
) is the workpiece. (7) is a computer, and (8) is a drive amplifier. inside. show. In each figure. The same symbols indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 (a)被加工物の加工前の前加工形状と加工目標とする
目標加工形状を比較して、加工時の被加工物への必要加
工量を求める手段と、 (b)加工中に被加工物との相対位置を変位計で計測し
、この相対位置から求めた実加工量と上記の手段で求め
た必要加工量を比較し加工位置を補正する手段と を有する加工装置において、以下の要素を備えたことを
特徴とする加工装置 (c)加工していく方向に複数配列され、被加工物との
相対位置を出力する変位計。 (d)上記複数の変位計を加工面に沿つて移動させ、出
力された相対位置から加工前の前加工形状を求める手段
。 (e)上記複数の変位計のうち少なくとも一つの変位計
を用いて加工中に被加工物との相対位置を計測し加工位
置を補正する手段。
[Scope of Claims] (a) means for comparing the pre-machined shape of the workpiece before machining with the target machining shape as a machining target to determine the amount of machining required for the workpiece during machining; (b) ) Machining that has means for measuring the relative position to the workpiece during machining using a displacement meter, comparing the actual machining amount determined from this relative position with the required machining amount determined by the above means, and correcting the machining position. A processing device characterized by comprising the following elements: (c) A plurality of displacement meters arranged in the direction of processing and outputting the relative position with respect to the workpiece. (d) Means for moving the plurality of displacement meters along the machining surface and determining the pre-machined shape before machining from the output relative positions. (e) Means for correcting the machining position by measuring the relative position with respect to the workpiece during machining using at least one displacement meter among the plurality of displacement meters.
JP32278288A 1988-12-21 1988-12-21 Work device Pending JPH02167649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32278288A JPH02167649A (en) 1988-12-21 1988-12-21 Work device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32278288A JPH02167649A (en) 1988-12-21 1988-12-21 Work device

Publications (1)

Publication Number Publication Date
JPH02167649A true JPH02167649A (en) 1990-06-28

Family

ID=18147577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32278288A Pending JPH02167649A (en) 1988-12-21 1988-12-21 Work device

Country Status (1)

Country Link
JP (1) JPH02167649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182162A (en) * 2014-03-24 2015-10-22 株式会社三井ハイテック Method and device for processing slide lower face of press machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182162A (en) * 2014-03-24 2015-10-22 株式会社三井ハイテック Method and device for processing slide lower face of press machine

Similar Documents

Publication Publication Date Title
JP5235284B2 (en) Measuring method and machine tool
JPH02220106A (en) Digitization controller containing measuring function
TW201417941A (en) Offset-measuring system of machine tool and offset-measuring method thereof
RU2386519C2 (en) Device for forecasting and control of accuracy of turning treatment of parts in equipment with numerical program control (npc)
JP4799472B2 (en) Measuring method and apparatus for tool edge position, workpiece processing method and machine tool
CN111536876B (en) In-situ measurement method for sealing surface of three-eccentric center butterfly valve
JPH0296609A (en) Inspecting method and machining method for v-shaped groove
JP3126327B2 (en) Method and apparatus for measuring shape and size of work in machine tool
JPH02167649A (en) Work device
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
JPH05318287A (en) Super-precision working machine
JPH06138921A (en) Measuring method and automatic correction method for linear interpolation feeding accuracy of numerically controlled machine tool
KR101823052B1 (en) Method of measuring workpiece for correction of cnc machine job
JP4545501B2 (en) Tool centering method and tool measuring method
Khusainov et al. Precision of surfaces machined on a lathe with geometric errors
JPH07237088A (en) Machining device and machining
JP2599924B2 (en) Measurement method of electrode guide position in wire electric discharge machine
JPS62173151A (en) Measured value compensator for linear scale
JP7026278B1 (en) Motion accuracy evaluation device
JPH07204991A (en) Measuring system using displacement detecting type measuring head
JP7455488B2 (en) Method and device for diagnosing calibration values of reference instruments
RU50136U1 (en) DEVICE FOR PREDICTION OF ACCURACY OF PARTS PROCESSING ON HIGH-PRECISION CNC EQUIPMENT
JPS6360085A (en) Three-dimensional laser beam machine
JPH06155238A (en) Working device and method thereof
JP2512790B2 (en) Feed instruction accuracy inspection method and its gage