JPH06155238A - Working device and method thereof - Google Patents

Working device and method thereof

Info

Publication number
JPH06155238A
JPH06155238A JP30370492A JP30370492A JPH06155238A JP H06155238 A JPH06155238 A JP H06155238A JP 30370492 A JP30370492 A JP 30370492A JP 30370492 A JP30370492 A JP 30370492A JP H06155238 A JPH06155238 A JP H06155238A
Authority
JP
Japan
Prior art keywords
tool
displacement
workpiece
machining
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30370492A
Other languages
Japanese (ja)
Inventor
Sunao Kodera
直 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30370492A priority Critical patent/JPH06155238A/en
Publication of JPH06155238A publication Critical patent/JPH06155238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To provide a working device and a method thereof by which working can be performed based on a previously worked surface form even though all the previously worked surface forms are not measured and stored previously. CONSTITUTION:This working device is constituted so that a plurality of displacement gauges 2a, 2b which are interlocked with a tool and outputs relative positions against a work piece are provided in front of the advancing tool 1 spacedly in one line in the advancing direction of the tool, a relative displacement quantity of the tool and the work piece based on the previously worked surface is computed from the displacement output values of the displacement gauges, and hence the working quantity is corrected. A specified section of the work piece is set as a reference face, relative distance of the tool 1 and the work piece 6 is obtained from the output of the nearest displacement gauge to the tool so as to correct the depth of cut, and simultaneously by integrating difference of output between the nearest displacement gauge and one more gauge, succeeding form of the work piece is measured and stored so as to make it the reference face at succeeding working, and further by repeating this process the whole face of the work piece is worked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大口径及び大長尺の被
加工物を切削等、高精度に加工するための加工装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing device for processing a large-diameter and large-length workpiece with high precision such as cutting.

【0002】[0002]

【従来の技術】切削によって、高精度な形状を創成する
ためには、高精度の駆動テーブルおよび、加工中の機械
熱変形を抑えるための厳密な温度環境が必要である。と
くに、大口径、大長尺物の加工には、大ストロークの高
精度駆動テーブルおよび長時間にわたる温度制御が必要
なため、多大の労力が払われている。これに対し、従来
より、加工中のテーブル駆動誤差および機械熱変形をイ
ンプロセスで、計測補正する手法が考えられている。
2. Description of the Related Art In order to create a highly accurate shape by cutting, a highly accurate drive table and a strict temperature environment for suppressing mechanical thermal deformation during processing are required. In particular, a large stroke, a large length and a long workpiece require a large stroke of a high precision drive table and a temperature control for a long time. On the other hand, conventionally, a method of measuring and correcting an in-process table drive error and mechanical thermal deformation during processing has been considered.

【0003】図3は、例えば刊行物(1989年度精密
工学会秋期大会学術講演会論文集135頁)や特願昭6
3−322782号明細書に示された従来の切削装置の
要部を示す構成図である。図3において、1は工具、2
a、2bは変位計、3は工具1および変位計2a,2b
が取り付けられ、工具1および変位計2a,2bに微小
変位を与える微小移動装置であり、例えばピエゾ素子の
伸縮により上下に移動する。4はこの微小移動装置が取
り付けられたテーブル、5はこのテーブル4の移動方向
を示す矢印である。6は被加工物、6aは加工する前の
面である前加工面、6bは切削加工した後の加工面であ
る仕上げ面。7は前加工面6aの形状および加工しよう
とする目標加工形状を記憶し、また、変位形2a,2b
の出力値をもとに微小移動量を計算し、指令を与える計
算機、8は計算機7の指令値を増幅し、微小移動装置3
に電圧を供給するドライブアンプである。
[0003] FIG. 3 shows, for example, a publication (Annual Meeting of the Precision Engineering Society of Japan 1989 Autumn Conference, p. 135) and Japanese Patent Application No. 6
It is a block diagram which shows the principal part of the conventional cutting device shown by 3-322782 specification. In FIG. 3, 1 is a tool, 2
a and 2b are displacement gauges, 3 is a tool 1 and displacement gauges 2a and 2b
Is a micro-movement device that is attached to give a micro-displacement to the tool 1 and the displacement gauges 2a and 2b. For example, the micro-movement device moves up and down by expanding and contracting the piezo element. Reference numeral 4 is a table to which the minute moving device is attached, and 5 is an arrow indicating the moving direction of the table 4. 6 is a workpiece, 6a is a pre-processed surface which is a surface before processing, and 6b is a finished surface which is a processed surface after cutting. Reference numeral 7 stores the shape of the pre-machined surface 6a and the target machined shape to be machined, and the displacement shapes 2a and 2b.
A calculator 8 which calculates a minute movement amount based on the output value of the above and gives a command, 8 amplifies the command value of the calculator 7, and
It is a drive amplifier that supplies voltage to.

【0004】次に、上記加工装置を用いた従来の切削法
について述べる。図4は、従来の切削法の説明図であ
る。上記切削法は、前加工面6a形状を予め測定かつス
トアしておき、加工時、その前加工面6aを基準にし
て、切り込み量補正を行うものである。すなわち、従来
法では、工具1が被加工物6に接触しない位置まで工具
1を後退させた状態で、2個の変位計2a,2bをテー
ブル4で被加工物6全面を走査することにより逐次測定
して確定する。逐次測定法とは、2個の変位計で加工物
の全面を測定することより、数学的にテーブル駆動誤差
を消去して、形状のみを求める方法である。
Next, a conventional cutting method using the above processing device will be described. FIG. 4 is an explanatory diagram of a conventional cutting method. In the cutting method, the shape of the pre-machined surface 6a is measured and stored in advance, and at the time of machining, the cutting amount is corrected with reference to the pre-machined surface 6a. That is, in the conventional method, the tool 1 is retracted to a position where the tool 1 does not come into contact with the workpiece 6, and the two displacement gauges 2a and 2b are sequentially scanned by the table 4 over the entire surface of the workpiece 6. Measure and confirm. The sequential measurement method is a method of mathematically erasing a table driving error and measuring only the shape by measuring the entire surface of the workpiece with two displacement gauges.

【0005】次に、補正原理を説明する。幾何学的関係
より次式が得られる。 I(x+s)+P(x)=T0(x)+δ(x)+L …(1) ここで、I(x)は変位センサ2aの出力値、P(x)
は前加工面6a形状、T0(x)は目標加工形状、δ
(x)は補正量、Lは変位計2aの測定基準と切削ポイ
ントのY軸方向の相対距離、sは変位計2aの測定基準
から切削ポイントのX軸方向の相対距離である。さら
に、(1)式より次式が得られる。 δ(x)=P(x+s)+I(x+s)−L−T0(x) …(2) したがって、前加工形状P(x)を正確に把握してお
き、かつ加工時の変位センサ2aの出力値より、補正量
δ(x)を求めることができる。最終的には、目標加工
形状T0(x)に仕上げるには補正量δ(x)が0であ
るから、各点での変位計出力は次式となる。 I(x+s)=T0(x)+L+P(x+s) …(3) つまり、I(x+s)が(3)式を満足するように切込
み制御を行なえば、テーブル駆動誤差M(x)に関係な
く、目標加工形状T0(x) に仕上げることができる。
Next, the correction principle will be described. The following equation is obtained from the geometrical relation. I (x + s) + P (x) = T0 (x) + δ (x) + L (1) where I (x) is the output value of the displacement sensor 2a and P (x)
Is the pre-machined surface 6a shape, T0 (x) is the target machined shape, δ
(X) is a correction amount, L is a relative distance between the measurement reference of the displacement meter 2a and the cutting point in the Y-axis direction, and s is a relative distance between the measurement reference of the displacement meter 2a and the cutting point in the X-axis direction. Further, the following equation is obtained from the equation (1). δ (x) = P (x + s) + I (x + s) -L-T0 (x) (2) Therefore, the pre-machining shape P (x) is accurately grasped and the output of the displacement sensor 2a at the time of machining The correction amount δ (x) can be obtained from the value. Finally, since the correction amount δ (x) is 0 for finishing the target machining shape T0 (x), the displacement meter output at each point is given by the following equation. I (x + s) = T0 (x) + L + P (x + s) (3) That is, if the cutting control is performed so that I (x + s) satisfies the expression (3), regardless of the table drive error M (x), The target machining shape T0 (x) can be finished.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来の加
工装置および加工方法では、予め、逐次測定法等の手段
により、全ての前加工面形状を高精度に測定しておかな
ければならず、加工プロセス以外に測定プロセスを行な
わなければならず、全体のプロセスに時間がかかるとい
う欠点があった。
In the conventional processing apparatus and processing method as described above, it is necessary to measure all the pre-processed surface shapes with high accuracy in advance by means such as the sequential measurement method. However, there is a drawback in that the measurement process must be performed in addition to the machining process, and the whole process takes time.

【0007】本発明は、かかる問題を解決するためにな
されたものであり、全ての前加工面形状を予め測定し、
ストアしておく必要なしに、前加工面形状を基準に加工
が行える加工装置および加工方法を提供することを目的
としている。
The present invention has been made in order to solve such a problem, and measures all pre-machined surface shapes in advance,
It is an object of the present invention to provide a processing apparatus and a processing method that can perform processing based on the shape of a pre-processed surface without having to store it.

【0008】[0008]

【課題を解決するための手段】本発明に係る加工装置
は、被加工物を加工する工具が進行する前方に、工具と
連動し被加工物との相対位置を出力する変位形を上記工
具の進行方向一列に間隔をあけて複数個有し、これらの
変位計の変位出力値より、前加工面を基準に工具と被加
工物の相対変位量を計算し、加工量を補正するように構
成したものである。
A machining apparatus according to the present invention has a displacement type which outputs a relative position with respect to a work piece in cooperation with the tool in front of the advance of the tool for machining the work piece. It has a plurality of lines in a line in the direction of travel at intervals, and is configured to calculate the relative displacement amount of the tool and the workpiece based on the pre-machined surface from the displacement output values of these displacement gauges and correct the machining amount. It was done.

【0009】また、上記加工装置において、被加工物の
特定の区間を参照面として、工具に近い変位計出力より
工具と被加工物との相対距離を求めて加工量を補正する
と同時に、上記工具に近い変位計出力ともう1つの変位
計出力の差を積算して行くことにより、次の被加工物の
形状を測定しストアすることで次の加工時の参照面と
し、さらにこのプロセスを順次繰り返すことにより被加
工物を加工することを特徴とするものである。
Further, in the above machining apparatus, the machining amount is corrected by obtaining the relative distance between the tool and the workpiece from the output of the displacement meter close to the tool, using the specific section of the workpiece as the reference surface, and at the same time, the tool is By measuring the difference between the output of another displacement meter and the output of another displacement sensor, the shape of the next workpiece is measured and stored to be used as the reference surface for the next processing, and this process is sequentially performed. It is characterized in that the object to be processed is processed by repeating the process.

【0010】[0010]

【作用】上記のように構成された加工装置および加工方
法においては、大口径の被加工物を切削する場合でも、
加工と同時に所定の区間の前加工面形状を測定できるの
で、予め、全ての前加工面形状を測定しストアしておく
必要もなく、かつ加工中の加工量誤差を測定、補正する
ので、比較的精度の悪い加工機械および環境において
も、高精度加工形状を短時間で創成することができる。
In the processing apparatus and processing method configured as described above, even when a large-diameter workpiece is cut,
Since it is possible to measure the pre-machined surface shape in a predetermined section at the same time as machining, it is not necessary to measure and store all the pre-machined surface shapes in advance, and the machining amount error during machining is measured and corrected. It is possible to create a high-precision machining shape in a short time even in a machining machine and environment in which the physical precision is poor.

【0011】[0011]

【実施例】図1はこの発明の一実施例による加工装置、
この例では切削装置を示す構成図であり、図2はこの発
明の一実施例による加工方法を説明する説明図である。
図中、1〜8は上記例従装置と全く同一のものである。
2個の変位計2a、2bは、工具台上に、加工していく
方向すなわち工具1の進行方向で前方一列に間隔をあけ
て配置される。7は変位計2a、2bの出力に基づき、
補正量を計算、指令を与え、また所定の区間の前加工面
形状を加工中に計算、ストアする機能を有する計算機で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a processing apparatus according to one embodiment of the present invention,
In this example, it is a configuration diagram showing a cutting device, and FIG. 2 is an explanatory diagram illustrating a machining method according to an embodiment of the present invention.
In the figure, 1 to 8 are exactly the same as the above example slave devices.
The two displacement gauges 2a and 2b are arranged on the tool base in a front row with a space in the machining direction, that is, the traveling direction of the tool 1. 7 is based on the outputs of the displacement meters 2a and 2b,
It is a computer having a function of calculating a correction amount, giving a command, and calculating and storing a pre-machined surface shape in a predetermined section during machining.

【0012】上記のように構成された切削装置による高
精度加工法の原理について図2を参考に説明する。
The principle of the high-precision machining method by the cutting device configured as described above will be described with reference to FIG.

【0013】被加工物の0≦x<dまでの切削を考え
る。いま、前加工面形状のs≦x<s+d間が既知であ
るとすると、その間を第1次参照面とすると、(1)式
と同様に、次式の幾何学的関係がある。 Ib(x+s)+P(x+s)=T0(x)+δ(x)+L …(4) ここで、Ib(x)は変位センサ2bの出力値、P
(x)は前加工形状、T0(x)は目標加工形状、δ
(x)は補正量、Lは変位計2bの測定基準と切削ポイ
ントのY軸方向の相対距離、sは変位計2bの測定基準
から切削ポイントのX軸方向の相対距離である。したが
って、目標加工面形状に仕上げるには、補正量は次式と
なる。 δ(x)=P(x+s)+Ib(x+s)−L−T0(x) …(5) (3)式と同様に、最終的には、目標加工形状T0
(x)に仕上げるには補正量δ(x)が0であるから、
各点での変位センサ2bの出力は次式となる。 Ib(x+s)=T0(x)+L+P(x+s) …(6) つまり、s≦X<s+d間の前加工面が既知である場
合、Ib(x+s)が(6)式を満足するように切込み
制御を行なえば、テーブル駆動誤差M(x)に関係な
く、0≦X<d間の加工面を目標加工形状T0(x)に
仕上げることができる。
Consider cutting of a workpiece to 0 ≦ x <d. Now, if it is known that the pre-machined surface shape between s ≦ x <s + d is known as a primary reference surface, the geometrical relation of the following equation is obtained as in the equation (1). Ib (x + s) + P (x + s) = T0 (x) + δ (x) + L (4) where Ib (x) is the output value of the displacement sensor 2b, P
(X) is the pre-machined shape, T0 (x) is the target machined shape, δ
(X) is a correction amount, L is a relative distance between the measurement reference of the displacement meter 2b and the cutting point in the Y-axis direction, and s is a relative distance between the measurement reference of the displacement meter 2b and the cutting point in the X-axis direction. Therefore, in order to finish the target machined surface shape, the correction amount is as follows. δ (x) = P (x + s) + Ib (x + s) -L-T0 (x) (5) Similar to the equation (3), finally, the target machining shape T0 is obtained.
Since the correction amount δ (x) is 0 to finish to (x),
The output of the displacement sensor 2b at each point is given by the following equation. Ib (x + s) = T0 (x) + L + P (x + s) (6) That is, when the pre-machined surface between s ≦ X <s + d is known, Ib (x + s) is cut so as to satisfy the expression (6). If the control is performed, it is possible to finish the machined surface in the range of 0 ≦ X <d to the target machined shape T0 (x) regardless of the table drive error M (x).

【0014】ところで、変位計2aと変位計2bとの間
には、次の幾何学的関係がある。 P(s+d+x)+Ib(s+x)=P(s+x)+Ia(s+d+x) …(7) ここで、Ia(x)は変位計2aの出力値である。した
がって、s+d≦x<s+2・d間の前加工形状は次式
となる。 P(s+d+x)=P(s+x)+Ia(s+d+x)−Ib(s+x) …(8) (8)式は、s+d≦x<s+2・d間の前加工形状
は、s≦x<s+d区間の前加工面形状P(x)が既知
であれば、これを第1次参照面として変位計2a,2b
の出力より求めることができることを示している。
By the way, there is the following geometrical relationship between the displacement gauges 2a and 2b. P (s + d + x) + Ib (s + x) = P (s + x) + Ia (s + d + x) (7) where Ia (x) is the output value of the displacement meter 2a. Therefore, the pre-machined shape between s + d ≦ x <s + 2 · d is as follows. P (s + d + x) = P (s + x) + Ia (s + d + x) -Ib (s + x) (8) Formula (8) shows that the pre-machined shape between s + d ≦ x <s + 2 · d is before the s ≦ x <s + d section. If the machined surface shape P (x) is known, this is used as the primary reference surface for the displacement gauges 2a, 2b.
It can be obtained from the output of.

【0015】まとめると、s≦x<s+d区間の前加工
面形状P(X)を第1次参照面として、0≦x<d間の
加工を(6)式を満足するように加工を行い、かつ同時
に(8)式により第2次参照面となるs≦x<s+2・
d間の前加工面形状P(x)を求めることができる。次
に、この第2次参照を基準に、加工と第3次参照面の測
定を行い、この補正切削と測定を、順次繰り返すことに
より、予め全ての前加工面形状を測定しストアしておく
事なく、加工全面を高精度に仕上げることができる。
In summary, using the pre-machined surface shape P (X) in the section s ≦ x <s + d as the primary reference surface, the machining between 0 ≦ x <d is carried out so as to satisfy the equation (6). And at the same time, s ≦ x <s + 2, which is the secondary reference surface according to the equation (8).
The pre-processed surface shape P (x) between d can be obtained. Next, based on this secondary reference, processing and measurement of the tertiary reference surface are performed, and by sequentially repeating this correction cutting and measurement, all pre-machined surface shapes are measured and stored in advance. The entire machined surface can be finished with high precision.

【0016】ところで上記説明では、この発明を変位計
2a,2bおよび工具1が駆動する場合について述べた
が、その他被加工物6の方が駆動しても同様であること
は言うまでもない。
By the way, in the above description, the present invention has been described for the case where the displacement gauges 2a, 2b and the tool 1 are driven, but it goes without saying that the same applies even if the other workpiece 6 is driven.

【0017】また、本発明は加工の原理について述べた
ものであり、変位計2a,2bの種類、精度について言
及するものでない。
Further, the present invention describes the principle of processing, and does not refer to the types and accuracy of the displacement gauges 2a and 2b.

【0018】なお、上記実施例では、変位計2a,2b
を計2個用いているが、精度を高めるためそれ以上用い
てもよい。
In the above embodiment, the displacement gauges 2a and 2b are used.
Two in total are used, but more may be used in order to improve accuracy.

【0019】また、上記実施例では本発明を切削加工に
適用した場合を示したが、形状を加工する他の加工にも
適用できる。
Further, in the above-mentioned embodiment, the case where the present invention is applied to the cutting process is shown, but it can be applied to other processes for processing the shape.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、被加工
物を加工する工具が進行する前方に、工具と連動し被加
工物との相対位置を出力する変位形を上記工具の進行方
向一列に間隔をあけて複数個有し、これらの変位計の変
位出力値より、前加工面を基準に工具と被加工物の相対
変位量を計算し、加工量を補正するように構成したの
で、加工と同時に前加工面形状を測定でき、全ての前加
工面形状を予め測定しストアしておくことなしに、前加
工面形状を基準に加工が行える。
As described above, according to the present invention, in advance of the advance of the tool for machining the workpiece, the displacement type which outputs the relative position with respect to the workpiece in cooperation with the tool is advanced. A plurality of them are arranged in a line in the direction at intervals, and the relative displacement amount of the tool and the work piece is calculated based on the displacement output value of these displacement gauges based on the pre-machined surface, and the machining amount is corrected. Therefore, the pre-machined surface shape can be measured at the same time as the machining, and the machining can be performed on the basis of the pre-machined surface shape without measuring and storing all the pre-machined surface shapes in advance.

【0021】加工方法の一例としては、被加工物の特定
の区間を参照面として、工具に近い変位計出力より工具
と被加工物との相対距離を求めて切込み補正すると同時
に、上記工具に近い変位計出力ともう1つの変位計出力
の差を積算して行くことにより、次の被加工物の形状を
測定しストアすることで次の加工時の参照面とし、さら
にこのプロセスを順次繰り返すことにより被加工物を加
工することにより、簡単な方法で上記のような効果が得
られる。
As an example of the machining method, using a specific section of the workpiece as a reference surface, the relative distance between the tool and the workpiece is obtained from the output of the displacement meter close to the tool, and the depth of cut is corrected, and at the same time, it is close to the tool. By accumulating the difference between the displacement gauge output and another displacement gauge output, the shape of the next workpiece is measured and stored to be used as the reference surface for the next machining, and this process is repeated in sequence. By processing the object to be processed by the above, the above effects can be obtained by a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による切削装置を示す構成
図である。
FIG. 1 is a configuration diagram showing a cutting device according to an embodiment of the present invention.

【図2】この発明の一実施例による切削方法を説明する
説明図である。
FIG. 2 is an explanatory diagram illustrating a cutting method according to an embodiment of the present invention.

【図3】従来の切削装置を示す構成図である。FIG. 3 is a configuration diagram showing a conventional cutting device.

【図4】従来の切削方法を説明する説明図である。FIG. 4 is an explanatory diagram illustrating a conventional cutting method.

【符号の説明】[Explanation of symbols]

1 工具 2a,2b 変位計 3 微小移動装置 4 テーブル 6 被加工物 7 計算機 8 ドライブアンプ 1 Tool 2a, 2b Displacement meter 3 Micro mover 4 Table 6 Workpiece 7 Computer 8 Drive amplifier

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月10日[Submission date] May 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】次に、補正原理を説明する。幾何学的関係
より次式が得られる。 I(x+s)+P(x)=T0(x)+δ(x)+L …(1) ここで、I(x)は変位センサ2aの出力値、P(x)
は前加工面6a形状、T0(x)は目標加工形状、δ
(x)は補正量、Lは変位計2aの測定基準と切削ポイ
ントのY軸方向の相対距離、sは変位計2aの測定基準
から切削ポイントのX軸方向の相対距離である。さら
に、(1)式より次式が得られる。 δ(x)=P(x+s)+I(x+s)−L−T0(x) …(2) したがって、前加工形状P(x)を正確に把握してお
き、かつ加工時の変位センサ2aの出力値より、補正量
δ(x)を求めることができる。最終的には、目標加工
形状T0(x)に仕上げるには補正量δ(x)が0であ
るから、各点での変位計出力は次式となる。 I(x+s)=T0(x)+LP(x+s) …(3) つまり、I(x+s)が(3)式を満足するように切込
み制御を行なえば、テーブル駆動誤差M(x)に関係な
く、目標加工形状T0(x) に仕上げることができる。
Next, the correction principle will be described. The following equation is obtained from the geometrical relation. I (x + s) + P (x) = T0 (x) + δ (x) + L (1) where I (x) is the output value of the displacement sensor 2a and P (x)
Is the pre-machined surface 6a shape, T0 (x) is the target machined shape, δ
(X) is a correction amount, L is a relative distance between the measurement reference of the displacement meter 2a and the cutting point in the Y-axis direction, and s is a relative distance between the measurement reference of the displacement meter 2a and the cutting point in the X-axis direction. Further, the following equation is obtained from the equation (1). δ (x) = P (x + s) + I (x + s) -L-T0 (x) (2) Therefore, the pre-machining shape P (x) is accurately grasped and the output of the displacement sensor 2a at the time of machining The correction amount δ (x) can be obtained from the value. Finally, since the correction amount δ (x) is 0 for finishing the target machining shape T0 (x), the displacement meter output at each point is given by the following equation. I (x + s) = T0 (x) + L - P (x + s) (3) That is, if the cutting control is performed so that I (x + s) satisfies the expression (3), it is related to the table drive error M (x). Instead, the target machining shape T0 (x) can be finished.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】被加工物の0≦x<dまでの切削を考え
る。いま、前加工面形状のs≦x<s+d間が既知であ
るとすると、その間を第1次参照面とすると、(1)式
と同様に、次式の幾何学的関係がある。 Ib(x+s)+P(x+s)=T0(x)+δ(x)+L …(4) ここで、Ib(x)は変位センサ2bの出力値、P
(x)は前加工形状、T0(x)は目標加工形状、δ
(x)は補正量、Lは変位計2bの測定基準と切削ポイ
ントのY軸方向の相対距離、sは変位計2bの測定基準
から切削ポイントのX軸方向の相対距離である。dは変
位計2bと変位計2aの相対距離である。したがって、目標
加工面形状に仕上げるには、補正量は次式となる。 δ(x)=P(x+s)+Ib(x+s)−L−T0(x) …(5) (3)式と同様に、最終的には、目標加工形状T0
(x)に仕上げるには補正量δ(x)が0であるから、
各点での変位センサ2bの出力は次式となる。 Ib(x+s)=T0(x)+LP(x+s) …(6) つまり、s≦<s+d間の前加工面が既知である場
合、Ib(x+s)が(6)式を満足するように切込み
制御を行なえば、テーブル駆動誤差M(x)に関係な
く、0≦<d間の加工面を目標加工形状T0(x)に
仕上げることができる。
Consider cutting of a workpiece to 0 ≦ x <d. Now, if it is known that the pre-machined surface shape between s ≦ x <s + d is known as a primary reference surface, the geometrical relation of the following equation is obtained as in the equation (1). Ib (x + s) + P (x + s) = T0 (x) + δ (x) + L (4) where Ib (x) is the output value of the displacement sensor 2b, P
(X) is the pre-machined shape, T0 (x) is the target machined shape, δ
(X) is a correction amount, L is a relative distance between the measurement reference of the displacement meter 2b and the cutting point in the Y-axis direction, and s is a relative distance between the measurement reference of the displacement meter 2b and the cutting point in the X-axis direction. d is strange
It is the relative distance between the position gauge 2b and the displacement gauge 2a. Therefore, in order to finish the target machined surface shape, the correction amount is as follows. δ (x) = P (x + s) + Ib (x + s) -L-T0 (x) (5) Similar to the equation (3), finally, the target machining shape T0 is obtained.
Since the correction amount δ (x) is 0 to finish to (x),
The output of the displacement sensor 2b at each point is given by the following equation. Ib (x + s) = T0 (x) + L P (x + s) (6) That is, when the pre-machined surface between s ≦ x <s + d is known, Ib (x + s) satisfies the expression (6). If the cutting control is performed on, the machined surface in the range of 0 ≦ x <d can be finished to the target machined shape T0 (x) regardless of the table drive error M (x).

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】ところで、変位計2aと変位計2bとの間
には、次の幾何学的関係がある。 P(s+d+x)+I(s+d+x)=P(s+x)+Is+x) …(7) ここで、Ia(x)は変位計2aの出力値である。した
がって、s+d≦x<s+2・d間の前加工形状は次式
となる。 P(s+d+x)=P(s+x)+Is+x)−I(s+d+x) …(8) (8)式は、s+d≦x<s+2・d間の前加工形状
は、s≦x<s+d区間の前加工面形状P(x)が既知
であれば、これを第1次参照面として変位計2a,2b
の出力より求めることができることを示している。
By the way, there is the following geometrical relationship between the displacement gauges 2a and 2b. P (s + d + x) + Ia (s + d + x) = P (s + x) + Ib ( s + x ) ... (7) Here, Ia (x) is an output value of the displacement meter 2a. Therefore, the pre-machined shape between s + d ≦ x <s + 2 · d is as follows. P (s + d + x) = P (s + x) + I b (s + x) -I a (s + d + x) ... (8) (8) expression before machining shape between s + d ≦ x <s + 2 · d is s ≦ x < If the pre-machined surface shape P (x) in the s + d section is known, this is used as the primary reference surface for the displacement meters 2a, 2b.
It can be obtained from the output of.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被加工物を加工する工具が進行する前方
に、工具と連動し被加工物との相対位置を出力する変位
形を上記工具の進行方向一列に間隔をあけて複数個有
し、これらの変位計の変位出力値より、前加工面を基準
に工具と被加工物の相対変位量を計算し、加工量を補正
するように構成した加工装置。
1. A plurality of displacement types, which are interlocked with the tool and output a relative position with respect to the workpiece, are provided in a line in the traveling direction of the tool at intervals in front of the tool for machining the workpiece. A processing device configured to calculate the relative displacement amount of the tool and the workpiece with reference to the pre-processing surface from the displacement output values of these displacement gauges and correct the processing amount.
【請求項2】 請求項1記載の加工装置において、被加
工物の特定の区間を参照面として、工具に近い変位計出
力より工具と被加工物との相対距離を求めて加工量を補
正すると同時に、上記工具に近い変位計出力ともう1つ
の変位計出力の差を積算して行くことにより、次の被加
工物の形状を測定しストアすることで次の加工時の参照
面とし、さらにこのプロセスを順次繰り返すことにより
被加工物を加工することを特徴とする加工方法。
2. The machining apparatus according to claim 1, wherein the machining amount is corrected by obtaining a relative distance between the tool and the workpiece from an output of a displacement meter close to the tool with a specific section of the workpiece as a reference surface. At the same time, the difference between the displacement gauge output close to that of the tool and another displacement gauge output is integrated to measure and store the shape of the next workpiece, which is used as the reference surface for the next machining. A processing method characterized by processing a workpiece by sequentially repeating this process.
JP30370492A 1992-11-13 1992-11-13 Working device and method thereof Pending JPH06155238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30370492A JPH06155238A (en) 1992-11-13 1992-11-13 Working device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30370492A JPH06155238A (en) 1992-11-13 1992-11-13 Working device and method thereof

Publications (1)

Publication Number Publication Date
JPH06155238A true JPH06155238A (en) 1994-06-03

Family

ID=17924249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30370492A Pending JPH06155238A (en) 1992-11-13 1992-11-13 Working device and method thereof

Country Status (1)

Country Link
JP (1) JPH06155238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182162A (en) * 2014-03-24 2015-10-22 株式会社三井ハイテック Method and device for processing slide lower face of press machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182162A (en) * 2014-03-24 2015-10-22 株式会社三井ハイテック Method and device for processing slide lower face of press machine

Similar Documents

Publication Publication Date Title
EP3327524A1 (en) Kinematic calibration
KR101130596B1 (en) Method of calculating probe-mounting position in on-board measuring device
CN106709193A (en) Aero-engine thin-wall blade processing bias compensation method based on learning algorithm
CN104759942A (en) Online milling deformation measurement and complementation machining method for thin-walled part
JP2008114322A (en) Position correcting method and position correcting device in machine tool
CN102596498A (en) Tooth-profile management system for shaving-cutter grinding machine
CN107756128B (en) Thermal distortion compensation method
CN107580535A (en) Method for running gear cutting machine
JP3986320B2 (en) Gear machining method and apparatus
JP2001022422A (en) Finishing method and finishing device
JPH06155238A (en) Working device and method thereof
JPH07237088A (en) Machining device and machining
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
JPH07237035A (en) Documentation method for removing material when workpiece with front wheel contour worked is subjected to high precision finishing
JP2517361B2 (en) Intelligent bending press
JPH06138921A (en) Measuring method and automatic correction method for linear interpolation feeding accuracy of numerically controlled machine tool
JPH11156676A (en) Thermal displacement correcting method for machine tool, and its device
Mustafin et al. Calculation and experimental analysis of profile clearance values in screw compressor rotors
JPH08141883A (en) Method for correcting thermal displacement of machine tool
CN104985486A (en) Sectional compensation method for ball screw machining
EP2402831A1 (en) Machining device and machining method
JPS56159706A (en) Correction device for extent of displacement of share point of numeric control machine tool
TWI598178B (en) Processing device and method of controlling the profiling using the same
EP0573962A2 (en) Numerical control device for tool driving along non-orthogonal mechanical axes
KR101823052B1 (en) Method of measuring workpiece for correction of cnc machine job