JPH02167498A - Condensate cleaning device - Google Patents

Condensate cleaning device

Info

Publication number
JPH02167498A
JPH02167498A JP63322852A JP32285288A JPH02167498A JP H02167498 A JPH02167498 A JP H02167498A JP 63322852 A JP63322852 A JP 63322852A JP 32285288 A JP32285288 A JP 32285288A JP H02167498 A JPH02167498 A JP H02167498A
Authority
JP
Japan
Prior art keywords
condensate
flow rate
feed water
bypass flow
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63322852A
Other languages
Japanese (ja)
Inventor
Masahiko Hirayama
平山 政彦
Masatoshi Hanabusa
萼 昌利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP63322852A priority Critical patent/JPH02167498A/en
Publication of JPH02167498A publication Critical patent/JPH02167498A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To reduce the radioactivity concn. on the outside of a reactor and to decrease exposure by calculating Ni and Fe removal rates and adequately adjusting Ni and Fe concns. in condensate and feed water lines. CONSTITUTION:The condensate from a condenser 1 is sent by a condensate pump 2 to a condensate filter 3 where insoluble impurities Ni, Fe and clads are removed. The water soluble impurities are then removed in a condensate desalting device 6 and the condensate is heated up by a feed water pump 8 and a feed water heater 9 and is fed to the reactor 5. Ni and Fe concn. detectors 11, 12 detect respectively the Ni and Fe concns. of the condensate before the filtration and the Ni and Fe concns. of the feed water after passing through the cleaning device and output concn. signals to a bypass flow rate computing element 15. The computing element 15 calculates the Ni and Fe removal rates of the cleaning device by the deviation between the two concns. signals and computes the bypass flow rate of the required min. limit, thereby controlling the opening degree of a bypass flow rate control valve 13. The Ni and Fe concns. in the feed water are thus adjusted.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力発電プラント等における復水浄化装置に
係り、原子炉水中のイオン状放射能濃度の低減に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a condensate purification device in a nuclear power plant or the like, and relates to reducing the concentration of ionic radioactivity in nuclear reactor water.

(従来の技術) 最近の原子力発電プラントにおける復水浄化装置では、
復水ろ過器と復水脱塩器を直列に配置した構成を採用し
ている。ここで原子炉からの復水より復水ろ過器は不溶
性不純物を、復水脱塩器においては水溶性不純物の除去
を効率良〈実施している。第2図は復水、給水系の全体
構成図で、復水器1の復水は復水ポンプ2により復水ろ
過器3に送られ、ここでろ過されるが復水ろ過器3にお
いて目詰まり等により、出入口差圧が高くなった場合に
は、復水ろ過器バイパス弁4が自動的に開き、原子炉5
への給水流量の低下を防止する。次いで復水ろ過器3を
通過した復水は復水脱塩器6を通過するが、ここでも前
記復水ろ過器3と同様に復水脱塩器バイパス弁7か設け
である。復水脱塩器6から出た復水は給水として給水ポ
ンプ7にて圧送され、給水加熱器8により昇温されて原
子炉5に送られる。原子炉5では給水が蒸気となり、タ
ービン発電機9で電気エネルギーに変換され、蒸気は復
水器1内で減圧、冷却されて再び復水となる。
(Prior art) In recent condensate purification devices in nuclear power plants,
A configuration in which a condensate filter and a condensate demineralizer are arranged in series is adopted. Here, the condensate filter efficiently removes insoluble impurities from the condensate from the nuclear reactor, and the condensate demineralizer efficiently removes water-soluble impurities. Figure 2 is an overall configuration diagram of the condensate and water supply system. Condensate from the condenser 1 is sent to the condensate filter 3 by the condensate pump 2, where it is filtered. If the differential pressure at the inlet and outlet increases due to blockage, etc., the condensate filter bypass valve 4 automatically opens and the reactor 5
prevent a decrease in water supply flow rate. Next, the condensate that has passed through the condensate filter 3 passes through a condensate demineralizer 6, which is also provided with a condensate demineralizer bypass valve 7 as in the condensate filter 3. The condensate discharged from the condensate demineralizer 6 is pumped as feed water by a feed water pump 7, heated by a feed water heater 8, and sent to the reactor 5. In the nuclear reactor 5, the feed water becomes steam, which is converted into electrical energy by the turbine generator 9. The steam is depressurized and cooled in the condenser 1, and becomes condensate again.

(発明が解決しようとする課題) 上記復水浄化装置の採用により復水中に含まれたクラッ
ド鉄等が大幅に捕捉排除できたがその反面、炉水中のイ
オン状コバルト−58やコバルト−60の濃度か高くな
り、この結果放射能濃度が高まる問題があった。この原
因は従来炉内においてNi、Co、Feが反応し、安定
なりラッド(NiFe OC0Fe204)を生成して
24ゝ 炉内に残留されていたものが、復水ろ過器3におけるク
ラッドの大幅捕捉によるNi、Feの減少に伴い上記反
応か十分に行われず、この結果イオン状コバルト−58
やコバル+、−GOが炉水中に増加するためで、従って
この炉水が原子炉5外の原子炉冷却材再循環系配管及び
原子炉冷却材浄化系配管等に流れて、付近の作業員に対
する被曝線量が増加するという欠点があった。
(Problems to be Solved by the Invention) By adopting the above condensate purification device, clad iron contained in condensate could be largely captured and eliminated, but on the other hand, ionic cobalt-58 and cobalt-60 in the reactor water There was a problem that the radioactivity concentration increased as a result. The reason for this is that Ni, Co, and Fe react in the conventional furnace, producing stable rad (NiFe OC0Fe204), which remained in the 24゜ furnace, due to a large amount of crud being captured in the condensate filter 3. Due to the decrease in Ni and Fe, the above reaction is not carried out sufficiently, and as a result, ionic cobalt-58
This is because Kobal+, -GO increases in the reactor water, and this reactor water flows into the reactor coolant recirculation system piping and reactor coolant purification system piping outside reactor 5, causing damage to nearby workers. The disadvantage was that the exposure dose to the body increased.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、復水の一部を復水ろ過器をバイパスさせて給
水中のN l −、F e濃度を調整し、このNi、F
eに炉水中のイオン状コバルト−58やコバルト−60
を反応させて原子炉内に残留させ、炉外における放射能
濃度を低下して被曝を低減する復水浄化装置を提供する
ことにある。
The present invention has been made in view of the above, and its purpose is to make a part of the condensate bypass the condensate filter to adjust the Nl- and Fe concentrations in the water supply, and to F
ionic cobalt-58 and cobalt-60 in the reactor water.
An object of the present invention is to provide a condensate purification device which reacts radioactive substances and causes them to remain in a nuclear reactor, thereby reducing radioactivity concentration outside the reactor and reducing exposure.

[発明の構成] (課題を解決するための手段) 復水及び給水ラインに介挿した復水ろ過器及び復水脱塩
器と、復水ろ過器の出入口側に橋絡して設けたバイパス
流量調節弁と、前記復水ろ過器の入口側及び復水脱塩器
の出口側に設置したNi、Fe濃度検出器と、この両N
 l % F e濃度検出器の濃度信号から前記復水ろ
過器のN 1 % F e除去率の算出と復水及び給水
ラインにおけるNi1Fe濃度を適切に調整するようバ
イパス流量調節弁を制御するバイパス流量演算器を具備
する。
[Structure of the invention] (Means for solving the problem) A condensate filter and a condensate demineralizer inserted in a condensate and water supply line, and a bypass provided bridging the entrance and exit side of the condensate filter. A flow control valve, Ni and Fe concentration detectors installed on the inlet side of the condensate filter and the outlet side of the condensate demineralizer, and both N
Calculating the N 1 % Fe removal rate of the condensate filter from the concentration signal of the l % Fe concentration detector and controlling the bypass flow rate control valve to appropriately adjust the Ni1Fe concentration in the condensate and water supply lines. Equipped with a computing unit.

(作 用) 復水器からの復水は復水ろ過器にて不溶性不純物である
Ni、Feやクラッド等が除去され、次いて復水脱塩器
において水溶性不純物が除去された後、給水加熱器で加
熱昇温されて原子炉に給水される。この際復水ろ過器の
入口側と、復水ろ過器及び復水脱塩器の浄化装置を経由
した後の給水加熱器の入口側に設けたNi、Fe濃度検
出器により、夫々におけるN l % F e濃度を検
出して、バイパス流量演算器において画濃度信号の偏差
から復水ろ過器を含む浄化装置におけるNi、Feの除
去率を算出すると共に、給水のNi、Fe濃度比率が前
記イオン状コバルト−58やコバルト−60を反応させ
るに適切な値で、かつ浄化機能を損なわない必要最低限
のバイパス流量を演算して、バイパス流量調節弁の開度
を制御し、給水におけるNi、Fe濃度を調整する。
(Function) The condensate from the condenser is passed through a condensate filter to remove insoluble impurities such as Ni, Fe, and crud, and then to a condensate demineralizer to remove water-soluble impurities. The water is heated to a higher temperature by a heater and then supplied to the reactor. At this time, Ni and Fe concentration detectors installed at the inlet side of the condensate filter and at the inlet side of the feed water heater after passing through the condensate filter and condensate demineralizer purification devices are used to detect Nl in each. % Fe concentration is detected, and the bypass flow rate calculator calculates the removal rate of Ni and Fe in the purification device including the condensate filter from the deviation of the image concentration signal, and also calculates the Ni and Fe concentration ratio of the feed water from the deviation of the image concentration signal. By calculating the minimum necessary bypass flow rate that is appropriate for reacting cobalt-58 and cobalt-60 and does not impair the purification function, the opening degree of the bypass flow rate control valve is controlled, and Ni, Fe in the water supply is controlled. Adjust concentration.

(実施例) 本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

なお上記した従来技術と同じ構成部分については同一符
号を付し、詳細な説明は省略する。第1図は復水、給水
系の全体構成図で、復水器1の復水は復水ポンプ2によ
り不溶性不純物の除去を行う復水ろ過器3に送られ、次
いで水溶性不純物の除去を行う復水脱塩器6を経由した
後、給水ポンプ8にて給水加熱器9に圧送され、加熱昇
温されて原子炉5に給水される。原子炉5では蒸気とな
りタービン発電機10で電気エネルギーに変換され、蒸
気は復水器1内で減圧、冷却されて再び復水となる。復
水ろ過器3の人口側と復水脱塩器6の出口側には夫々N
i5Fe濃度検出器11.12が設けられている。また
復水ろ過器3を橋絡してバイパス流量調節弁13と、復
水脱塩器6を橋絡したバイパス弁14が配設してあり、
さらに前記2つのNi1Fe濃度検出器11.12の出
力信号を入力して、復水ろ過器3におけるNi、Feの
除去率を算出し、給水のNi、Fe濃度比率が適切とな
るよう前記バイパス流量調節弁13を制御するバイパス
流量演算器15を設置して構成する。
Note that the same components as those in the prior art described above are given the same reference numerals, and detailed explanations will be omitted. Figure 1 is an overall configuration diagram of the condensate and water supply system. Condensate from condenser 1 is sent by condensate pump 2 to condensate filter 3, which removes insoluble impurities, and then to remove water-soluble impurities. After passing through the condensate demineralizer 6, the water is pumped to the feed water heater 9 by the feed water pump 8, heated and heated, and then supplied to the nuclear reactor 5. In the nuclear reactor 5, the steam becomes steam, which is converted into electrical energy by the turbine generator 10. The steam is depressurized and cooled in the condenser 1, and becomes condensate again. N is installed on the population side of the condensate filter 3 and the outlet side of the condensate demineralizer 6, respectively.
An i5Fe concentration detector 11.12 is provided. In addition, a bypass flow control valve 13 is provided that bridges the condensate filter 3, and a bypass valve 14 that bridges the condensate desalination device 6.
Furthermore, the output signals of the two Ni1Fe concentration detectors 11 and 12 are input to calculate the removal rate of Ni and Fe in the condensate filter 3, and the bypass flow rate is adjusted so that the Ni and Fe concentration ratio of the feed water is appropriate. A bypass flow rate calculator 15 that controls the control valve 13 is installed and configured.

次に上記構成による作用について説明する。復水器1か
らの復水は復水ポンプ2により先ず復水ろ過器3に送ら
れて不溶性不純物であるNi1Feやクラッド等が除去
される。次いで復水脱塩器6において水溶性不純物が除
去された後、給水ポンプ8にて給水加熱器9に圧送され
て加熱昇温された後に原子炉5に給水される。原子炉5
では蒸気となりタービン発電機10を経由して再び復水
器1に戻る。復水ろ過器3の人口側に設けたNi、Fe
濃度検出器11は常時ろ過器における復水のNi、Fe
濃度を測定し、また浄化装置を経由した後の給水のNi
5Fe濃度も給水ポンプ8の出口側でNi、Fe濃度検
出器11により常に検出して、いずれの信号もバイパス
流量演算器15に出力する。バイパス流量演算器15に
おいては両Ni1Fe濃度検出器11.12からの濃度
信号の偏差により復水ろ過器3を含む浄化装置における
Ni1Feの除去率を算出すると共に、給水のNi。
Next, the effect of the above configuration will be explained. Condensate from the condenser 1 is first sent to a condensate filter 3 by a condensate pump 2 to remove insoluble impurities such as Ni1Fe and crud. Next, water-soluble impurities are removed in a condensate demineralizer 6, and then the water is pumped to a feed water heater 9 by a feed water pump 8, heated and heated, and then supplied to the nuclear reactor 5. reactor 5
Then, it becomes steam and returns to the condenser 1 again via the turbine generator 10. Ni, Fe installed on the artificial side of the condensate filter 3
The concentration detector 11 constantly detects Ni and Fe in the condensate in the filter.
Measuring the concentration of Ni in the feed water after passing through the purification device
The 5Fe concentration is also constantly detected by the Ni and Fe concentration detector 11 on the outlet side of the water supply pump 8, and both signals are output to the bypass flow rate calculator 15. The bypass flow rate calculator 15 calculates the Ni1Fe removal rate in the purification device including the condensate filter 3 based on the deviation of the concentration signals from both Ni1Fe concentration detectors 11 and 12, and also calculates the Ni1Fe removal rate in the water supply water.

Fe濃度比率が前記イオン状コバルト−58やコバルト
60を反応させるに適切な値で、かつ浄化機能を損なわ
ない必要最低限のバイパス流量を演算して、前記バイパ
ス流量調節弁13の開度を制御する。
The opening degree of the bypass flow rate control valve 13 is controlled by calculating the necessary minimum bypass flow rate at which the Fe concentration ratio is an appropriate value for reacting the ionic cobalt-58 and cobalt-60 and which does not impair the purification function. do.

これにより復水は復水ろ過器3及び復水脱塩器6の浄化
装置を通過する間に、従来と略同様の浄化かなされて給
水としての水質の向上、維持をすると共に、Ni、Fe
濃度を適切に調整して原子炉5に給水される。従ってこ
の給水中のNi、Feは、原子炉5内においてイオン状
コバルト−58やコバルト−60が抽出されても、これ
と直ちに反応してクラッド化し炉内に捕捉固定されるの
で、炉水中のイオン状コバルト−58やコバルト−60
による放射能濃度か低下し、この結果炉水が前記の原子
炉冷却材再循環系配管及び原子炉冷抑制浄化系配管等に
流れても付近の被曝線量を増加させることがない。
As a result, while the condensate passes through the condensate filter 3 and the condensate demineralizer 6 purification devices, it is purified in substantially the same manner as in the past, improving and maintaining the water quality as water supply, and removing Ni, Fe, etc.
The water is supplied to the reactor 5 with its concentration adjusted appropriately. Therefore, even if ionized cobalt-58 and cobalt-60 are extracted in the reactor 5, Ni and Fe in this feed water immediately react with them to form a cladding and are captured and fixed in the reactor. Ionic cobalt-58 and cobalt-60
As a result, even if reactor water flows into the reactor coolant recirculation system piping, reactor cold suppression purification system piping, etc., the radiation exposure dose in the vicinity will not increase.

[発明の効果] 以上本発明によれば、復水ろ過器を含めた浄化装置の浄
化機能を低下することなく、炉水中のイオン状放射能濃
度を低下して原子炉周辺における作業員の被曝低減と、
水質改善の自動化により運転員の負担を軽減する効果が
ある。
[Effects of the Invention] According to the present invention, the concentration of ionic radioactivity in reactor water can be reduced and the exposure of workers around the reactor can be reduced without reducing the purification function of the purification device including the condensate filter. reduction and
Automating water quality improvement has the effect of reducing the burden on operators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明採用の復水、給水系の全体構成図、第2
図は従来の復水、給水系の全体構成図である。 1・・・復水器、 3・・・復水ろ過器、5・・・原子
炉、  6・・・復水脱塩器、11.12−N i 、
 F e濃度検出器、13・・・バイパス流量調節弁、 15・・・バイパス流量演算器。 代理人 弁理士 大 胡 典 夫 第 図
Figure 1 is an overall configuration diagram of the condensate and water supply system adopted by the present invention;
The figure is an overall configuration diagram of a conventional condensate and water supply system. 1... Condenser, 3... Condensate filter, 5... Nuclear reactor, 6... Condensate demineralizer, 11.12-N i,
F e concentration detector, 13... Bypass flow rate control valve, 15... Bypass flow rate calculator. Agent Patent Attorney Norifu Ogo

Claims (1)

【特許請求の範囲】[Claims] 原子力発電プラント等の復水及び給水ラインに介挿した
復水ろ過器及び復水脱塩器と、前記復水ろ過器の出入口
側に橋絡して設けたバイパス流量調節弁と、前記復水ろ
過器の入口側及び復水脱塩器の出口側に設置したNi、
Fe濃度検出器と、この両Ni、Fe濃度検出器の濃度
信号から前記復水ろ過器のNi、Fe除去率の算出と復
水及び給水ラインにおけるNi、Fe濃度を適切に調整
するようバイパス流量調節弁を制御するバイパス流量演
算器からなることを特徴とする復水浄化装置。
A condensate filter and a condensate demineralizer inserted in a condensate and water supply line of a nuclear power plant, etc., a bypass flow rate control valve provided in a bridge on the inlet/outlet side of the condensate filter, and the condensate Ni installed on the inlet side of the filter and the outlet side of the condensate demineralizer,
Calculate the Ni and Fe removal rate of the condensate filter from the Fe concentration detector and the concentration signals of both Ni and Fe concentration detectors, and adjust the bypass flow rate to appropriately adjust the Ni and Fe concentrations in the condensate and water supply lines. A condensate purification device comprising a bypass flow rate calculator that controls a control valve.
JP63322852A 1988-12-21 1988-12-21 Condensate cleaning device Pending JPH02167498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322852A JPH02167498A (en) 1988-12-21 1988-12-21 Condensate cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322852A JPH02167498A (en) 1988-12-21 1988-12-21 Condensate cleaning device

Publications (1)

Publication Number Publication Date
JPH02167498A true JPH02167498A (en) 1990-06-27

Family

ID=18148320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322852A Pending JPH02167498A (en) 1988-12-21 1988-12-21 Condensate cleaning device

Country Status (1)

Country Link
JP (1) JPH02167498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088417A (en) * 1996-04-01 2000-07-11 Siemens Aktiengesellschaft Apparatus and method for leak detection
JP2014115110A (en) * 2012-12-06 2014-06-26 Toshiba Corp α NUCLIDE SEPARATION METHOD FROM SODIUM CHLORIDE-CONTAINING WASTE LIQUID, AND α NUCLIDE SEPARATION SYSTEM FROM SODIUM CHLORIDE-CONTAINING WASTE LIQUID

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088417A (en) * 1996-04-01 2000-07-11 Siemens Aktiengesellschaft Apparatus and method for leak detection
JP2014115110A (en) * 2012-12-06 2014-06-26 Toshiba Corp α NUCLIDE SEPARATION METHOD FROM SODIUM CHLORIDE-CONTAINING WASTE LIQUID, AND α NUCLIDE SEPARATION SYSTEM FROM SODIUM CHLORIDE-CONTAINING WASTE LIQUID

Similar Documents

Publication Publication Date Title
JPH02167498A (en) Condensate cleaning device
CA1237203A (en) Ultrafiltration circuit for the primary cooling fluid of a pressurized-water nuclear reactor
JP2817741B2 (en) Water flow safety device for condensate treatment equipment
JPH01118799A (en) Method for controlling iron concentration in feed water of nuclear power plant
ES464917A1 (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
JPH0697270B2 (en) Facility for sampling reactor water
JPH07128488A (en) Reactor power plant
JPH0631815B2 (en) Nuclear power plant water supply system
JPH0666000B2 (en) Condensate purification system control method for boiling water nuclear power plant
JPS55106509A (en) Protector for ultrafiltration filter
JPH06167596A (en) Corrosion suppression method and device for reactor primary system structure material
JPH0213758B2 (en)
JPH03117802A (en) Desalination treatment system
JPS6176993A (en) Method and device for controlling feed water to nuclear reactor
JPS6379099A (en) Feedwater dissolved oxygen regulator
JPS63252295A (en) Method of testing leakage of pressure vessel for nuclear reactor
JPS56106012A (en) Condensate controlling device
JPS60239699A (en) Sample sampler for nuclear reactor water
JPH0425798A (en) Condensate purification system
JP2685472B2 (en) Condensate system control method and device
JPS5979193A (en) Cleaning device of feedwater heater
JPH0477879B2 (en)
JPS62274299A (en) Nuclear power facility
JPH02272206A (en) Water supply device and feed water control method therefor
JPS608476B2 (en) Filter control device in radioactive waste treatment system