JPS608476B2 - Filter control device in radioactive waste treatment system - Google Patents

Filter control device in radioactive waste treatment system

Info

Publication number
JPS608476B2
JPS608476B2 JP55160276A JP16027680A JPS608476B2 JP S608476 B2 JPS608476 B2 JP S608476B2 JP 55160276 A JP55160276 A JP 55160276A JP 16027680 A JP16027680 A JP 16027680A JP S608476 B2 JPS608476 B2 JP S608476B2
Authority
JP
Japan
Prior art keywords
filter
differential pressure
flow rate
output signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55160276A
Other languages
Japanese (ja)
Other versions
JPS5784398A (en
Inventor
端 渡辺
達雄 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP55160276A priority Critical patent/JPS608476B2/en
Publication of JPS5784398A publication Critical patent/JPS5784398A/en
Publication of JPS608476B2 publication Critical patent/JPS608476B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Filtration Of Liquid (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明はろ過器制御装置に係り、特に原子力発電所の放
射性廃棄物処理系統において廃液を浄化するろ過器の制
御を行うに好適なる過器制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a filter control device, and more particularly to a filter control device suitable for controlling a filter for purifying waste liquid in a radioactive waste treatment system of a nuclear power plant.

従来から、原子力発電所の放射性廃棄物処理系統の廃液
の浄化装置としては、ろ過器を用いるのが適例であるが
、このろ過器は流量変動があるとる剤で捕獲した固形不
純物がろ剤から遊離してしまうため、一定流量制御を行
っている。
Traditionally, a filter has been used as a purification device for waste liquid in the radioactive waste treatment system of a nuclear power plant. Therefore, constant flow rate control is performed.

また、ろ過器のる剤のつまりを検出する装置として、ろ
過器の出入口に差圧計を設け、その差圧値とある定めら
れた設定値との比較により、つまりを検出してろ剤の再
生を行っている。しかしながら、かかる従来の制御方式
においては、以下に述べる様な問題点がある。
In addition, a differential pressure gauge is installed at the entrance and exit of the filter as a device to detect clogging of the filter agent, and by comparing the differential pressure value with a certain set value, clogging is detected and the filter agent is regenerated. Is going. However, such conventional control methods have the following problems.

先ず〜流量制御に当って「通常の給液流量の一定流量制
御のみでは「停止時に流量制御弁が全開となるため、ポ
ンプ起動時等に突流が発生しろ剤に捕獲されていた固形
不純物が遊離してしまい、出口水質が低下する。これを
解決するために「ろ過器出口に再循環ラインを設け、ポ
ンプ起動後一定時間は再循環運転を行うことも考えられ
るが、運転時間が延びてしまい「運転効率が低下すると
いう欠点がある。一方、ろ過器のつまり検出においても
げ流量が変動する場合には差圧値が流量に応じて変化す
るので、一定の設定値でつまり検出を行うと適正なつま
り検出が行えない。このため、従来においては、差圧値
が一定の設定値に達する前にろ剤の交換を行うことが多
くなってしまい「放射能を含んだ使用済ろ剤の発生量を
いたずらに増大する原因となっていた。従って、本発明
は上記従釆技術の問題点に鑑みてなされたもので、その
目的とするところは、ポンプ起動時における突流を防ぐ
ために、ポンプ停止時には流量制御弁を全閉とし、ポン
プ起動時には流量制御弁を徐々に開するように制御する
とともに、ろ剤のつまり検出を流量値によって補正した
差圧値を用いて行なうことにより適正なつまり検出を行
ってろ剤再生を行わせることが可能なる過器制御装置を
提供することにある。
First of all, when controlling the flow rate, it is important to note that if only the normal constant flow rate control of the liquid supply flow rate is used, the flow control valve will be fully open when the pump is stopped, so a sudden flow will occur when the pump is started, and solid impurities captured in the filter medium will be liberated. In order to solve this problem, it may be possible to install a recirculation line at the filter outlet and run the recirculation line for a certain period of time after the pump is started, but the operation time will be extended. "It has the disadvantage of reducing operating efficiency. On the other hand, if the flow rate fluctuates when detecting blockage in the filter, the differential pressure value will change depending on the flow rate, so detecting blockage at a fixed value is appropriate. Therefore, in the past, the filter medium was often replaced before the differential pressure value reached a certain set value, resulting in the generation of used filter medium containing radioactivity. Therefore, the present invention was made in view of the problems of the above-mentioned conventional technology, and its purpose is to stop the pump in order to prevent the rush of flow when starting the pump. At times, the flow control valve is fully closed, and when the pump is started, the flow control valve is controlled to gradually open. At the same time, filter agent blockage is detected using a differential pressure value corrected by the flow rate value, thereby ensuring proper blockage detection. An object of the present invention is to provide a filter control device capable of regenerating a filter medium by performing the following steps.

以下「図面に従って本発明のろ過器制御装置を更に詳細
に説明する。
The filter control device of the present invention will be explained in more detail below with reference to the drawings.

第1図は本発明の一実施例に係るろ過器制御装3畳のブ
ロック図で、同図中1は放射性廃液を導入するためのポ
ンプ、5は前記ポンプ1の出口配管、2は前記ポンプ亀
の出口流量を測定する流量計、3は流量制御弁、4は放
射性廃液をろ過するろ過器、8は前記ポンプ1の起動信
号22に基い3てランプ関数信号14を出力するランプ
関数発生器、9は流量を手動で設定して流量設定信号富
5を発生する手敷設定器、6は前記ランプ関数信号翼4
と前記流量設定信号15を比較していずれか低い方の値
を制御信号16として出力する低億優劣先回路、7は前
記流量計2からの出力信号52と前記低値優先回路6か
らの制御信号16を突き合わせて前記流量制御弁3を制
御する流量調節計、13は前記ろ過器4と配管26を介
して接続されるろ剤再生装置、i2は前記ろ過器4の出
入口間の差圧を検出して差圧信号も9を出力する差圧計
、翼1は前記流量計2の出力信号18と前記差圧信号亀
9を入力とし「乗除演算を行う乗除演算器、20‘ま前
記乗除演算器11の出力信号21を受けて前託る剤再生
装置】3に対する信号25を与える差圧設定器である。
FIG. 1 is a block diagram of a 3-tatami filter control system according to an embodiment of the present invention, in which 1 is a pump for introducing radioactive waste liquid, 5 is an outlet pipe of the pump 1, and 2 is the pump. 3 is a flow rate control valve; 4 is a filter for filtering radioactive waste liquid; 8 is a ramp function generator that outputs a ramp function signal 14 based on the starting signal 22 of pump 1; 9 is a manual setting device for manually setting the flow rate and generating a flow rate setting signal 5; 6 is the ramp function signal blade 4;
and the flow rate setting signal 15 and outputs the lower value as the control signal 16; 7 is a control signal 52 from the flow meter 2 and the low value priority circuit 6; a flow rate controller that controls the flow rate control valve 3 by matching signals 16; 13 is a filter medium regenerator connected to the filter 4 via piping 26; i2 is a pressure difference between the inlet and outlet of the filter 4; A differential pressure meter that detects and outputs a differential pressure signal 9, and a blade 1 input the output signal 18 of the flow meter 2 and the differential pressure signal 9, and a multiplication/division calculator 20' that performs multiplication and division operations. This is a differential pressure setting device which receives the output signal 21 of the device 11 and gives a signal 25 to the agent regenerating device [3].

第1図からも明らかな如く、放射性廃液はポンプ川こよ
って出口配管5、流量計2「流量制御弁3を経てる過器
4に給液されている。前記流量計2の出力信号52は流
量調節計7に接続されている。前記流量調節計孔こは低
値優先回路6からの制御信号が接続されておりもその出
力信号17は前記流量制御弁3に接続されている。さら
に前記低値優先回路6へは、ランプ関数発生器8からの
ランプ関数信号亀4と手動設定器9からの流量設定信号
15が接続される。またも前記ランプ関数発生器蟹‘こ
はポンプ富の起動信号が入力されている。前記ろ過器4
の出入口間には差圧計亀2が設けられもその出力である
差圧信号亀9は乗除演算器軍官さと接続される。前記乗
除演算器111こは、前記流量計2からの出力信号亀8
が入力されており、その出力信号2川ま差圧設定器28
1こ接続され〜 さらに前記差圧設定器2蝿の出力信号
25はろ剤再生装置13に接続される。なお、前託る剤
再生装置亀3は配管2鼠こよって前記ろ過器4に接続さ
れる。かかる構成に於いて、その動作を第2図a写りc
,a,e並びに第3図に従って説明する。
As is clear from FIG. 1, the radioactive waste liquid is supplied to the filter vessel 4 via the pump river, the outlet pipe 5, the flow meter 2 and the flow control valve 3.The output signal 52 of the flow meter 2 is It is connected to the flow rate regulator 7.The flow rate regulator hole is connected to the control signal from the low value priority circuit 6, and its output signal 17 is also connected to the flow rate control valve 3. A ramp function signal 4 from a ramp function generator 8 and a flow rate setting signal 15 from a manual setting device 9 are connected to the low value priority circuit 6. A start signal is input to the filter 4.
A differential pressure gauge turtle 2 is provided between the entrance and exit of the differential pressure gauge turtle 2, and its output, a differential pressure signal turtle 9, is connected to a multiplication/division arithmetic unit. The multiplication/division calculator 111 receives the output signal 8 from the flowmeter 2.
is input, and the output signal between the two rivers and the differential pressure setting device 28
Furthermore, the output signal 25 of the differential pressure setting device 2 is connected to the filter medium regenerating device 13. The agent regenerating device 3 is connected to the filter 4 through a pipe 2. In such a configuration, its operation is shown in Figure 2 a and c.
, a, e and FIG. 3.

ちなみに、第2図aはランプ関数発生器8のポンプ亀の
起動後の出力信号〜つまりランプ関数信号亀亀を、第2
図b‘ま手敷設定器9の流量設定信号軍辱を、第2図c
は低値優先回路6の出力信号軍6を、第2図dは流量制
御弁3の弁関度を、また第2図eは流量計2の出力信号
18,52をそれぞれ示す特性図であり「第3図はろ過
器4の給液流量と差圧の関係を示す特性図である。さて
「ポンプ1の起動時においても起動と同時に信号22に
よってランプ関数発生器8が動作し〜その出力であるラ
ンプ関数信号翼4は第2図aに示す如き波形で低値優先
回路6に入力される。
By the way, FIG. 2a shows the output signal after the pump of the ramp function generator 8 is activated, that is, the ramp function signal after the pump is started.
Figure b' shows the flow rate setting signal of the manual setting device 9, and Figure 2 c
2 is a characteristic diagram showing the output signal group 6 of the low value priority circuit 6, FIG. 2 d is a characteristic diagram showing the valve function of the flow rate control valve 3, and FIG. 3 is a characteristic diagram showing the relationship between the flow rate of the liquid supplied to the filter 4 and the differential pressure. Now, when the pump 1 is started, the ramp function generator 8 is operated by the signal 22 at the same time as the start-up. The ramp function signal wing 4 is input to the low value priority circuit 6 with a waveform as shown in FIG. 2a.

一方、低値優先回路6には手動設定器9からの流量設定
信号15が第2図bに示す如き一定値で入力されている
。低値優先回路6においては〜ランプ関数発生器8から
の信号14と手敷設定器9からの信号i5の信号比較を
行い「両者の中で低値な方の信号を低値信号16として
第2図cに示す如き波形で流量調節計7に出力する。そ
の結果「流量調節計7は前記低値優先回路6からの信号
16を目標値として、流量計2からの流量信号52が目
標値に一致するように流量制御弁3の関度を調節するた
め、流量制御弁Sの閥度は第2図dに示す如く制御され
る。以上の作用により「ポンプ1の起動時には、ろ過器
幻の給液流量はランプ関数信号亀川こ塞いて徐々に増加
し「一定時間Lすなわち、ランプ関数信号竜母の傾斜に
より状況に応じて適宜定められる1瞬砂〜30分程度の
時間ts(第舞図c参照)の後はt手動設定器9にあら
かじめ設定された一定流量に制御され〜結果として第2
図eに示す如き給水流量の変化を示す。
On the other hand, the flow rate setting signal 15 from the manual setting device 9 is input to the low value priority circuit 6 at a constant value as shown in FIG. 2b. The low value priority circuit 6 compares the signal 14 from the ramp function generator 8 and the signal i5 from the manual setting device 9, and selects the signal with the lower value as the low value signal 16. The waveform shown in Figure 2c is output to the flow rate controller 7.As a result, the flow rate controller 7 uses the signal 16 from the low value priority circuit 6 as the target value, and the flow rate signal 52 from the flow meter 2 as the target value. In order to adjust the flow rate control valve 3 so as to match the flow rate, the flow rate control valve S is controlled as shown in FIG. The liquid supply flow rate gradually increases as the ramp function signal Kamegawa approaches. After that (see Figure c), the flow rate is controlled to a constant flow rate preset in the manual setting device 9. As a result, the second
Figure e shows the change in water supply flow rate.

このため「ろ過器年1こ突流を発生することなく運転を
開始することが可能である。一方〜乗除演算器蚕翼には
〜ろ過器亀の出入口間に設けられた差圧計量2からの差
圧信号包9が入力され「同時にポンプ亀の吐出配管鼠こ
設けられた流量計2からの流量信号1蟹も入力されてい
る。
For this reason, it is possible to start operation without generating a rush flow in the filter.On the other hand, the multiplier/division calculator has a differential pressure meter 2 installed between the entrance and exit of the filter. The differential pressure signal packet 9 is input, and at the same time, the flow rate signal 1 from the flow meter 2 installed in the discharge pipe of the pump is also input.

前記乗除演算器貫首は前記差圧計量2からの差圧信号1
9を前記流量計2の出力信号によって基準流量における
差圧値に補正する。前記乗除演算器軍Wこよって基準流
量における値に補正された差圧値は、髪圧設定器雲0に
入力される。前記差圧設定器2Mま入力信号が一定値以
上となったことを検出して〜ろ剤再生装置亀3に信号2
5を与えるが、この信号2辱を受け取ったろ剤再生装置
竃3は「配管28を介してろ過器母のる剤を再生する。
ちなみに、ろ剤の再生方法としては「逆圧をかけること
による逆洗やもろ剤そのものの交換等があるが、これら
はろ過器の構造に応じて任意の方法を用いればよい。以
上の作用により、ろ過器4のつまり検出はろ過器4に対
する縦液流量が基準流量に補正された菱圧値によって行
われるため、基準流量以上の給液流量で運転した場合に
第3図に示す如く差圧計竃2の出力信号が大きくなるこ
とによって「実際にはつまりが発生していないにもかか
わらずろ剤再生を開始したり「逆に基準流量以下の給液
流量で運転した場合に、つまりが発生しているにもかか
わらず検出できないような不都合がなくなり、適正につ
まりを検出してろ過器4のろ剤再生を行なうことができ
る。
The multiplication/division operator neck receives the differential pressure signal 1 from the differential pressure measurement 2.
9 is corrected to the differential pressure value at the reference flow rate using the output signal of the flowmeter 2. The differential pressure value corrected to the value at the reference flow rate by the multiplier/divider group W is input to the hair pressure setting device cloud 0. The differential pressure setting device 2M detects that the input signal exceeds a certain value and sends a signal 2 to the filter medium regeneration device turtle 3.
However, upon receiving this signal 2, the filter medium regenerating device 3 regenerates the filter medium through the pipe 28.
By the way, methods for regenerating the filter agent include backwashing by applying back pressure and replacing the filter agent itself, but any method can be used depending on the structure of the filter. , since the filter 4 is detected to be clogged by the pressure value obtained by correcting the vertical liquid flow rate to the filter 4 to the standard flow rate, when the operation is performed at a liquid supply flow rate higher than the standard flow rate, the differential pressure gauge as shown in Fig. 3 is detected. As the output signal from oven 2 becomes larger, it can cause ``filter regeneration to start even though no clogging has actually occurred,'' or ``on the contrary, if the operation is performed at a liquid supply flow rate lower than the standard flow rate, a blockage may occur.'' This eliminates the inconvenience of not being able to detect the clog even though it is clogged, and the filter medium of the filter 4 can be regenerated by properly detecting the clog.

以上述べた如く「本発明によれば、ろ過器の運転開始時
にはろ過器の給液流量をランプ状に増加させるよう制御
することにより突流を防止し、運転開始後一定時間以降
は運転員の設定した流量値に給液流量を一定制定するこ
とによりろ剤に捕獲されていた固形不純物の遊離を防止
するとともにも運転員の設定した給液流量に応じたろ過
器鷺のつまり検出を可能とすることにより「不必要なる
剤再生によって使用済ろ剤の発生量が増加したり「 ま
たつまりが発生しているにもかかわらず運転を続行する
ことによる処理効率の低下を防止することができ「放射
性廃棄物処理系統においてろ過器の運転を適正に制御す
ることを可能ならしめたろ過器制御装置を得ることがで
きるものである。
As stated above, ``According to the present invention, when the filter starts operating, the flow rate of liquid supplied to the filter is controlled to increase in a ramp-like manner to prevent a sudden flow, and after a certain period of time after the start of operation, the operator can set By setting the liquid supply flow rate to a constant value, it is possible to prevent the release of solid impurities captured in the filter medium and also to detect clogging of the filter according to the liquid supply flow rate set by the operator. By doing so, it is possible to prevent an increase in the amount of used filter media generated due to unnecessary agent regeneration and a decrease in processing efficiency due to continued operation despite clogging. It is possible to obtain a filter control device that makes it possible to appropriately control the operation of a filter in a waste treatment system.

【図面の簡単な説明】[Brief explanation of the drawing]

第官図は本発明の一実施例に係るろ過器制御装置のブロ
ック図、第2図「第3図は第亀図機成の動作を説明する
特性図である。 亀……ポンプ、2…・・・流量計、3……流量制御弁「
母・…・・ろ過器「 7・…・・流量調節計、8・・
・…関数発生器、12……差圧計。 第1図 第2図 第3図
Figure 2 is a block diagram of a filter control device according to an embodiment of the present invention, Figure 3 is a characteristic diagram explaining the operation of the mechanism. ...flow meter, 3...flow control valve "
Mother...Filter 7...Flow rate controller, 8...
・...Function generator, 12...Differential pressure gauge. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 原子力発電所の放射性廃棄物処理系統の廃液を浄化
処理するろ過器と、このろ過器のろ剤を再生するろ剤再
生装置と、前記ろ過器に前記廃液を供給するポンプと、
このポンプの吐出側配管に取に付けられた流量計と、こ
の流量計の出力信号を入力して前記ろ過器への給液流量
を制御する流量制御弁と、この流量制御弁の開度を調節
するための信号を出力する流量調節計と、前記ポンプの
運転開始後一定時間はランプ状に上昇する設定値を、そ
の後は一定の設定値を前記流量調節計に供給する流量設
定調整回路と、前記ろ過器の出入口間の差圧を測定する
差圧計と、この差圧計の出力信号を前記流量計の出力信
号で補正して得られた差圧値が一定値を超えた時にその
ことを検出して前記ろ剤再生装置に出力信号を発する差
圧設定調整回路とを備えて成る放射性廃棄物処理系統に
おけるろ過器制御装置。 2 前記流量設定調整回路は、前記ポンプの運転後作動
を開始するランプ関数発生器と、一定の設定値を設定す
るための手動設定器と、前記ランプ関数発生器および手
動設定器の両出力信号を低値優先して、その優先信号を
前記流量調節計に供給する低値優先回路とから構成され
ていることを特徴とする特許請求の範囲第1項記載の放
射性廃棄物処理系統におけるろ過器制御装置。 3 前記差圧設定調整回路は、前記差圧計の出力信号を
前記流量計の出力信号によって基準流量時の差圧値に補
正演算する乗除演算器と、この乗除演算器の出力が一定
値を超えた時そのことを検出して前記ろ剤再生装置に出
力信号を発する差圧設定器とから構成されていることを
特徴とする特許請求の範囲第1項記載の放射性廃棄物処
理系統におけるろ過器制御装置。
[Scope of Claims] 1. A filter that purifies waste liquid from a radioactive waste treatment system of a nuclear power plant, a filter medium regeneration device that regenerates the filter medium of this filter, and supplies the waste liquid to the filter. pump and
A flow meter attached to the discharge side piping of this pump, a flow control valve that inputs the output signal of this flow meter to control the flow rate of liquid supplied to the filter, and an opening degree of this flow control valve. a flow rate controller that outputs a signal for adjustment, and a flow rate setting adjustment circuit that supplies the flow rate controller with a set value that increases in a ramp-like manner for a certain period of time after the pump starts operating, and then a constant set value. , a differential pressure gauge that measures the differential pressure between the inlet and outlet of the filter, and a differential pressure value obtained by correcting the output signal of this differential pressure gauge with the output signal of the flowmeter, which detects when the differential pressure value exceeds a certain value. A filter control device in a radioactive waste treatment system, comprising: a differential pressure setting adjustment circuit that detects and issues an output signal to the filter medium regeneration device. 2. The flow rate setting adjustment circuit includes a ramp function generator that starts operation after operation of the pump, a manual setting device for setting a constant setting value, and output signals of both the ramp function generator and the manual setting device. and a low value priority circuit that gives priority to low values and supplies the priority signal to the flow rate controller. Control device. 3 The differential pressure setting adjustment circuit includes a multiplier/divider that corrects the output signal of the differential pressure gauge to a differential pressure value at a reference flow rate based on the output signal of the flow meter, and a multiplier/divider that corrects the output signal of the differential pressure gauge to a differential pressure value at a reference flow rate, and a A filter in a radioactive waste treatment system according to claim 1, characterized in that the filter is comprised of a differential pressure setting device that detects this when the filter medium regenerates and issues an output signal to the filter medium regenerating device. Control device.
JP55160276A 1980-11-14 1980-11-14 Filter control device in radioactive waste treatment system Expired JPS608476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55160276A JPS608476B2 (en) 1980-11-14 1980-11-14 Filter control device in radioactive waste treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55160276A JPS608476B2 (en) 1980-11-14 1980-11-14 Filter control device in radioactive waste treatment system

Publications (2)

Publication Number Publication Date
JPS5784398A JPS5784398A (en) 1982-05-26
JPS608476B2 true JPS608476B2 (en) 1985-03-02

Family

ID=15711489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55160276A Expired JPS608476B2 (en) 1980-11-14 1980-11-14 Filter control device in radioactive waste treatment system

Country Status (1)

Country Link
JP (1) JPS608476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165195A (en) * 1984-09-05 1986-04-03 株式会社東芝 Waste liquor filter
NL1027050C2 (en) * 2004-09-16 2006-03-20 Norit Membraan Tech Bv Method for filtering a fluid.

Also Published As

Publication number Publication date
JPS5784398A (en) 1982-05-26

Similar Documents

Publication Publication Date Title
CN110713276B (en) Water purifier recovery rate control method, device and system and water purifier
JP3311139B2 (en) Membrane module system
JPS608476B2 (en) Filter control device in radioactive waste treatment system
JPS60129103A (en) Apparatus for preparing extremely pure water
CN211521854U (en) Water purifying device
JPS6483134A (en) Detecting device of clogging of filter of filtering apparatus
JPS607770Y2 (en) Filter cleaning device
JPS6354438B2 (en)
JPH0663555A (en) Water purifying mechanism of ionized water generator
KR900005236Y1 (en) Counter flush alarming apparatus of filter
CN1102137A (en) Automatic control system for variable speed filter pond
JPH04317791A (en) Operating method of raw water concentrating apparatus
JPH0275311A (en) Filtering apparatus
JPS60139306A (en) Operation control of filter used in treatment of waste water
CN108002460B (en) Water filtration system and control method thereof
JPH09285785A (en) Ammonia-type condensate desalter and device for predicting amount of water to be collected
JPS634160B2 (en)
JPH0137191B2 (en)
JPS62284143A (en) Hot water supplying apparatus
JPH0566560B2 (en)
SU979835A1 (en) Apparatus for controlling steam turbine plant heater
JPS58173384A (en) Level controlling system of condensate head tank
SU1200941A2 (en) Method of automatic control of filter operation
JPS57174125A (en) Controlling method for removal rate of adsorbent
JPS58147695A (en) Condensed water filting device for atomic power plant