JPH02165041A - Detection of fatigue damage - Google Patents

Detection of fatigue damage

Info

Publication number
JPH02165041A
JPH02165041A JP31945788A JP31945788A JPH02165041A JP H02165041 A JPH02165041 A JP H02165041A JP 31945788 A JP31945788 A JP 31945788A JP 31945788 A JP31945788 A JP 31945788A JP H02165041 A JPH02165041 A JP H02165041A
Authority
JP
Japan
Prior art keywords
intensity
width
band width
half band
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31945788A
Other languages
Japanese (ja)
Inventor
Nobuhiko Nishimura
宣彦 西村
Fujimitsu Masuyama
不二光 増山
Akira Ishii
陽 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31945788A priority Critical patent/JPH02165041A/en
Publication of JPH02165041A publication Critical patent/JPH02165041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To detect the life of a mechanical part by a method wherein an object to be inspected is irradiated with X rays and a half band width and an integration intensity are measured from a profile of intensity of X rays diffracted to determine a half band width, which is compared with a relational expression between the half band width and a life consumption rate. CONSTITUTION:Homogenous X rays are made to irradiate the surface of an object 2 to be inspected from an X-ray generator 1 for a fixed time and intensity of X rays diffracted from the surface thereof is detected with a diffraction X-ray detector 3 varying an angle continuously. The detector 3 outputs a diffraction X ray intensity profile curve to a measuring device 4 to measure a half band width indicated by ab on the profile curve and an integration intensity indicated by an area caebd. The half band width and an integration intensity signal are inputted into an arithmetic device 5 to calculate a half band width normalized. Then, the results are compared with a half band width/(integration intensity)1/2 - life consumption reference diagram obtained from a preliminary test beforehand to detect a life consumption rate thereby achieving a higher reliability and an extended life of mechanical parts.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば繰夛返し荷重下で使用される機械部品
等に適用される疲労損傷検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fatigue damage detection method applied to, for example, mechanical parts used under repeated loads.

〔従来の技術〕[Conventional technology]

従来より疲労損傷と回折X線半価幅との間には明確な対
応関係があることが知られているが、従来の疲労損傷の
検出に用いる回折X線半価幅測定法では半価幅の絶対値
が用いられていた。
It has been known for a long time that there is a clear correspondence between fatigue damage and diffraction X-ray half-width.However, in the conventional diffraction The absolute value of was used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

機械部品の疲労損傷の非破壊検出法として回折X線半価
幅測定法を用いる場合、従来の方法では、その評価のパ
ラメータとして半価幅の絶対値を用いていたが、同半価
幅の絶対値は、測定時のX線発生源からXls照射位置
までの位置決め精度等のばらつきの影響を受けやすい。
When using the diffraction The absolute value is easily affected by variations in positioning accuracy from the X-ray generation source to the Xls irradiation position during measurement.

すなわち位置決め精度が悪いと、X線発生源からX線照
射位置までの間の気体や試料によって吸収されるX線の
量が変化するため、第6図に示すように回折X線の全エ
ネルギ量を表す積分強度が変化し、同一の疲労損傷の場
合でも半価幅が異なつ比値を示す。この場合には、実際
の疲労損傷と半価幅の絶対値から推定される損傷に違い
を生じ、精密な損傷評価が行えなくなるという課題があ
つ几。
In other words, if positioning accuracy is poor, the amount of X-rays absorbed by the gas or sample between the X-ray source and the X-ray irradiation position will change, so the total energy of diffracted X-rays will decrease as shown in Figure 6. The integrated strength representing the change changes, and even in the case of the same fatigue damage, the half-width shows different ratio values. In this case, there is a problem that there is a difference between the actual fatigue damage and the damage estimated from the absolute value of the half width, making it impossible to perform a precise damage evaluation.

本発明は上記の課題を解決しようとするものである。The present invention seeks to solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、被検体表面KX線を照射し、上記被検体より
回折するX線強度を検出し、回折角度に対する上記回折
X線強度のプロファイルより半価幅と積分強度を測定し
、同半価幅と積分強度より規格化された半価幅を求め、
同規格化半価幅を予め作成され次規格化された半価幅と
寿命消費率の関係式又は関係線図と比較して寿命消費率
を検出することを特徴としている。
The present invention irradiates the surface of an object with K Find the normalized half-width from the width and integrated intensity,
The method is characterized in that the lifetime consumption rate is detected by comparing the normalized half-value width with a relational expression or relationship diagram between the normalized half-value width and the lifetime consumption rate that has been created in advance.

〔作用〕[Effect]

上記において、X線発生器よりX線が被検体表面に照射
され、同被検体表面よ)回折するX線は、回折X線検出
器によりそれぞれの回折角度に対する上記回折X線強度
が検出される。
In the above, X-rays are irradiated onto the surface of the object from the X-ray generator, and the diffracted X-rays are detected by the diffraction X-ray detector for each diffraction angle. .

上記検出器は回折X線強度信号を測定器に送り、同測定
器は上記回折X線強度が回折角度に対して形成するプロ
ファイル曲線の半価幅及び積分強度を測定し、半価幅及
び積分強度信号を演算装置へ出力する。
The detector sends a diffracted X-ray intensity signal to a measuring device, which measures the half-width and integrated intensity of a profile curve formed by the diffracted X-ray intensity with respect to the diffraction angle. Output the intensity signal to a calculation device.

上記演算装置は、次式により規格化された半価幅を算出
する。
The arithmetic device calculates the normalized half width using the following equation.

上記規格化された半価幅は更に、予め疲労試験により同
一材質の試験片により求められている半価@/(積分強
度)9と寿命消費率の関係を表わす関係式又は線図と比
較され、寿命消費率が検出される。
The above-mentioned standardized half-value width is further compared with a relational expression or diagram representing the relationship between half-value @/(integral strength) 9 and life consumption rate, which has been determined in advance using a test piece of the same material through a fatigue test. , the lifetime consumption rate is detected.

上記により、評価のパラメータとして回折X線強度の半
価幅を積分強度値の平方根で除して求めた規格化された
半価幅を用いるため、外乱による寿命評価パラメータの
変動が排除できるようKなシ、機械部品の疲労損傷を非
破壊的に適切に評価でき、機械部品の信頼性向上と寿命
延長を図ることができる。
As described above, since the normalized half-width obtained by dividing the half-width of the diffraction Moreover, fatigue damage of mechanical parts can be appropriately evaluated non-destructively, and reliability and life extension of mechanical parts can be improved.

〔実施例〕〔Example〕

本発明の一実施例に用いる装置を第1図により説明する
An apparatus used in an embodiment of the present invention will be explained with reference to FIG.

第1図に示す本実施例に用いる装置は、被検体2KX線
を照射するX線発生器1、上記被検体2に照射され回折
するX線の強度を検出する回折X線検出器3、同検出器
3より回折X線強度信号を入力して半価幅及び積分強度
信号を演算装置5へ出力する測定器4を備えている。
The apparatus shown in FIG. 1 used in this embodiment includes an X-ray generator 1 for irradiating the object 2K with X-rays, a diffraction X-ray detector 3 for detecting the intensity of the X-rays irradiated onto the object 2 and diffracted, A measuring device 4 is provided which inputs a diffracted X-ray intensity signal from a detector 3 and outputs a half-width and integrated intensity signal to an arithmetic device 5.

上記において、X線発生器1より被検体2の表面に単色
のX線が一定時間照射され、同被検体2の表面より回折
するX線の強度が回折X線検出器3により連続的に角度
を変えて検出される。上記検出器3は第3図に示すよう
な回折X線強度プロファイル曲線を形成する回折X線強
度信号を測定器41C出力し、同測定器4は上記プロフ
ァイル曲線のabで表わされる半価幅及び面積caeb
dで表わされる積分強度を測定する。
In the above, monochromatic X-rays are irradiated from the X-ray generator 1 onto the surface of the object 2 for a certain period of time, and the intensity of the X-rays diffracted from the surface of the object 2 is continuously measured by the diffraction is detected by changing the The detector 3 outputs a diffraction X-ray intensity signal forming a diffraction X-ray intensity profile curve as shown in FIG. area caeb
The integrated intensity, denoted by d, is measured.

上記半価幅及び積分強度信号は演算装置5に入力され、
同演算装置5は次式(1)Kよ〕単位積分強度で規格化
された半価幅を算出する。
The half-width and integrated intensity signals are input to the calculation device 5,
The calculation device 5 calculates the half-width normalized by the unit integrated intensity according to the following equation (1)K.

上記演算装置5では、更に式(1) Icより算出され
几規格化された半価幅が、予め予備試験によって求めら
れ次第5図に示す半価幅/(積分強度)十−寿命消費基
準線図と比較され寿命消費率が検出される。
In the arithmetic unit 5, the half-width calculated from the formula (1) Ic and normalized is determined in advance by a preliminary test, and then the half-width/(integral intensity) - life consumption reference line shown in Fig. 5 is calculated in advance. It is compared with the figure and the life consumption rate is detected.

次に、本実施例の装置により、ボイラ部品中量も大きな
疲労損傷を受ける個所の1フである、第3図に示す事業
用人力ボイラの炉壁のフィン端Aについて行つt1寿命
予測の試験の結果を説明する。
Next, using the device of this example, we will perform a t1 life prediction on the fin end A of the furnace wall of a commercial manual boiler shown in Fig. 3, which is the first part of the boiler that is subject to large fatigue damage. Explain the results of the test.

上記炉壁のフィン端Aに引張荷重を繰返し与えて疲労試
験を行い、引張荷重の繰返し回数1000回毎に、上記
本実施例の装置によりX線を照射して上記式(1)によ
り規格化された半価幅を求め、これを繰返し回数400
0回まで行い第4図を得た。上記試験により得られ次第
4図に示す結果からは、予め行った予備試験によって得
られ逢第5図に示す半価幅/(積分強度)十−寿命消費
基準線図を用いて、繰返し回数1000上記第1表に示
すように1本実施例による寿命消費率は、真の寿命消費
率の±10チ内にあシ、本実施例により機械部品等の余
寿命が非破壊的に検出できることが判る。
A fatigue test was conducted by repeatedly applying a tensile load to the fin end A of the furnace wall, and after every 1000 repetitions of the tensile load, X-rays were irradiated using the apparatus of this example and normalized using the above formula (1). Find the half-value width and repeat this 400 times.
The test was repeated up to 0 times and Figure 4 was obtained. From the results obtained from the above test shown in Figure 4, using the half-width/(integral strength) - life consumption standard diagram obtained from the preliminary test conducted in advance and shown in Figure 5, As shown in Table 1 above, the life consumption rate according to this embodiment is within ±10 degrees of the true life consumption rate, which means that the remaining life of mechanical parts, etc. can be detected non-destructively by this embodiment. I understand.

なお、上記第5図に示す半価@/(積分強度)同一条件
で疲労試験を実施し、14825回でき裂を発生した。
A fatigue test was conducted under the same conditions of half value @/(integral strength) shown in FIG. 5 above, and cracking occurred after 14,825 cycles.

上記中断繰返し数(1000回、 2000回。The above number of interruption repetitions (1000 times, 2000 times.

3000回、 4000回)を破断繰返し数(1482
5回)で除した真の寿命消費率と本実施例により評価し
几寿命消費車を第1表に示す。
3000 times, 4000 times) to the number of rupture repetitions (1482
Table 1 shows the true life consumption rate divided by 5 times) and the life consumption car evaluated according to this example.

gi表 よって行われたものである。gi table Therefore, this was done.

即ち、まず任意の試験条件で単軸疲労試験を行い破断繰
返し回数Nfを求め念。次に上記と同じ条件の疲労試験
を0.05Nf 、 01Nf 、 02Nf 、 0
5Nfの繰返し回数で中断しながら行い、それぞれの中
断時点で試験片の表面に単色X線を照射し、表面より回
折するX線の強度を回折X線検出器により検出した。
That is, first, perform a uniaxial fatigue test under arbitrary test conditions to determine the number of repeated ruptures Nf. Next, fatigue tests were conducted under the same conditions as above at 0.05Nf, 01Nf, 02Nf, 0
The test was repeated with interruptions of 5 Nf, and at each interruption point, the surface of the test piece was irradiated with monochromatic X-rays, and the intensity of the X-rays diffracted from the surface was detected by a diffraction X-ray detector.

上記予備試験によって得られたそれらの中断時点での回
折X線強度からは、第3図に示す回折X!!強度プロフ
ァイル線図を作成し、半価幅及び積分強度を求め、上記
式(1)Kより寿命消費率0.05 、0.1 、0.
2 、0.5における規格化された半価幅を求めて上記
第5図を作成し次。上記により、評価パラメータとして
回折X線強度の半価幅を積分強度の平方根で除して求め
た規格化された半価幅を用いる念め、外乱による寿命評
価パラメータの変動が排除できるようになり、機械部品
の疲労損傷を非破壊的に適切に評価でき、機械部品の信
頼性向上と寿命延長を図ることができる。
From the diffraction X-ray intensity at the time of interruption obtained from the above preliminary test, the diffraction X! shown in FIG. ! Create an intensity profile diagram, find the half-width and integrated intensity, and use the above formula (1) K to calculate the life consumption rate of 0.05, 0.1, 0.
2. Find the normalized half-width at 0.5 and create the above figure 5. As a result of the above, since the normalized half-width obtained by dividing the half-width of the diffracted X-ray intensity by the square root of the integrated intensity is used as the evaluation parameter, it is possible to eliminate fluctuations in the life evaluation parameters due to disturbances. , it is possible to appropriately evaluate fatigue damage of mechanical parts in a non-destructive manner, and it is possible to improve the reliability and extend the life of mechanical parts.

〔発明の効果〕〔Effect of the invention〕

本発明は、被検体表面にX線を照射し、回折X線強度を
検出し、上記回折X線強度の半価幅と積分強度を測定し
、規格化され次半価幅を求め、同規格化された半価幅を
予め求められている規格化され念半価幅と寿命消費率の
関係式又は関係線図と比較して寿命消費率を検出するこ
とによって、評価パラメータとして回折X線強度の半価
幅を積分強度値の平方根で除して求め次規格化され次半
価幅を用いる九め、外乱による寿命評価パラメータの変
動が排除できるようになり、機械部品の疲労損傷を非破
壊的に適切lcf’F価でき、機械部品の信頼性向上と
寿命延長を図ることができる。
The present invention irradiates the surface of an object with X-rays, detects the diffracted X-ray intensity, measures the half-width and integrated intensity of the diffracted X-ray intensity, calculates the normalized half-width, and then Diffraction By dividing the half-width by the square root of the integral strength value and using the normalized half-width, it is possible to eliminate fluctuations in life evaluation parameters due to external disturbances, and to prevent fatigue damage to mechanical parts in a non-destructive manner. It is possible to achieve an appropriate lcf'F value, thereby improving the reliability and extending the life of mechanical parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用い次装置の説明図、第2
図は上記一実施例に用いたボイラの炉壁のフィン端の説
明図、第3図は上記一実施例の規格化され次半価幅算出
の説明図、第4図は上記一実施例における寿命予測試験
結果の説明図、第5図は上記一実施例に用いた半価@/
(積分強度)+−寿命消費基準線図、第6図は回折X線
半価幅のばらつきの説明図である。 1・・・X線発生器、2・・・被検体、3・・・回折X
線検出器、4・・・半価幅及び積分強度測定器、5・・
・演算装置。 代理人 弁理士  坂 間    暁     外2名
把1図 謂3図 目碑角凝 、嗜KL回牧 荊5圓 署イ講#l亨 月6図 訂竹t4爽
Fig. 1 is an explanatory diagram of the following equipment used in one embodiment of the present invention;
The figure is an explanatory diagram of the fin end of the furnace wall of the boiler used in the above embodiment, Fig. 3 is an explanatory diagram of the standardized next half width calculation in the above embodiment, and Fig. 4 is an explanatory diagram of the fin end of the furnace wall of the boiler used in the above embodiment. An explanatory diagram of the life prediction test results, Figure 5 is the half price @/ used in the above example.
(Integrated intensity) + - life consumption standard diagram, FIG. 6 is an explanatory diagram of the variation in the half width of diffraction X-rays. 1... X-ray generator, 2... Object, 3... Diffraction X
Line detector, 4... Half width and integrated intensity measuring device, 5...
・Arithmetic equipment. Agent: Akira Sakama, Patent Attorney, 2 people, 1 picture, so to speak, 3rd picture, 1st picture, 1st picture, 1st picture, 1st picture, 1st picture, 5th edition, 5th edition, 2nd book: 1st page, 6th picture: t4th

Claims (1)

【特許請求の範囲】[Claims] 被検体表面にX線を照射し、上記被検体より回折するX
線強度を検出し、回折角度に対する上記回折X線強度の
プロファイルより半価幅と積分強度を測定し、同半価幅
と積分強度より規格化された半価幅を求め、同規格化さ
れた半価幅を予め作成された規格化された半価幅と寿命
消費率の関係式又は関係線図と比較して寿命消費率を検
出することを特徴とする疲労損傷検出方法。
X-rays are irradiated onto the surface of the object, and the X-rays diffracted from the object are
Detect the line intensity, measure the half-width and integrated intensity from the profile of the diffracted X-ray intensity with respect to the diffraction angle, calculate the normalized half-width from the half-width and the integrated intensity, and calculate the normalized half-width. A fatigue damage detection method comprising: detecting a life consumption rate by comparing the half value width with a relational expression or relationship diagram between the normalized half value width and the life consumption rate created in advance.
JP31945788A 1988-12-20 1988-12-20 Detection of fatigue damage Pending JPH02165041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31945788A JPH02165041A (en) 1988-12-20 1988-12-20 Detection of fatigue damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31945788A JPH02165041A (en) 1988-12-20 1988-12-20 Detection of fatigue damage

Publications (1)

Publication Number Publication Date
JPH02165041A true JPH02165041A (en) 1990-06-26

Family

ID=18110415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31945788A Pending JPH02165041A (en) 1988-12-20 1988-12-20 Detection of fatigue damage

Country Status (1)

Country Link
JP (1) JPH02165041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686978A1 (en) * 1992-02-05 1993-08-06 Genshi Nenryo Kogyo Method for evaluating a degree of fatigue in a structure material
JP2007057329A (en) * 2005-08-23 2007-03-08 Kawasaki Heavy Ind Ltd Deterioration diagnosing method of ni-based hard metal by x-ray diffraction method and future lifetime evaluation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686978A1 (en) * 1992-02-05 1993-08-06 Genshi Nenryo Kogyo Method for evaluating a degree of fatigue in a structure material
JP2007057329A (en) * 2005-08-23 2007-03-08 Kawasaki Heavy Ind Ltd Deterioration diagnosing method of ni-based hard metal by x-ray diffraction method and future lifetime evaluation method
JP4719836B2 (en) * 2005-08-23 2011-07-06 川崎重工業株式会社 Deterioration diagnosis method and remaining life evaluation method of Ni-base superalloy by X-ray diffraction method

Similar Documents

Publication Publication Date Title
JP5483268B2 (en) Surface property inspection method
CN108490006A (en) A method of testing slab residual stress using neutron diffraction techniques
CN116183637A (en) Important cross-line wire crimping quality evaluation method based on X-ray detection technology
CN106645429A (en) Normal probe with pressure display for ultrasonic testing
CN209280192U (en) A kind of frame-type bolt stress measuring device being convenient for changing
CN106017763B (en) A kind of ultrasonic wave residual stress measuring method for correcting microstructure differentia influence
JPH02165041A (en) Detection of fatigue damage
CN109827528A (en) A kind of measuring method of the size of casting defect through-thickness
JP2011085480A (en) Method and device for nondestructive inspection
EP0345562A3 (en) Method and apparatus for processing measuring data
CN106092401B (en) A kind of ferromagnetics conductor material stress measuring method and system based on Kelvin effect
CN105890553A (en) Nondestructive detection method by using X rays for online measuring torsion rate of superconducting cable
WO2011088539A1 (en) Method for monitoring structural degradation and failures in materials, and sensor device
Manninen et al. On the use of screw‐fastened joints for thermal contact at low temperatures
CN107290435A (en) A kind of elastic wave excitation device for live spindle crack detection
JP2794623B2 (en) Method for evaluating the degree of fatigue damage of materials
CN103529124B (en) A kind of TOFD monitors the method for steel plate intermittent sandwich expansion
Jackiewicz et al. New methodology of testing the stress dependence of magnetic hysteresis loop of the L17HMF heat resistant steel casting
KR20170092273A (en) Non-distructive inspection apparatus using induced electromotive force
Yee et al. A reversing direct current potential drop system for detecting and sizing fatigue cracks along weld toes
CN108317930A (en) The hole-distance detecting device and detection method of steelframe long range circular hole
CN103792280B (en) Magnetic nondestructive testing method for contact damage inversion of ferromagnetic material
RU96979U1 (en) MAGNETIC DEFECTOSCOPE CALIBRATION DEVICE
RU2710477C1 (en) Sample for nondestructive inspection of well pipes
Tymchik et al. Analysis of acoustic diagnostics errors of stress state for shaped profiles of metal structures