JPH02164007A - Manufacture of rare earth magnet material - Google Patents

Manufacture of rare earth magnet material

Info

Publication number
JPH02164007A
JPH02164007A JP63318511A JP31851188A JPH02164007A JP H02164007 A JPH02164007 A JP H02164007A JP 63318511 A JP63318511 A JP 63318511A JP 31851188 A JP31851188 A JP 31851188A JP H02164007 A JPH02164007 A JP H02164007A
Authority
JP
Japan
Prior art keywords
rare earth
iron
alpha
cobalt
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63318511A
Other languages
Japanese (ja)
Inventor
Jun Nakagawa
準 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP63318511A priority Critical patent/JPH02164007A/en
Publication of JPH02164007A publication Critical patent/JPH02164007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To economically and easily obtain a rare earth element-transition metal-semimetal magnet with improved characteristics by causing main material to be alpha-iron or solid solution of cobalt in alpha-iron and rare earth hydride, and heat treating an alloy consisting of mixed texture whose grain size is not larger than 1mu. CONSTITUTION:When a rare earth element R and an alloy, whose main material is alpha-iron or alpha-iron and cobalt, are caused to occlude hydrogen, a material consisting of mixed texture whose main material is alpha-iron or solid solution of cobalt in alpha-iron and rare earth hydride, and whose grain size is not larger than 1mu, is formed. When the mixed texture in this form is caused to be starting raw material and dehydrogenation is effected while heat treatment is carried out, fine grains of R-Fe crystal not larger than 1mu are deposited. Thus an R-Fe magnet with high coercive force and stable characteristics can be obtain without requiring sintering and quenching.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は稀土類−遷移金属−硼素系磁石材料の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a rare earth-transition metal-boron based magnet material.

(従来技術とその問題点) 従来から稀土類磁石、特に稀土類−鉄系(特にR−Fe
−B系、但しRはイツトリウムを含んで良い稀土類元素
、鉄のほかに他の遷移金属を含んでもよく、Bは一部を
他の半金属で置換しても良い硼素)磁石材料は磁気特性
が良いので盛んに研究されている。そのうち工業的な方
法には焼結法と急冷法がある。焼結法によるR−Fe系
磁石は所定組成の混合物を溶解、冷却して得た鋳塊を粉
砕、成形、及び焼結して得られる。しかしながらこの材
料は非常に酸化し易いので粉砕時又は粉砕後、焼結前に
粉末の酸化が進行してしまう。その結果有効な磁石材料
として働く金属部分の体積が減少し、これを成形、焼結
しても充分に高い特性が得られなくなる。そのため、粉
砕時及び粉砕後の雰囲気の厳密な管理が必要となる。ま
た焼結法は複雑な工程を必要とする。一方急冷法では高
温度で融解した所定組成の原料合金を冷却ロール等の冷
たい表面に噴射することにより急冷して鱗片状又は薄層
状のものとする。しかしこの方法では大がかりな装置が
必要であり、急冷時の制御も難かしい。
(Prior art and its problems) Rare earth magnets, especially rare earth-iron (especially R-Fe)
- B-based, where R is a rare earth element that may contain yttrium; B may contain other transition metals in addition to iron; B is boron, which may be partially substituted with other semimetals); the magnet material is magnetic; Due to its good properties, it is being actively researched. Among these, industrial methods include the sintering method and the rapid cooling method. R-Fe magnets produced by the sintering method are obtained by melting and cooling a mixture of a predetermined composition, pulverizing, molding, and sintering an ingot. However, since this material is very easily oxidized, the oxidation of the powder progresses during or after crushing and before sintering. As a result, the volume of the metal portion that functions as an effective magnet material decreases, and even if it is molded and sintered, sufficiently high characteristics cannot be obtained. Therefore, strict control of the atmosphere during and after crushing is required. Also, the sintering method requires complicated steps. On the other hand, in the quenching method, a raw material alloy of a predetermined composition melted at a high temperature is rapidly cooled by spraying it onto a cold surface such as a cooling roll to form a scaly or thin layer. However, this method requires large-scale equipment and is difficult to control during rapid cooling.

これに対する対策として、本発明者は先にR−Fe−B
系磁石の原料組成物を溶解して得た合金に水素を所定量
吸蔵させることにより主相であるRzFezB相結晶粒
子の結晶構造を緩めてアモルファス相開に近付け、これ
を熱処理して再び主相に戻すことにより、初期結晶粒径
よりも微細な結晶が表われる現象を見出した(特願昭6
2−199999号)。焼結法や急冷法によらずインゴ
ットから直接特性の良い磁石を製造できる点で優れてい
るが、均一なアモルファス相の形成は難かしく、結晶相
が残ってBH左カーブ角型性が悪くなることがあった。
As a countermeasure against this, the present inventor first developed R-Fe-B
By absorbing a predetermined amount of hydrogen into the alloy obtained by melting the raw material composition of the system magnet, the crystal structure of the RzFezB phase crystal grains, which is the main phase, is loosened to approach an amorphous phase open state, and this is heat-treated to form the main phase again. discovered a phenomenon in which crystals finer than the initial grain size appeared by returning the grain size to
2-199999). Although it is superior in that it allows the production of magnets with good characteristics directly from ingots without using sintering or quenching methods, it is difficult to form a uniform amorphous phase, and a crystalline phase remains, resulting in poor BH left curve squareness. Something happened.

(発明の目的) 本発明は焼結法でもなく急冷法でもない新規な方法によ
り、焼結法による複雑な工程を回避し、また急冷法も回
避し、経済的かつ容易に特性の良い稀土類元素−遷移金
虜一半金属系磁石を提供することを目的とする。
(Objective of the Invention) The present invention utilizes a novel method that is neither a sintering method nor a quenching method, thereby avoiding the complicated process of the sintering method, and also avoiding the quenching method, thereby economically and easily producing rare earth materials with good characteristics. The object of the present invention is to provide an element-transition metal-based semimetal magnet.

(発明の構成の概要) 本発明は、α鉄又はこれへのコバルトの固溶体と稀土類
水素化物を主体とし、粒子サイズ1μ以下の混合組織よ
りなる合金を、熱処理することを特徴とするR−Fe系
磁石(ここにRはイツトリウムを含む稀土類元素の少な
くとも一種、鉄とコバルトのほかにNi、Mn、Zr、
Nb、Ti等の遷移金属およびB、Si、P、Al等の
半金属を含んでも良い、なお不可避的に含まれる不純物
は許容する)の製造方法である。
(Summary of the Structure of the Invention) The present invention is characterized in that an alloy consisting of α iron or a solid solution of cobalt therein and a rare earth hydride and a mixed structure with a grain size of 1μ or less is heat treated. Fe-based magnet (here R is at least one rare earth element including yttrium, in addition to iron and cobalt, Ni, Mn, Zr,
This method may contain transition metals such as Nb and Ti, and metalloids such as B, Si, P, and Al; however, unavoidable impurities are permitted.

本発明はまた上記熱処理工程で配向磁場を印加すること
を特徴とする。
The present invention is also characterized in that an orienting magnetic field is applied in the heat treatment step.

(作用効果の概要) 本発明の方法によると、従来の様に焼結や急冷を必要と
しないで高保磁力で安定な特性のR−Fe系磁石が得ら
れる。また磁場配向を施すことにより異方性化した高磁
気特性の材料が得られる。
(Summary of Functions and Effects) According to the method of the present invention, an R-Fe-based magnet with high coercive force and stable characteristics can be obtained without requiring sintering or rapid cooling unlike conventional methods. Furthermore, by applying magnetic field orientation, an anisotropic material with high magnetic properties can be obtained.

(発明の具体的構成) 本発明者は、先に引用した特願昭62−199999号
により提案された水素吸蔵条件の一例として、高温で水
素を吸蔵する工程により形成される緩結晶相ないし軟磁
性相が、αFe又はこれへのコバルトの固溶体及び稀土
類水素化物を安定に存在させ得ることを見出し、本発明
の方法を着想した。
(Specific Structure of the Invention) As an example of the hydrogen storage conditions proposed in Japanese Patent Application No. 62-199999 cited above, the present inventor has proposed a slow crystalline phase or a soft crystalline phase formed by the process of storing hydrogen at high temperatures. The inventors have found that αFe or a solid solution of cobalt therein and a rare earth hydride can stably exist in the magnetic phase, and have conceived the method of the present invention.

すなわち、本発明は稀土類元素と、α鉄又はこれとコバ
ルトを主体とする合金に水素を吸蔵させると、α鉄又は
これへのコバルトの固溶体と、稀土類水素化物を主体と
し、粒子サイズ1μ以下の混合組織よりなる物質が生成
されることを見出し、この様な形態の混合組織を出発原
料とするものである。そして、この物質を熱処理しなが
ら脱水素することにより1μ以下の微粒子R−Fe系結
晶が析出する。この時の熱処理温度は500〜1000
℃が好ましく、700〜900℃がより好ましい。また
、熱処理は水素分圧の低い状態で行う必要があり、I 
Torr以下の真空中が好ましい。この混合組織からの
結晶化では、αFeの結晶相が主体となってR−Fe系
結晶が形成されるので一軸異方性は生じない。しかし、
α鉄相のキュリー温度(α鉄では、769℃であり、コ
バルトが入るとこの温度は上昇する)よりも低い温度で
の熱処理において磁場を印加すると異方性化した磁石材
料を得ることができる。
That is, in the present invention, when a rare earth element and an alloy mainly composed of alpha iron or alpha iron and cobalt are allowed to absorb hydrogen, a solid solution of cobalt in alpha iron or alpha iron, and a rare earth hydride are the main ingredients, and the particle size is 1μ. It has been discovered that a substance having the following mixed structure can be produced, and this type of mixed structure is used as a starting material. Then, by dehydrogenating this material while heat treating it, fine R-Fe crystals of 1 μm or less are precipitated. The heat treatment temperature at this time is 500 to 1000
C is preferable, and 700 to 900 C is more preferable. In addition, heat treatment must be performed in a state with a low hydrogen partial pressure, and I
Preferably, the vacuum is below Torr. In crystallization from this mixed structure, an R-Fe system crystal is formed mainly of αFe crystal phase, so that uniaxial anisotropy does not occur. but,
An anisotropic magnet material can be obtained by applying a magnetic field during heat treatment at a temperature lower than the Curie temperature of the α-iron phase (769°C for α-iron, and this temperature increases when cobalt is added). .

なお、α鉄又はこれへのコバルトの固溶体と、稀土類水
素化物と、粒子サイズ1μ以下の混合組織よりなる物質
は、原料混合物の鋳塊の水素吸蔵によって形成する必要
はなく、このような混合組織が生成できる任意の方法を
使用することができる。例えば気相成長法、メカニカル
アロイ法などが使用できる。
Note that the substance consisting of a mixed structure of alpha iron or a cobalt solid solution therein, rare earth hydride, and a particle size of 1μ or less does not need to be formed by hydrogen absorption in the ingot of the raw material mixture; Any method that the tissue can produce can be used. For example, a vapor phase growth method, a mechanical alloy method, etc. can be used.

本発明は特願昭62−199999号により提案された
方法を上位概念とする改良であるが、水素吸蔵合金の脱
水素及び熱処理により磁石を得る点では共通するが、先
願では結晶構造の緩んだ状態を経て磁石組織を形成する
ことを主としたが、本発明では明確な結晶構造を持つ混
合組織な中間状態として導入することにより、極めて均
一な最終組織を形成できる様にした点で明白に区別され
る。また本発明は前述のとおり、特願昭62−1999
99とは全く別の製法で混合組織を形成しても良い。
The present invention is an improvement based on the general concept of the method proposed in Japanese Patent Application No. 199999/1982, but they have the same feature in that a magnet is obtained by dehydrogenation and heat treatment of a hydrogen storage alloy, but in the earlier application, the crystal structure is loosened. However, in the present invention, an extremely uniform final structure can be formed by introducing an intermediate state that is a mixed structure with a clear crystal structure. It is differentiated into Further, as mentioned above, the present invention is disclosed in Japanese Patent Application No. 62-1999.
The mixed structure may be formed by a manufacturing method completely different from that of 99.

本発明で使用できる稀土類元素はNdが代表的な元素で
あり、多種の稀土類を含有するミツシュメタル、Dy等
任意の稀土類元素を使用することができる。稀土類元素
Rの量は5〜20at%、好ましくは5.5〜12’a
 t%であり、この範囲で良好な特性が得られる。また
B等の半金属を4〜10at%程度添加することにより
磁気特性を向上させることができる。具体的には、初期
材料としての混合組織にフェロボロン等を分散させるこ
とにより、最終的に高特性の磁石が得られる。なお不可
最的に含まれる不純物は許容される。また場合により前
記先願で行なわれた様に稀土類元素Rが少なめの場合に
保磁力の調整のために上記先願に記載のZr、Nb等の
添加成分を加えても良い。
A typical rare earth element that can be used in the present invention is Nd, and any rare earth elements such as Mitshu metal and Dy containing various kinds of rare earths can be used. The amount of rare earth element R is 5 to 20 at%, preferably 5.5 to 12'a
t%, and good characteristics can be obtained within this range. Furthermore, the magnetic properties can be improved by adding a metalloid such as B to about 4 to 10 at%. Specifically, by dispersing ferroboron or the like in a mixed structure as an initial material, a magnet with high characteristics can be finally obtained. However, impurities that may be included are allowed. Further, in some cases, when the rare earth element R is small as in the earlier application, additional components such as Zr and Nb described in the earlier application may be added to adjust the coercive force.

原料混合物は高温度で溶融し、次いで冷却固化して鋳塊
にする。得られる鋳塊は次いで機械的に粉砕され、また
はされずに、水素吸蔵される。このときの最高温度は6
00℃以上が好ましく、700℃〜1000℃がより好
ましい。
The raw material mixture is melted at high temperature, then cooled and solidified to form an ingot. The resulting ingot is then subjected to hydrogen storage, with or without being mechanically crushed. The maximum temperature at this time is 6
The temperature is preferably 00°C or higher, and more preferably 700°C to 1000°C.

以下本発明の好ましい実施例を説明する。ただし合金組
成の数値は重量%である。
Preferred embodiments of the present invention will be described below. However, the alloy composition values are in weight percent.

原料を秒置し、高周波溶融し、鋳造して合金組成が(1
)Nd−23,0wt%、Zr−2,2wt%、Co−
7,0wt%、B −1,3w t%、Fe−66、5
w t%、(2)Nd−30,5wt%、Dy−2,5
w t%、Al−0,5wt%、B −1,1w t%
、Fe−65,4wt%及び(3)MM−20,0wt
%、Nd−10,0wt%、Al−0,3wt%、Nb
−0,8wt%、B−1,0wt%、Fe−67,9w
t%(ただしMMはミツシュメタル)の合金鋳塊を得た
。密閉容器に装入し、この容器を100”Cで30分間
真空引きしたのち1気圧、100℃で30分間水素吸蔵
し、次ぎに200℃で30分間真空引きしたのち1気圧
、200℃で30分間水素吸蔵し、更に400’Cで3
0分間真空引きしたのち1気圧、400℃で30分間水
素吸蔵させ、最後に600”Cで30分間真空引きした
のち640℃で30分間水素吸蔵させ、次いでアルゴン
で置換し室温まで放冷した。
The raw material is left for a second, then high-frequency melted, and cast to obtain an alloy composition of (1
) Nd-23.0wt%, Zr-2.2wt%, Co-
7,0wt%, B-1,3wt%, Fe-66,5
wt%, (2) Nd-30.5wt%, Dy-2.5
wt%, Al-0.5wt%, B-1.1wt%
, Fe-65,4wt% and (3) MM-20,0wt
%, Nd-10.0wt%, Al-0.3wt%, Nb
-0.8wt%, B-1.0wt%, Fe-67.9w
An alloy ingot of t% (where MM is Mitsushi Metal) was obtained. The container was evacuated at 100"C for 30 minutes, then hydrogen was stored at 1 atm and 100°C for 30 minutes, then evacuated at 200"C for 30 minutes, and then evacuated at 1 atm and 200°C for 30 minutes. Absorb hydrogen for 3 minutes and further heat at 400'C for 3
After evacuating for 0 minutes, hydrogen was stored at 1 atm and 400°C for 30 minutes, and finally, after evacuating at 600''C for 30 minutes, hydrogen was stored at 640°C for 30 minutes, and then the mixture was replaced with argon and allowed to cool to room temperature.

得られた合金はX線回折及び走査電子顕微鏡で稀土類水
素化合物相とαFe相と1μ以下の粒子径を有する結晶
粒子(R2Fe14)の混合組織を有した。また平均粒
子径は約15μであった。
The obtained alloy had a mixed structure of a rare earth hydride compound phase, an αFe phase, and crystal grains (R2Fe14) having a particle size of 1 μm or less by X-ray diffraction and scanning electron microscopy. Moreover, the average particle diameter was about 15μ.

族瓜皿ユ1 得られた水素吸蔵合金を真空中で800 ’C(比較例
1として400℃、比較例2として1050℃でも処理
)60分間熱処理し、次いでアルゴン雰囲気中700℃
、3ton/cm2の条件で30分間ホットプレスし、
アルゴン雰囲気中710℃、0.5〜2.0 t o 
n/ c m”の条件で一方向加圧プレスすることによ
り加工率6o〜80%の塑性変形処理をした。
The obtained hydrogen storage alloy was heat treated in vacuum at 800'C (also treated at 400°C as Comparative Example 1 and 1050°C as Comparative Example 2) for 60 minutes, and then heated at 700'C in an argon atmosphere.
, hot pressed for 30 minutes at 3 ton/cm2,
710℃ in argon atmosphere, 0.5-2.0 to
Plastic deformation treatment was carried out at a processing rate of 6o to 80% by unidirectional pressure pressing under the condition of "n/cm".

この結果を次表に示す、なお(1)、(2)、(3)は
上記の原料鋳塊に対応する。
The results are shown in the following table, and (1), (2), and (3) correspond to the above raw material ingots.

一方比較例1.2 (400℃、1050’C(7)処
理)の場合にはiHcは3kOe以下であった。
On the other hand, in the case of Comparative Example 1.2 (400°C, 1050'C(7) treatment), iHc was 3 kOe or less.

X立亘1 Nd62.Og、Fe−B (Bは28重量%)9.5
g、Fe 127.7g、及びAl0.8gの各粉末を
、SUS製容器中にSUSボール800g、水素ガス5
0atmと共に封入し、96時間容器ごと回転して粉末
を得た。
X standing 1 Nd62. Og, Fe-B (B is 28% by weight)9.5
In a SUS container, 800 g of SUS balls and 5 g of hydrogen gas were added.
The container was sealed with 0 atm and rotated for 96 hours to obtain a powder.

及皿狙ユ NdHz 48.5g、82.2g、Co15.Og、
Fe 134gの各粉末をアトライターに装入し、室温
Ar雰囲気中で24時間攪拌した。 実施例2.3の粉
末は実施例1の混合組織と同様な混晶組織を有すること
を確認した。
NdHz 48.5g, 82.2g, Co15. Og,
134 g of each powder of Fe was charged into an attritor and stirred at room temperature in an Ar atmosphere for 24 hours. It was confirmed that the powders of Examples 2 and 3 had a mixed crystal structure similar to that of Example 1.

実施例2.3の粉末を分割し真空中で700℃にて1時
間熱処理した(実施例2のものを試料(4)、実施例3
のものを試料(5)とする)。
The powder of Example 2.3 was divided and heat treated in vacuum at 700°C for 1 hour (the powder of Example 2 was divided into sample (4), Example 3
sample (5)).

残りの試料を2Tの磁界を印加しながら同様に処理した
(実施例2のものを試料(6)、実施例3のものを試料
(7)とする)。得られた粉末なエポキシ樹脂と混合し
、8 t o n / c m ”で成形し、150℃
で2時間硬化した。粉末磁気特性をVSMで、ボンド磁
石の特性をBHI−レーザで測定した。表2の結果を得
た。
The remaining samples were treated in the same manner while applying a 2T magnetic field (the sample of Example 2 was referred to as sample (6), and the sample of Example 3 was referred to as sample (7)). It was mixed with the obtained powdered epoxy resin, molded at 8 tons/cm'', and heated at 150°C.
It was cured for 2 hours. The powder magnetic properties were measured using a VSM, and the bonded magnet properties were measured using a BHI-laser. The results shown in Table 2 were obtained.

(具体的な作用効果) 実施例1及び比較例1.2から明らかな様に本発明の方
法で得られた磁石粉末は保磁力が大きく、優れた磁気特
性を示し、塑性変形等による熱処理により大幅な特性の
向上を見た。また実施例2.3から明らかな様に塑性変
形に代わる配向磁場中熱処理でも同様に特性が大幅に向
上することが分かった。
(Specific effects) As is clear from Example 1 and Comparative Example 1.2, the magnetic powder obtained by the method of the present invention has a large coercive force, exhibits excellent magnetic properties, and is Significant improvements in characteristics were seen. Further, as is clear from Example 2.3, it was found that heat treatment in an orienting magnetic field instead of plastic deformation also significantly improved the properties.

Claims (1)

【特許請求の範囲】 1)α鉄又はこれへのコバルトの固溶体と稀土類水素化
物を主体とし、粒子サイズ1μ以下の混合組織よりなる
合金を熱処理することを特徴とするR−Fe系磁石(こ
こにRはイットリウムを含む稀土類元素の少なくとも一
種、鉄とコバルトのほかに、Ni、Mn、Zr、Nb、
Ti等の遷移金属およびB、Si、P、Al等の半金属
を含んでも良い。なお不可避的に含まれる不純物は許容
する)の製造方法。 2)熱処理は500℃から1000℃の温度範囲で行な
われることを特徴とする前記第1項記載の製造方法。 3)熱処理は配向磁場を印加しながら行なわれることを
特徴とする前記第1項または第2項記載の製造方法。
[Scope of Claims] 1) An R-Fe-based magnet ( Here, R is at least one rare earth element including yttrium, in addition to iron and cobalt, Ni, Mn, Zr, Nb,
It may also contain transition metals such as Ti and metalloids such as B, Si, P, and Al. However, unavoidable impurities are allowed). 2) The manufacturing method according to item 1, wherein the heat treatment is performed at a temperature range of 500°C to 1000°C. 3) The manufacturing method according to item 1 or 2, wherein the heat treatment is performed while applying an orienting magnetic field.
JP63318511A 1988-12-19 1988-12-19 Manufacture of rare earth magnet material Pending JPH02164007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318511A JPH02164007A (en) 1988-12-19 1988-12-19 Manufacture of rare earth magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318511A JPH02164007A (en) 1988-12-19 1988-12-19 Manufacture of rare earth magnet material

Publications (1)

Publication Number Publication Date
JPH02164007A true JPH02164007A (en) 1990-06-25

Family

ID=18099931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318511A Pending JPH02164007A (en) 1988-12-19 1988-12-19 Manufacture of rare earth magnet material

Country Status (1)

Country Link
JP (1) JPH02164007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250206A (en) * 1990-09-26 1993-10-05 Mitsubishi Materials Corporation Rare earth element-Fe-B or rare earth element-Fe-Co-B permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet manufactured therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250206A (en) * 1990-09-26 1993-10-05 Mitsubishi Materials Corporation Rare earth element-Fe-B or rare earth element-Fe-Co-B permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet manufactured therefrom

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
US5750044A (en) Magnet and bonded magnet
US5125988A (en) Rare earth-iron system permanent magnet and process for producing the same
WO2000003403A1 (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
JP3317646B2 (en) Manufacturing method of magnet
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
US5213631A (en) Rare earth-iron system permanent magnet and process for producing the same
JPH01219143A (en) Sintered permanent magnet material and its production
JP3560387B2 (en) Magnetic material and its manufacturing method
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JPH045740B2 (en)
JPH08316018A (en) Magnet and bonded magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH045739B2 (en)
JPH0837122A (en) Production of r-t-m-n anisotropic bonded magnet
JPH02164007A (en) Manufacture of rare earth magnet material
JPH10312918A (en) Magnet and bonded magnet
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JP2001313206A (en) R-t-n anisotropic magnetic powder, its manufacturing method, and r-t-n anisotropic bonded magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JPH06112019A (en) Nitride magnetic material
JPH044385B2 (en)