JPH02163374A - Judging method for film thickness value in vacuum deposition - Google Patents

Judging method for film thickness value in vacuum deposition

Info

Publication number
JPH02163374A
JPH02163374A JP31849888A JP31849888A JPH02163374A JP H02163374 A JPH02163374 A JP H02163374A JP 31849888 A JP31849888 A JP 31849888A JP 31849888 A JP31849888 A JP 31849888A JP H02163374 A JPH02163374 A JP H02163374A
Authority
JP
Japan
Prior art keywords
value
counter
measured
film thickness
measured value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31849888A
Other languages
Japanese (ja)
Other versions
JPH0762247B2 (en
Inventor
Hiroshi Koike
小池 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63318498A priority Critical patent/JPH0762247B2/en
Publication of JPH02163374A publication Critical patent/JPH02163374A/en
Publication of JPH0762247B2 publication Critical patent/JPH0762247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To accurately judge the maximum point and the minimum point of the read-in value locus of measured value by periodically measuring the thickness value of a vacuum- deposited film with a photoelectric photometer and judging the increase or decrease thereof and deciding a pole from the counter value of the times of increase or decrease. CONSTITUTION:Material is evaporated from an evaporation source 4 provided with a heater supporting base 5 in a bell jar 1 equipped with a vacuum system such as a rotary pump 9 and a thin film is vapor-deposited on a base plate 2. In the above-mentioned vacuum deposition, film thickness of the thin film on the base plate 2 is measured by projecting laser beams emitted from a laser beam radiating cylinder 13 and receiving beams with a photoelectric measuring instrument 14. This film thickness value is periodically measured and inputted into a computer 20 via an A/D convertor 15. Therein this measured value is once stored in a memory 23 and thereafter compared with a comparator 24. It is judged that this measured value is increased or decreased in comparison with the preceding measured value. The times of increase or decrease are counted with a counter 25 and this counter value is regulated so that this value is not made negative. When the counter value reaches the prescribed value, the pole of maximum or minimum is judged by decrease or increase tendency and an driver 27 of the evaporation source is controlled by a CPU 21.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空蒸着制御装置における光電測光器の光度
測定値の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for processing light intensity measurements of a photoelectric photometer in a vacuum evaporation control device.

(従来の技術) 従来、このような分野の技術としては、例えば以下に示
すようなものがあった。
(Prior Art) Conventionally, as technologies in this field, there have been the following, for example.

真空蒸着における蒸平膜の光電測光器による光度測定軌
跡は第7図に示すようになる。
The light intensity measurement trajectory of the vaporized flat film during vacuum deposition using a photoelectric photometer is shown in FIG.

従来の蒸着制御方法においては、第7図の極大点Ma1
. Has =・、極小点旧+ * Mil =の測定
方法として光度値をコンピュータを用い周期的に測定し
、極大点、つまり、光度測定値が前の値より小さくなっ
た場合と、極小点、つまり、光度測定値が前の値より大
きくなった場合を測定し、蒸着膜の形成状況を測定する
ようにしていた。ここでは、多層蒸着ZnS 、 hg
!’、膜で波長λ−550nmである。
In the conventional vapor deposition control method, the maximum point Ma1 in FIG.
.. As a method of measuring Has = ·, Minimum point old + * Mil =, the luminous intensity value is measured periodically using a computer, and the maximum point, that is, when the luminous intensity measurement value is smaller than the previous value, and the minimum point, that is, , the formation status of the deposited film was measured by measuring when the luminous intensity measurement value became larger than the previous value. Here, multilayer deposited ZnS, hg
! ', the wavelength of the film is λ-550 nm.

(発明が解決しようとする!II) しかしながら、光電測光器の信号をA/Dコンバータを
通して、コンピュータで読み込む場合、信号値にノイズ
成分があると、前述の極大点、極小点の判定を誤ってし
まう。
(The invention attempts to solve this problem! II) However, when the signal from a photoelectric photometer is read by a computer through an A/D converter, if there is a noise component in the signal value, the above-mentioned local maximum and minimum points may be incorrectly determined. Put it away.

本発明は、以上述べたノイズによる極大点、極小点の誤
判定という問題点を除去し、光電測定器の読込値軌跡の
極大点、極小点を正確に判定することができる真空蒸着
における膜厚値の判定方法を提供することを目的とする
The present invention eliminates the problem of erroneous determination of maximum and minimum points due to noise as described above, and provides a film thickness in vacuum evaporation that allows accurate determination of maximum and minimum points of the reading trajectory of a photoelectric measuring instrument. The purpose is to provide a method for determining values.

(!!I!題を解決するための手段) 本発明は、上記問題点を解決するために、真空蒸着にお
ける膜厚値の判定方法において、光電測光器の光度測定
値による真空蒸着における膜厚値を周期的に測定する工
程と、該測定値がその前に測定した値より増減したか否
かを判別する工程と、該増減回数がカウンタにより計数
され、そのカウンタ稙が負にならないようにすると共に
、所定の値に達した場合には極点と判定する工程とを施
すようにしたものである。
(Means for Solving the !!I! Problem) In order to solve the above-mentioned problems, the present invention provides a method for determining a film thickness value in vacuum evaporation, in which the film thickness in vacuum evaporation is determined by measuring the light intensity of a photoelectric photometer. A step of periodically measuring a value, a step of determining whether the measured value has increased or decreased from a previously measured value, and the number of increases or decreases is counted by a counter so that the counter value does not become negative. At the same time, a step of determining that the peak point has reached a predetermined value is performed.

ここで、前記測定値がその前に測定した値より減少する
傾向にある場合、極大点と判定し、前記測定値がその前
に測定した値より増加する傾向にある場合、極小点と判
定する。
Here, if the measured value tends to decrease from the previously measured value, it is determined to be a local maximum point, and if the measured value tends to increase from the previously measured value, it is determined to be a local minimum point. .

(作用) 本発明によれば、上記したように、真空F、MMにおけ
る膜厚値の判定方法において、光電測光器の測定値軌跡
について、読み取った測定値が前の値に比べ増減したか
を判別し、その増減回数がある一定の値に達した場合、
極大(81i小)点と判定する。従って、真空蒸着の状
態を正確に監視することができる。
(Function) According to the present invention, as described above, in the method for determining film thickness values in vacuum F and MM, it is determined whether the measured value read by the photoelectric photometer has increased or decreased compared to the previous value with respect to the measured value locus of the photoelectric photometer. If the number of increases and decreases reaches a certain value,
It is determined to be the maximum (81i small) point. Therefore, the state of vacuum deposition can be accurately monitored.

従って、真空蒸着の状態を正確に検出して、逆切な真空
蒸着の制御を行うことがてきる。
Therefore, the state of vacuum evaporation can be accurately detected and reverse vacuum evaporation control can be performed.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例を示す蒸着膜の極点の判定を行
うためのシスチーム構成図、第2図は本発明の極大点の
判定フローチャート、第3図は本発明の極小点の判定フ
ローチャート、第4乃至第6図は本発明の極小点の判定
例の説明図である。
FIG. 1 is a system configuration diagram for determining the maximum point of a deposited film showing an embodiment of the present invention, FIG. 2 is a flowchart for determining the maximum point of the present invention, and FIG. 3 is a flowchart for determining the minimum point of the present invention. , and FIGS. 4 to 6 are explanatory diagrams of examples of determination of minimum points according to the present invention.

まず、第1図において、1はバルブ+、2は基板、3は
シャッタ、4は蒸発源、つまり各種の試料が回転体上に
配置された複数の蒸発源(例えばZnS 、 MgFr
などの蒸着源)、5はヒータ支持台、6は電離真空計、
7は真空バルブ、8は液体窒素トラップ、9はロークリ
ポンプ、10は2方向バルブ、11はあら引き用配管、
12はピラニゲージ、13はレーザビームの放射筒、1
4はそのレーザビームにより蒸着膜を透過した光を受け
る充電測光器、15はA/D変換器、20はコンピュー
タ、21ばCPU(中央処理袋Tl)、22は入力イン
タフェース、23はメモリ、24は比較器°、25はカ
ウンタ、26は出力インタフェース、27は蒸発源駆動
装置である。
First, in FIG. 1, 1 is a valve +, 2 is a substrate, 3 is a shutter, and 4 is an evaporation source, that is, a plurality of evaporation sources in which various samples are placed on a rotating body (for example, ZnS, MgFr
5 is a heater support stand, 6 is an ionization vacuum gauge,
7 is a vacuum valve, 8 is a liquid nitrogen trap, 9 is a rotary pump, 10 is a two-way valve, 11 is a roughing pipe,
12 is a Pirani gauge, 13 is a laser beam radiation tube, 1
4 is a charging photometer that receives the light transmitted through the deposited film by the laser beam, 15 is an A/D converter, 20 is a computer, 21 is a CPU (central processing bag Tl), 22 is an input interface, 23 is a memory, 24 is a comparator, 25 is a counter, 26 is an output interface, and 27 is an evaporation source driver.

この図に示すように、真空蒸着装置は基本的には、排気
系と、蒸発W、4.基板2、シャック3等の真空室から
構成されている。
As shown in this figure, the vacuum evaporation apparatus basically consists of an exhaust system, evaporation W, 4. It is composed of a vacuum chamber such as a substrate 2 and a shack 3.

ここで、膜厚の測定は、光度測定データ値を光電測光器
14によりA/D変換器15を介してコンピュータ20
に周期的に読み込んで行う。
Here, the film thickness is measured by transmitting photometric data values to the computer 20 via the A/D converter 15 using the photoelectric photometer 14.
This is done by reading it periodically.

そして、該測定値がその前に測定した値より増減したか
否かを判別し、該増減回数がある一定の値に達した場合
には極点と判定し、出力インタフェース26、蒸発源駆
動装置27を介して淋発源4を回転駆動させて、今まで
行っていた試料を切換えて他の蒸発源の蒸着を行うなど
の制御を行う。
Then, it is determined whether the measured value has increased or decreased from the previously measured value, and if the number of increases or decreases reaches a certain value, it is determined that it is an extreme point, and the output interface 26 and the evaporation source driving device 27 The gonorrhea source 4 is rotationally driven through the evaporation source 4 to perform control such as switching the sample that has been used so far and performing evaporation with another evaporation source.

以下、第2図のフローチャートを参照しながら、真空蒸
着における膜厚値(光電測光器の光度測定値)の極大点
の判定について説明する。
Hereinafter, with reference to the flowchart of FIG. 2, determination of the maximum point of the film thickness value (light intensity measurement value of a photoelectric photometer) in vacuum evaporation will be explained.

まず、カウンタ25を0゛にセットする(ステップΦ)
First, set the counter 25 to 0゛ (step Φ)
.

次に、光電測光器14からの光度測定データ値の読み込
みを行う、つまり、“新膜厚値”として周期的に膜厚値
を読み込み、その値A11を格納する(ステップ■)。
Next, the photometric data value from the photoelectric photometer 14 is read, that is, the film thickness value is read periodically as a "new film thickness value", and the value A11 is stored (step 2).

次に、その時の読込値人目をメモリ23へ記憶する(ス
テップ■)。
Next, the read value number at that time is stored in the memory 23 (step 2).

次いで、光電測光器14からの光度測定データ値Alの
読み込みを行う(ステップ■)。
Next, the photometric data value Al from the photoelectric photometer 14 is read (step 2).

その時の測定データ値A+zが“新膜厚値2となり、測
定データ値AIlは“旧HAjγ値“となる(ステップ
■)。
The measured data value A+z at that time becomes the "new film thickness value 2," and the measured data value AIl becomes the "old HAjγ value" (step ■).

次いて、その測定データ値Allと前回の測定データ値
A8.とを比較器24により比較しくステップ■)、そ
の測定データ値A1.が前回の測定データ4e A I
 +以下である場合には、カウンタ25の値をプラス1
にする(ステップ■)。
Next, the measured data value All and the previous measured data value A8. is compared by the comparator 24, and the measured data value A1. is the previous measurement data 4e A I
+ or less, add 1 to the value of counter 25
(Step ■).

次に、そのカウンタ25の値を判別して、その値が所定
値(ここでは5)になった場合には、極大点として判定
する(ステップ■)。
Next, the value of the counter 25 is determined, and if the value reaches a predetermined value (here, 5), it is determined as a local maximum point (step 2).

上記ステップ■において、測定データ植入、8が前回の
測定データ値A++より大きい場合には、カウンタ25
の値をマイナス1にしくステップ■)、そのカウンタ2
5の値を判別して、その値が一定値(ここでは0)にな
る(ステップ[相])まで、前記ステップ■に戻る。
In step (3) above, if the measurement data input value 8 is greater than the previous measurement data value A++, the counter
Step ■) to make the value minus 1, and the counter 2
The value of 5 is determined, and the process returns to step (2) until the value becomes a constant value (here, 0) (step [phase]).

また、上記ステップ0において、カウンタ25の値が0
未溝になる場合はその値を0に保持しくステップ0)、
前記ステップ■に戻る。
Also, in step 0 above, the value of the counter 25 is 0.
If there is no groove, keep the value at 0 (step 0),
Return to step (2) above.

次に、第3図のフローチャートを参照しながら、真空蒸
着における12厚値(光電測光器の光度測定値)の極小
点の判定について説明する。
Next, with reference to the flowchart of FIG. 3, determination of the minimum point of 12 thickness values (light intensity measurement values of a photoelectric photometer) in vacuum evaporation will be described.

まず、カウンタ25をOにセットする(ステップ■)・
First, set the counter 25 to O (step ■).
.

次に、光[ff1.l光器14からの光度測定データ値
の読み込みを行う (ステップo)。
Next, the light [ff1. The photointensity measurement data value from the optical device 14 is read (step o).

次に、その時の読込値Az+をメモリ23へ記憶する(
ステップO)。
Next, the read value Az+ at that time is stored in the memory 23 (
Step O).

次いで、光電測光器14からの光度測定データ植入〇の
読み込みを行う(ステップO)。
Next, the photometric data set 〇 is read from the photoelectric photometer 14 (step O).

その時の測定データ値A!、が“新膜厚値′となり、測
定データ値Az+は“旧膜厚値°となる(ステップO)
Measured data value A at that time! , becomes the “new film thickness value”, and the measured data value Az+ becomes the “old film thickness value °” (Step O)
.

次いで、その測定データ(11!Azzと前回の測定デ
ータ値Δ2.とを比較器24により比較しくステップO
)、その測定データ値AIが前回の測定データ値A t
 +))上である場合には、カウンタ25の41をプラ
ス1にす゛る(ステップo)。
Next, the measured data (11! Azz and the previous measured data value Δ2.
), the measured data value AI is the previous measured data value A t
+)), the value 41 of the counter 25 is set to plus 1 (step o).

次に、そのカウンタ25の値を判別して、その値が所定
値(ここでは5)になった場合には、極小点として判定
する(ステップO)。
Next, the value of the counter 25 is determined, and if the value reaches a predetermined value (here, 5), it is determined as a minimum point (step O).

上記ステップ[相]において、測定データ値Agzが前
回の測定データ値A□より小さい場合には、カウンタ2
5の値をマイナス1にしくステップO)、そのカウンタ
25の値を判別して、その値が所定値(ここでは0)に
なる(ステップ[相])まで、前記ステップ0に戻る。
In the above step [phase], if the measured data value Agz is smaller than the previous measured data value A□, the counter 2
The value of 5 is set to minus 1 (step O), the value of the counter 25 is determined, and the process returns to step 0 until the value reaches a predetermined value (here, 0) (step [phase]).

また、上記ステシブ■において、カウンタ25の値が0
未溝になる場合にはその値をOに保持して(ステップ■
)、前記ステップ◎に戻る。
In addition, in the above-mentioned progressive ■, the value of the counter 25 is 0.
If there is no groove, hold the value at O (step ■
), return to step ◎.

次に、この真空蒸着における膜厚値(光電測光器の光度
測定値)の極小点の判定例について、第4図乃至第6図
を用いて説明する。
Next, an example of determining the minimum point of the film thickness value (light intensity measurement value of a photoelectric photometer) in vacuum evaporation will be described with reference to FIGS. 4 to 6.

第4図に光度測定値の軌跡が示されており、その極小点
判定の詳細を示すa部が拡大図として第5図に示されて
いる。そこで、第5図において、測定ポイント数を13
とすると、第6図に示すように、測定ポイント4までは
測定データ値が減少しているので、カウンタ値は0に保
持され、測定ポイント5において測定データ値は大きく
なり、カウンタ値は1となり、測定ポイント6では測定
データ値が減少してカウンタ値は0となり、測定ポイン
ト7では測定データ値が大きくなりカウンタ値は1とな
り、測定ポイント8では測定データ値が減少してカウン
タ値はOとなり、測定ポイント9では測定データ値が大
きくなりカウンタ値は1となり、以tイは測定データ値
が増え続け、測定ポイント13になるとカウンタ値は所
定の5となり、測定データ値の上昇傾向が確認され、極
小点として判定される。
FIG. 4 shows the locus of the light intensity measurement value, and FIG. 5 shows an enlarged view of part a showing the details of the minimum point determination. Therefore, in Figure 5, the number of measurement points was increased to 13.
Then, as shown in Figure 6, the measured data value decreases up to measurement point 4, so the counter value is held at 0, and at measurement point 5, the measured data value increases and the counter value becomes 1. , at measurement point 6, the measurement data value decreases and the counter value becomes 0, at measurement point 7, the measurement data value increases and the counter value becomes 1, and at measurement point 8, the measurement data value decreases and the counter value becomes 0. At measurement point 9, the measurement data value increases and the counter value becomes 1. From then on, the measurement data value continues to increase, and at measurement point 13, the counter value reaches the predetermined value of 5, confirming an upward trend in the measurement data value. , is determined as a minimum point.

このように、真空蒸着における膜厚値の極大点或いは極
小点を正確に判定し、検出することができるので、正確
な真空蒸着の制御を行うことができる。
In this way, the maximum point or minimum point of the film thickness value in vacuum evaporation can be accurately determined and detected, so that accurate control of vacuum evaporation can be performed.

なお、このようにして、得られる真空薄@膜は、ブラウ
ン管、プリズムなどの蒸着膜として用いられる。
The vacuum thin @ film thus obtained is used as a vapor deposited film for cathode ray tubes, prisms, and the like.

また、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Furthermore, the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明によれば、蒸着膜
の光電測洋器の測定値における極大点、極小点を誤判定
することなく、正確に判定することができる。特に、ノ
イズ成分を含む信号値についても確実に極点の判定を行
うことができる。また、本発明によれば、時間軸に対し
、非線形に連続に変化するあらゆる信号値軌跡の極点を
判定することもできる。
(Effects of the Invention) As described above in detail, according to the present invention, it is possible to accurately determine the maximum point and minimum point in the measured value of a deposited film using a photoelectric meter without misjudging it. . In particular, it is possible to reliably determine the extreme point even for signal values that include noise components. Further, according to the present invention, it is also possible to determine the extreme points of any signal value trajectory that continuously changes nonlinearly with respect to the time axis.

従って、真空蒸着における膜厚値の極大点或いは極小点
を正確に判定し、検出することができるので、正確にし
て(を転性′の高い真空蒸着の制御を行うことができる
Therefore, the maximum point or minimum point of the film thickness value in vacuum evaporation can be accurately determined and detected, so that vacuum evaporation can be accurately controlled with high conversion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す蒸着膜の極点の判定を行
うためのシステムの構成図、第2図は本発明の極大点の
判定フローチャート、第3図は本発明の極小点の判定フ
ローチャート、第4図は本発明の極小点の判定例におけ
る光度測定値の軌跡を示す図、第5図は第4図のa部の
拡大図、第6図はその光度測定値の極小点判定の説明図
、第7図は従来の真空蒸着における蒸着膜の光電測光器
による光度測定軌跡を示す図である。 14・・・光電測光器、15・・・A/D変換器、20
・・・コンピュータ、21・・・cpu <中央処理袋
り、22・・・入力インタフェース、23・・・メモリ
、24・・・比較器、25・・・カウンタ、26・・・
出力インクフェース。 特許出願人  沖°電気工業株式会社 代理人 弁理士  清 水  守(外1名)巧  閘 
    (だtn) 光1蓮−屓り定イ己のaR−ン〔力木、tV≧1抛40
のa@a文匿 坊ホに2判定の説E@図 第6図
Fig. 1 is a configuration diagram of a system for determining the maximum point of a deposited film showing an embodiment of the present invention, Fig. 2 is a flowchart for determining the maximum point of the present invention, and Fig. 3 is a diagram of determining the minimum point of the present invention. Flowchart, FIG. 4 is a diagram showing the trajectory of the luminous intensity measurement value in an example of determining the minimum point of the present invention, FIG. 5 is an enlarged view of part a of FIG. 4, and FIG. 6 is the minimum point determination of the luminous intensity measurement value FIG. 7 is a diagram showing a trajectory of light intensity measurement by a photoelectric photometer of a deposited film in conventional vacuum deposition. 14... Photoelectric photometer, 15... A/D converter, 20
...Computer, 21...CPU <Central processing bag, 22...Input interface, 23...Memory, 24...Comparator, 25...Counter, 26...
Output ink face. Patent applicant Oki° Electric Industry Co., Ltd. Agent Patent attorney Mamoru Shimizu (1 other person) Takumi Ya
(datn) Light 1 lotus - 哓り し た い my aR-n [Riki, tV ≥ 1 抛40
2 judgment theory E @ Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1) (a)光電測光器の光度測定値による真空蒸着における
膜厚値を周期的に測定する工程と、 (b)該測定値がその前に測定した値より増減したか否
かを判別する工程と、 (c)該増減回数がカウンタにより計数され、そのカウ
ンタ値が負にならないようにすると共に所定の値に達し
た場合には極点と判定する工程とを有する真空蒸着にお
ける膜厚値の判定方法。
(1) (a) Periodically measuring the film thickness value during vacuum evaporation using the photointensity measurement value of a photoelectric photometer; (b) Determining whether the measured value has increased or decreased from the previously measured value. and (c) a step in which the number of increases and decreases is counted by a counter, the counter value is prevented from becoming negative, and when it reaches a predetermined value, it is determined to be an extreme point. How to judge.
(2)前記測定値がその前に測定した値より減少する傾
向にある場合、極大点と判定する請求項1記載の真空蒸
着における膜厚値の判定方法。
(2) The method for determining a film thickness value in vacuum evaporation according to claim 1, wherein if the measured value tends to decrease from a previously measured value, it is determined to be a maximum point.
(3)前記測定値がその前に測定した値より増加する傾
向にある場合、極小点と判定する請求項1記載の真空蒸
着における膜厚値の判定方法。
(3) The method for determining a film thickness value in vacuum evaporation according to claim 1, wherein if the measured value tends to increase from a previously measured value, it is determined to be a minimum point.
JP63318498A 1988-12-19 1988-12-19 Determination method of film thickness value in vacuum deposition Expired - Lifetime JPH0762247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318498A JPH0762247B2 (en) 1988-12-19 1988-12-19 Determination method of film thickness value in vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318498A JPH0762247B2 (en) 1988-12-19 1988-12-19 Determination method of film thickness value in vacuum deposition

Publications (2)

Publication Number Publication Date
JPH02163374A true JPH02163374A (en) 1990-06-22
JPH0762247B2 JPH0762247B2 (en) 1995-07-05

Family

ID=18099793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318498A Expired - Lifetime JPH0762247B2 (en) 1988-12-19 1988-12-19 Determination method of film thickness value in vacuum deposition

Country Status (1)

Country Link
JP (1) JPH0762247B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344168A (en) * 2004-06-03 2005-12-15 Shincron:Kk Thin film deposition method, film thickness measuring method, and film thickness measuring device
US7608307B2 (en) 2002-11-08 2009-10-27 National Institute Of Advanced Industrial Science And Technology Method of forming film upon a substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146584A (en) * 1974-10-18 1976-04-21 Pioneer Electronic Corp JOCHAKUSOCHI
JPS61246795A (en) * 1985-04-24 1986-11-04 富士通株式会社 Maximum/minimum detection system
JPS62165103A (en) * 1986-01-17 1987-07-21 Canon Inc Method for measuring film thickness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146584A (en) * 1974-10-18 1976-04-21 Pioneer Electronic Corp JOCHAKUSOCHI
JPS61246795A (en) * 1985-04-24 1986-11-04 富士通株式会社 Maximum/minimum detection system
JPS62165103A (en) * 1986-01-17 1987-07-21 Canon Inc Method for measuring film thickness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608307B2 (en) 2002-11-08 2009-10-27 National Institute Of Advanced Industrial Science And Technology Method of forming film upon a substrate
DE10393678B4 (en) * 2002-11-08 2013-11-21 National Institute Of Advanced Industrial Science And Technology Method for forming a layer on a substrate
JP2005344168A (en) * 2004-06-03 2005-12-15 Shincron:Kk Thin film deposition method, film thickness measuring method, and film thickness measuring device

Also Published As

Publication number Publication date
JPH0762247B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
TW201801132A (en) High brightness laser-sustained plasma broadband source
US6524449B1 (en) Method and system for producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients
EP2546600A1 (en) Method and apparatus for real-time determination of spherical and non-spherical curvature of a surface
US5034617A (en) Method and apparatus for measuring refractive index and thickness of film
Lu et al. Improved method of nonintrusive deposition rate monitoring by atomic absorption spectroscopy for physical vapor deposition processes
JPH02163374A (en) Judging method for film thickness value in vacuum deposition
EP0666337A1 (en) Method and apparatus for measuring the deposition rate of opaque films
Foster Evaluation of Kodak Electron Image Plates for Accurate Exposure Measurements in Electron Diffraction
Russev et al. Rotating analyzer–fixed analyzer ellipsometer based on null type ellipsometer
CN209991941U (en) Film thickness measuring device
JP3333940B2 (en) Apparatus and method for calibrating apparatus for measuring layer thickness using X-rays
SU1417607A1 (en) Method of calibration of gas-analytical systems
JP2587887B2 (en) Surface treatment method and apparatus using glow discharge
JPH09145344A (en) Measuring method for film thickness
Butler Reduction of iris diaphragm measurements to magnitude
Robertson et al. Photometry of X-ray crystal diffraction diagrams
JP2001166382A (en) Method for deciding quality of light source unit, and method for manufacturing light source unit by using the method
SU1298539A1 (en) Method of measuring thickness of thin layers applied on substrate
Batishko et al. System for measuring film thickness
JPS6223126A (en) Dose determining method
JPS6383646A (en) Surface analysis of sample
Griboval A Five Centimetre Magnetically Focused Electronographic Camera: Description and First Tests
SU1343245A1 (en) Method of checking the coating thickness
JPH03160317A (en) Laser light controlling device of measuring apparatus
SU1401267A1 (en) Method of determining variations in film thickness