JPH09145344A - Measuring method for film thickness - Google Patents

Measuring method for film thickness

Info

Publication number
JPH09145344A
JPH09145344A JP30116595A JP30116595A JPH09145344A JP H09145344 A JPH09145344 A JP H09145344A JP 30116595 A JP30116595 A JP 30116595A JP 30116595 A JP30116595 A JP 30116595A JP H09145344 A JPH09145344 A JP H09145344A
Authority
JP
Japan
Prior art keywords
characteristic
measured
rays
film thickness
sem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30116595A
Other languages
Japanese (ja)
Inventor
Yuichi Asahara
優一 浅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP30116595A priority Critical patent/JPH09145344A/en
Publication of JPH09145344A publication Critical patent/JPH09145344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a measuring method which can deal with a measuring area in a wide range and in which a measurement can be performed in a short time by a method wherein characteristic X-rays are grasped in advance by using a material having a known film thickness and they are compared with characteristic X-rays in a material having an unknown film thickness. SOLUTION: First, secondary electrons which are emitted at a time when an electron beam is radiated from an electron gun 3 at an SEM (scanning electron microcope) 1 are detected by a secondary-electron detector 7, characteristic X-rays are detected by an X-ray detector 8 and the kind and the amount of every component are measured. In the SEM 1, the electron beam penetrates down to a depth of several μm from the surface of a material. As a result, the characteristic X-rays which are detected by the detector 8 contain information on a part down to the depth of several μm from the surface. Then, a material whose plated thickness is known in advance is used as a standard material, the detection result of the secondary electrons from the SEM 1 and that of the characteristic X-rays are analyzed quantitatively, and a working curve is created on the basis of them. When a material, to be measured, whose plated thickness is unknown is analyzed qualitatively and quantitatively on the basis of them, the plated thickness of the material to be measured can be computed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、メッキ等の膜の厚
みを測定するための膜厚測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness measuring method for measuring the thickness of a film such as plating.

【0002】[0002]

【従来の技術】膜厚、例えばメッキの厚みを測定する方
法や装置には、次の4つが知られている。 (1)メッキした材料の断面を顕微鏡或いは電子顕微鏡
で観察し、写真撮影した後、スケール等を用いてメッキ
厚を測定する(或いは、接眼レンズの測長目盛りを利用
して測定する)。 (2)蛍光X線膜厚計を用いてメッキ厚を測定する。 (3)メッキ装置を用い、メッキ時とは逆の極性にし、
電気的にメッキを剥離(電気分解)して完全に剥離する
までの単位面積当たりの電気量からメッキ厚を算出す
る。 (4)発光分光分析装置(スパーク放電、グロー放電
等)を用いてメッキ厚を測定する。
2. Description of the Related Art The following four methods and devices are known for measuring the film thickness, for example, the plating thickness. (1) The cross section of the plated material is observed with a microscope or an electron microscope, and after taking a photograph, the plating thickness is measured using a scale or the like (or, it is measured using the length measuring scale of the eyepiece lens). (2) The plating thickness is measured using a fluorescent X-ray film thickness meter. (3) Using a plating device, set the polarity opposite to that used during plating,
The plating thickness is calculated from the amount of electricity per unit area until the plating is electrically peeled (electrolysis) and completely peeled. (4) The plating thickness is measured by using an emission spectroscopy analyzer (spark discharge, glow discharge, etc.).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
技術にあっては、(1)の方法の場合、断面においてメ
ッキ材と母材の境界を明瞭にする必要があるため、次に
列挙する如き問題を有している。 精密な研磨及びエッチングが必要になり、測定の準
備に時間を要する。 正確なメッキ厚を測定するためには、メッキ面に対
して90°になるように切断し、更に研磨を行う必要が
あるが、現実には非常に難しい作業になる。 断面からのメッキ厚測定は、材料のごく一部につい
ての測定になるため、材料全体の評価ができない。ま
た、材料全体の評価をするために切断面を増やすと、膨
大な時間を要する。
However, in the above-mentioned prior art, in the case of the method (1), it is necessary to clarify the boundary between the plating material and the base material in the cross section, and therefore the following is enumerated. It has such a problem. Precise polishing and etching are required, and it takes time to prepare for measurement. In order to accurately measure the plating thickness, it is necessary to cut at 90 ° to the plating surface and further polish, but this is a very difficult work in reality. Since the plating thickness measurement from the cross section is a measurement of a very small part of the material, it is not possible to evaluate the entire material. Also, if the number of cut surfaces is increased in order to evaluate the entire material, a huge amount of time is required.

【0004】また、(2)の方法の場合、次に列挙する
如き問題を有している。 蛍光X線膜厚計はX線管を用いているため、X線の
漏洩等を招き、安全性の面で問題がある。 メッキ厚を測定する面積が決まっているため、微小
なメッキ材での測定が困難である。
Further, the method (2) has the following problems. Since the fluorescent X-ray film thickness meter uses an X-ray tube, it causes leakage of X-rays and the like, and there is a problem in safety. Since the area for measuring the plating thickness is fixed, it is difficult to measure with a minute plating material.

【0005】(3)の方法の場合、次に列挙する如き問
題を有している。 メッキ材のみを完全に電気分解するまでの総電気量
を正確に求めることが難しい。 電解液の温度、成分濃度、電流等の変動要因が多
く、これらの条件を常に一定にすることは困難であり、
再現性に乏しい。 良好な測定を行うためには、十分な面積(通常、数
cm×数cm以上)が必要であり、微小な材料或いは微
小部分のメッキ厚を測定できない。 電解液には化学薬品が含まれるため、処理を如何に
するかが問題になる。 メッキ材を完全に電気分解するまでに時間を要し、
迅速な測定が行えない。
The method (3) has the following problems. It is difficult to accurately determine the total amount of electricity required to completely electrolyze only the plated material. There are many fluctuation factors such as the temperature, component concentration, and current of the electrolyte, and it is difficult to keep these conditions constant.
Poor reproducibility. In order to perform good measurement, a sufficient area (usually several cm × several cm or more) is required, and the plating thickness of a minute material or a minute portion cannot be measured. Since the electrolytic solution contains chemicals, the problem is how to treat it. It takes time to completely electrolyze the plated material,
Can't measure quickly.

【0006】更に、(4)の方法の場合、次に列挙する
如き問題を有している。 平坦な材料では発光し難い。 メッキ材の発光強度が零になる時点等に基づいてメ
ッキ厚を算出するが、メッキ厚が薄い場合、ごく短時間
に強度が零になり、十分な精度が得られない。 発光面の面積が固定であるため、微小なものは測定
できない。 発光部の気密性を保持する必要があり、平坦なもの
しか測定できない。
Further, the method (4) has the following problems. It is difficult to emit light with a flat material. The plating thickness is calculated based on the time when the light emission intensity of the plating material becomes zero, but when the plating thickness is thin, the intensity becomes zero in a very short time, and sufficient accuracy cannot be obtained. Since the area of the light emitting surface is fixed, minute objects cannot be measured. It is necessary to maintain the airtightness of the light emitting part, and only flat objects can be measured.

【0007】以上のように、従来の膜厚測定方法は、い
ずれも解決すべき複数の課題を有しており、特に、迅速
性及び測定面積の対応の面で課題が残されている。そこ
で本発明は、広範囲の測定面積に対応でき、かつ短時間
で測定が可能な膜厚測定方法を提供することを目的とし
ている。
As described above, each of the conventional film thickness measuring methods has a plurality of problems to be solved, and in particular, the problems remain in terms of quickness and measurement area. Therefore, an object of the present invention is to provide a film thickness measuring method capable of supporting a wide range of measurement areas and capable of measuring in a short time.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、SEMと成分分析装置を用いて、予め
膜厚が既知の材料を用いて特性X線を把握し、これと膜
厚が未知の材料における特性X線とを比較して未知の材
料の膜厚を算出する。
In order to achieve the above-mentioned object, the present invention uses a SEM and a component analyzer to grasp a characteristic X-ray by using a material whose film thickness is known in advance. The film thickness of the unknown material is calculated by comparing with the characteristic X-ray of the material of which the film thickness is unknown.

【0009】このように、予め把握した測定データと被
測定材料を測定した時のデータの比較によって測定する
ため、従来技術のような事前の加工が不要になり、ま
た、測定に断面を用いないので測定面積に制約がなく、
測定時間も増えない。従来、電気分解法では総電気量を
正確に求める必要があり、十分な測定面積も必要とし、
周囲環境の影響を受け易かったが、本発明では基準値と
の比較であるため、再現性がある。以上により、本発明
によれば、測定を短時間に行うことができ、かつ測定面
積が微小面積から比較的広い面積まで対応でき、材料の
測定対象を広げることができる。
As described above, since the measurement is performed by comparing the measured data which is grasped in advance and the data when the material to be measured is measured, there is no need for the prior processing as in the prior art, and the cross section is not used for the measurement. Because there is no restriction on the measurement area,
Measurement time does not increase. Conventionally, in the electrolysis method, it is necessary to accurately determine the total amount of electricity, and a sufficient measurement area is also required.
Although it was easily affected by the surrounding environment, it is reproducible because it is compared with the reference value in the present invention. As described above, according to the present invention, the measurement can be performed in a short time, the measurement area can be applied from a minute area to a relatively wide area, and the measurement target of the material can be widened.

【0010】[0010]

【発明の実施の形態】本発明は、膜厚値が既知である基
準用材料を走査型電子顕微鏡で観察し、その際に前記材
料から発生する特性X線を成分分析装置で分析し、この
結果を基準にし、この基準と別の被測定材料に対する特
性X線を成分分析装置で分析した結果とを比較して前記
被測定材料の膜厚を算出するようにしている。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a reference material having a known film thickness value is observed with a scanning electron microscope, and characteristic X-rays generated from the material at that time are analyzed by a component analyzer, and The result is used as a reference, and this reference is compared with the result of analyzing the characteristic X-rays for another material to be measured by the component analyzer to calculate the film thickness of the material to be measured.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明は、SEM(走査型電子顕微鏡)をメッキ
の施された材料の表面観察に用いている。SEMは、材
料に電子線を照射した際に放出される二次電子を検出
し、モニタ上に画像として表すもので、数十倍から数万
倍の倍率範囲で使用することができる。また、本発明で
はSEMと共にEDX及びWDXを組み合わせて用い、
材料の成分分析(定性及び定量)を行っている。SEM
には、例えば日本電子株式会社製のモデル「JSM−5
300」、EDXには同じく日本電子株式会社製のモデ
ル「JED−2001」を用いることができる。
Embodiments of the present invention will be described below with reference to the drawings. The present invention uses an SEM (scanning electron microscope) for observing the surface of a plated material. The SEM detects secondary electrons emitted when a material is irradiated with an electron beam and displays it as an image on a monitor, and can be used in a magnification range of several tens to several tens of thousands. Further, in the present invention, EDX and WDX are used in combination with SEM,
We conduct component analysis (qualitative and quantitative) of materials. SEM
Includes, for example, a model “JSM-5” manufactured by JEOL Ltd.
300 ", and a model" JED-2001 "manufactured by JEOL Ltd. can be used for EDX.

【0012】図1は本発明方法を実現する測定システム
の概略構成を示し、SEM1の測定位置には試料(被測
定材料)2が設置され、この試料2は不図示のテーブル
によって任意の角度に設定することができる。SEM1
は、電子銃3、集束レンズ4、偏向コイル5、対物レン
ズ6等を備えるほか、二次電子検出器7、不図示の試料
微動機構、絞り機構等を備えて構成されている。更に、
二次電子と共に放出される特性X線(各元素に特有なエ
ネルギーと波長を持つX線)を検出するためのX線検出
器8が設けられている。そして、このX線検出器8に
は、分析装置9(EDX、WDX等)が接続されてい
る。
FIG. 1 shows a schematic configuration of a measuring system for realizing the method of the present invention. A sample (material to be measured) 2 is installed at a measuring position of an SEM 1, and the sample 2 is set at an arbitrary angle by a table (not shown). Can be set. SEM1
Is provided with an electron gun 3, a focusing lens 4, a deflection coil 5, an objective lens 6 and the like, a secondary electron detector 7, a sample fine movement mechanism (not shown), a diaphragm mechanism and the like. Furthermore,
An X-ray detector 8 is provided for detecting characteristic X-rays (X-rays having an energy and a wavelength peculiar to each element) emitted together with the secondary electrons. An analyzer 9 (EDX, WDX, etc.) is connected to the X-ray detector 8.

【0013】SEM1は、図2に示すように、電子銃3
からの電子が当たった部分から、この入射した電子とは
別の電子(二次電子)をはじき出すことができる。そし
て、入射電子を一定の速度で走査しながら二次電子の大
小を検出し、その信号をブラウン管上に明暗として表示
する。二次電子が出る割合は、入射電子のエネルギーが
一定であれば、物質及び電子線の物質に対する入射角度
によって変化する。図2の様に、角度θが大きいほど、
内部で発生した二次電子が物質の表面から抜け出るまで
の距離(r cosθ)が短くなる。
The SEM 1 includes an electron gun 3 as shown in FIG.
An electron (secondary electron) different from the incident electron can be repelled from the portion hit by the electron from. Then, the size of the secondary electrons is detected while scanning the incident electrons at a constant speed, and the signal is displayed as bright and dark on the cathode ray tube. The proportion of secondary electrons emitted varies depending on the incident angle of the substance and the electron beam with respect to the substance, if the energy of the incident electrons is constant. As shown in FIG. 2, the larger the angle θ,
The distance (r cos θ) until the secondary electrons generated inside escape from the surface of the substance becomes short.

【0014】したがって、二次電子の出る割合は、1/
cosθに比例、すなわちθが大きいほど大きくなるた
め、試料2の表面の凹凸が明るさの変化として観察する
ことができる。特に、試料2の傾斜面2aが二次電子検
出器7に向いている場合、二次電子収集効率が最も高
く、二次電子検出器7の位置から光を当てながら試料2
を眺めるのと同様の立体像を得ることができる。このこ
とから、半導体の形状や結晶性の評価に好んで用いられ
ている。
Therefore, the proportion of secondary electrons emitted is 1 /
Since it increases in proportion to cos θ, that is, the larger θ, the unevenness on the surface of the sample 2 can be observed as a change in brightness. In particular, when the inclined surface 2a of the sample 2 faces the secondary electron detector 7, the secondary electron collection efficiency is highest, and the sample 2 is irradiated with light from the position of the secondary electron detector 7.
You can get the same stereoscopic image as you see. Therefore, it is favorably used for evaluating the shape and crystallinity of semiconductors.

【0015】本発明では、物質に電子線を照射した場
合、二次電子と共に放出されるX線を用いている。放出
されたX線は、物質中に含まれる元素特有の特性X線で
あり、そのエネルギーと量を持っている。この特性X線
を利用した本発明方法について、以下に説明する。
In the present invention, when a substance is irradiated with an electron beam, X-rays emitted together with secondary electrons are used. The emitted X-rays are characteristic X-rays peculiar to the elements contained in the substance, and have the energy and quantity. The method of the present invention utilizing this characteristic X-ray will be described below.

【0016】まず、SEM1の電子銃3から電子線を照
射した際に放出される二次電子を二次電子検出器7で検
出し、特性X線をX線検出器8で検出する。各々の成分
の種類及び量を測定する。SEM1は、一般に材料表面
から数μmの深さ(厚み方向)まで電子線が侵入するた
め、X線検出器8で検出される特性X線は、表面から数
μmの深さまでの情報を含むことになる。分析装置9で
合金材料の定量分析を行った場合、均一な合金材料であ
れば、各成分の量は常に一定の値になる。しかし、或る
母材上に異種元素のメッキを施した材料を定量分析した
場合、メッキ厚みが電子線の侵入深さよりも薄い範囲で
は、メッキ厚に比例してメッキ材の量が多いことを意味
している。
First, secondary electrons emitted when an electron beam is emitted from the electron gun 3 of the SEM 1 are detected by the secondary electron detector 7, and characteristic X-rays are detected by the X-ray detector 8. Determine the type and amount of each component. In the SEM 1, an electron beam generally penetrates from the surface of the material to a depth (thickness direction) of several μm. Therefore, the characteristic X-ray detected by the X-ray detector 8 must include information up to a depth of several μm from the surface. become. When the alloy material is quantitatively analyzed by the analyzer 9, the amount of each component is always a constant value if the alloy material is uniform. However, when quantitatively analyzing a material obtained by plating a certain base material with a different element, it is found that the amount of the plating material is large in proportion to the plating thickness in the range where the plating thickness is thinner than the penetration depth of the electron beam. I mean.

【0017】本発明は、この点に着目し、予めメッキ厚
が既知である材料を標準材料にする。SEM1からの二
次電子及び特性X線の検出結果は分析装置9によって定
量分析され、これに基づいて検量線が作成される。これ
を基にして、メッキ厚が未知の材料(被測定材料)の定
性分析及び定量分析を行えば、被測定材料のメッキ厚を
算出することができる。つまり、比較用の標準材料を基
準にして、被測定材料のメッキ厚を知ることができる。
In the present invention, attention is paid to this point, and a material having a known plating thickness is used as a standard material. The detection results of the secondary electrons and the characteristic X-rays from the SEM 1 are quantitatively analyzed by the analyzer 9, and a calibration curve is created based on this. Based on this, if the qualitative analysis and the quantitative analysis of the material of which the plating thickness is unknown (the material to be measured) are performed, the plating thickness of the material to be measured can be calculated. That is, it is possible to know the plating thickness of the material to be measured with reference to the standard material for comparison.

【0018】図3は本発明の膜厚測定方法による定量分
析値と膜厚の関係を示す特性図である。被測定材料は、
銅材の表面にクロムメッキが施されており、これに対し
てSEMから加速電圧が20KVの電子線を照射した。
この結果、メッキ厚が約1.5μmまでは定量値との比
例関係が認められた。電子線の材料表面からの侵入深さ
は加速電圧に比例するため、更に加速電圧を上げること
によりメッキ厚の測定可能域を拡大することができる。
しかし、通常のSEMでは50KV程度が最高電圧にな
るため、メッキ厚5μm程度が上限になる。
FIG. 3 is a characteristic diagram showing the relationship between the quantitative analysis value and the film thickness by the film thickness measuring method of the present invention. The material to be measured is
The surface of the copper material was plated with chromium, and an electron beam with an accelerating voltage of 20 KV was irradiated from the SEM.
As a result, a proportional relationship with the quantitative value was confirmed up to a plating thickness of about 1.5 μm. Since the penetration depth of the electron beam from the material surface is proportional to the acceleration voltage, the measurable range of the plating thickness can be expanded by further increasing the acceleration voltage.
However, in a normal SEM, the maximum voltage is about 50 KV, so the upper limit is about 5 μm in plating thickness.

【0019】本発明によれば、SEMを用いたことによ
り、数μm角〜数mm角の範囲で、ほぼ任意の面積によ
る測定が可能であり、極めて微小な面積による測定が可
能である。これに対し、蛍光X線膜厚計を用いた従来技
術においては、0.1mmφ〜3×4mm角程度の範囲
の数段階、また、電気分解法では数cm角〜十数cm角
の範囲であり、或る程度の面積が必要になる。
According to the present invention, by using the SEM, it is possible to measure almost any area within a range of several μm square to several mm square, and it is possible to measure with an extremely small area. On the other hand, in the conventional technique using the fluorescent X-ray film thickness meter, several steps in the range of about 0.1 mmφ to 3 × 4 mm square, and in the range of several cm square to tens of cm square in the electrolysis method. Yes, some area is required.

【0020】また、測定時間は、本発明方法の場合、約
1分で済ませることができる。これに対し、材料の断面
を顕微鏡或いは電子顕微鏡で観察する従来技術では約1
時間を要し、電気分解法では約20分を要する。このよ
うに、本発明によれば極めて短時間に膜厚を測定するこ
とができる。
In the case of the method of the present invention, the measuring time can be about 1 minute. On the other hand, in the conventional technique of observing the cross section of the material with a microscope or an electron microscope, it is about 1
It takes time and about 20 minutes by the electrolysis method. Thus, according to the present invention, the film thickness can be measured in an extremely short time.

【0021】(第2の実施例)本発明による方法はSE
Mに代え、スパッタ装置を用いることもできる。すなわ
ち、スパッタ装置と分析装置(EDX或いはWDX)を
組み合わせ、被測定材料を高速度でスパッタしながら成
分分析を行い、検出元素の種類が変わった時点(被測定
材料にメッキ材が完全にスパッタされた時点)における
スパッタ深さをメッキ厚にする。これにより、スパッタ
における膜厚測定が別工程によらずスパッタ形成過程で
行え、生産性の向上が可能になる。なお、上記の説明に
おいては、膜としてメッキを例にしたが、本発明はメッ
キに限らずあらゆる膜を対象にすることができる。
(Second Embodiment) The method according to the present invention is SE
Instead of M, a sputtering device can also be used. That is, by combining a sputter device and an analyzer (EDX or WDX), component analysis is performed while sputtering the material to be measured at high speed, and when the type of the detected element changes (the plating material is completely sputtered on the material to be measured). At the point of time), the sputtering depth is set to the plating thickness. As a result, the film thickness measurement in sputtering can be performed in the process of forming the sputter without a separate process, and the productivity can be improved. In the above description, plating was used as an example of the film, but the present invention is not limited to plating and can be applied to any film.

【0022】[0022]

【発明の効果】以上説明した通り、この発明は、膜厚値
が既知である基準用材料を走査型電子顕微鏡で観察し、
その際に前記材料から発生する特性X線を成分分析装置
で分析し、この結果を基準にし、この基準と別の被測定
材料に対する特性X線を成分分析装置で分析した結果と
を比較して前記被測定材料の膜厚を算出するようにした
ので、測定を短時間に行うことができ、かつ測定面積が
微小面積から比較的広い面積まで対応でき、材料の測定
対象を広げることができる。
As described above, according to the present invention, a reference material having a known film thickness value is observed by a scanning electron microscope,
At that time, the characteristic X-ray generated from the material is analyzed by a component analyzer, and this result is used as a reference, and this reference is compared with the result of analyzing the characteristic X-ray for another material to be measured by the component analyzer. Since the film thickness of the material to be measured is calculated, the measurement can be performed in a short time, the measurement area can be applied from a very small area to a relatively wide area, and the measurement object of the material can be widened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実現する測定システムを示す概略
構成図である。
FIG. 1 is a schematic configuration diagram showing a measurement system that realizes the method of the present invention.

【図2】図1のSEMによる二次電子放出の様子を示す
説明図である。
2 is an explanatory diagram showing a state of secondary electron emission by the SEM of FIG. 1. FIG.

【図3】本発明の膜厚測定方法による定量分析値と膜厚
の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a quantitative analysis value and a film thickness by the film thickness measuring method of the present invention.

【符号の説明】[Explanation of symbols]

1 SEM 2 試料 7 二次電子検出器 8 X線検出器 10 分析装置 1 SEM 2 sample 7 secondary electron detector 8 X-ray detector 10 analyzer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】膜厚値が既知である基準用材料を走査型電
子顕微鏡で観察し、その際に前記材料から発生する特性
X線を成分分析装置で分析し、この結果を基準にし、こ
の基準と別の被測定材料に対する特性X線を成分分析装
置で分析した結果とを比較して前記被測定材料の膜厚を
算出することを特徴とする膜厚測定方法。
1. A reference material having a known film thickness value is observed by a scanning electron microscope, characteristic X-rays generated from the material at that time are analyzed by a component analyzer, and the result is used as a reference. A method of measuring a film thickness, which comprises calculating a film thickness of the material to be measured by comparing a standard X-ray with respect to another material to be measured with a component analyzer.
JP30116595A 1995-11-20 1995-11-20 Measuring method for film thickness Pending JPH09145344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30116595A JPH09145344A (en) 1995-11-20 1995-11-20 Measuring method for film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30116595A JPH09145344A (en) 1995-11-20 1995-11-20 Measuring method for film thickness

Publications (1)

Publication Number Publication Date
JPH09145344A true JPH09145344A (en) 1997-06-06

Family

ID=17893579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30116595A Pending JPH09145344A (en) 1995-11-20 1995-11-20 Measuring method for film thickness

Country Status (1)

Country Link
JP (1) JPH09145344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345163A (en) * 2004-06-01 2005-12-15 Jfe Steel Kk Film thickness measurement method for surface layer oxide film of zinc base plated sheet iron
EP1867949A1 (en) * 2005-09-26 2007-12-19 JFE Steel Corporation Method of measuring film thickness of surface oxide film of zinc-based plated steel sheet
JP2013040874A (en) * 2011-08-18 2013-02-28 Jfe Steel Corp Film thickness uniformity evaluation method
JP2013040875A (en) * 2011-08-18 2013-02-28 Jfe Steel Corp Film thickness uniformity evaluation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345163A (en) * 2004-06-01 2005-12-15 Jfe Steel Kk Film thickness measurement method for surface layer oxide film of zinc base plated sheet iron
EP1867949A1 (en) * 2005-09-26 2007-12-19 JFE Steel Corporation Method of measuring film thickness of surface oxide film of zinc-based plated steel sheet
EP1867949A4 (en) * 2005-09-26 2008-04-16 Jfe Steel Corp Method of measuring film thickness of surface oxide film of zinc-based plated steel sheet
JP2013040874A (en) * 2011-08-18 2013-02-28 Jfe Steel Corp Film thickness uniformity evaluation method
JP2013040875A (en) * 2011-08-18 2013-02-28 Jfe Steel Corp Film thickness uniformity evaluation method

Similar Documents

Publication Publication Date Title
US6765205B2 (en) Electron microscope including apparatus for X-ray analysis and method of analyzing specimens using same
EP0377446A2 (en) Surface analysis method and apparatus
Duncumb The X-ray scanning microanalyser
JP5211178B2 (en) Electron detection device and scanning electron microscope
Seah et al. AES: Accurate intensity calibration of electron spectrometers—results of a BCR interlaboratory comparison co‐sponsored by the VAMAS SCA TWP
KR100447713B1 (en) Method and apparatus for showing scanning image of sample
EP3194941B1 (en) A method for measuring the mass thickness of a target sample for electron microscopy
US20030080292A1 (en) System and method for depth profiling
JP7040496B2 (en) Sample observation method in electron microscope, image analyzer for electron microscope, image analysis method for electron microscope and electron microscope
JP2002181725A (en) Method for analyzing minute foreign matter, analysis apparatus, method for manufacturing semiconductor device and liquid crystal display device
US20200373119A1 (en) Holder and charged particle beam apparatus
JPH09145344A (en) Measuring method for film thickness
EP0171855B1 (en) Method of film inspection with a microscopical image analyzer
JP3060889B2 (en) Thin film thickness measurement method
JP2019109201A (en) Fluorescent x-ray analysis device and analysis method
Russ Energy dispersion X-ray analysis on the scanning electron microscope
WO2020110276A1 (en) Charged particle beam apparatus
US3479505A (en) Method of operating an ion microprobe using secondary elections
JPH06288941A (en) Method for analyzing state of foreign matter
JP2014196925A (en) Fluorescent x-ray analyzer, and depth direction analysis method used for the same
JP2002310957A (en) X-ray analyzer by electron excitation
Duncumb Electron probe microanalysis
JPS62144052A (en) 2-d distribution measuring apparatus for film thickness and component element of surface-treated layer of surface treated metal plate and measurement thereby
JP2903874B2 (en) Ion-excitation X-ray analyzer with focused ion beam
JP2598283B2 (en) Ion beam detection method in charged particle irradiation equipment