JPH02163342A - High strength steel for large heat imput welding - Google Patents

High strength steel for large heat imput welding

Info

Publication number
JPH02163342A
JPH02163342A JP31784188A JP31784188A JPH02163342A JP H02163342 A JPH02163342 A JP H02163342A JP 31784188 A JP31784188 A JP 31784188A JP 31784188 A JP31784188 A JP 31784188A JP H02163342 A JPH02163342 A JP H02163342A
Authority
JP
Japan
Prior art keywords
toughness
steel
parameter
welding
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31784188A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Koichi Yamamoto
広一 山本
Shuji Aihara
周二 粟飯原
Kentaro Okamoto
健太郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31784188A priority Critical patent/JPH02163342A/en
Publication of JPH02163342A publication Critical patent/JPH02163342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain the large heat imput weld joint toughness in the steel without incorporating large amounts of expensive alloy elements by specifying the contents of C, Si, Mn, Ni, Cu, Cr, Mo, etc., and the value of their parameter. CONSTITUTION:The compsn. of a high strength steel is constituted of, by weight, 0.02 to 0.06% C, 0.05 to 0.20% Si, 0.50 to 3.0% Mn, <=0.010% P, <=0.010% S, 0.03 to 0.10% Al, 1.0 to 10.0% Ni, 0.0005 to 0.0020% B and <=0.0040% N, one or more kinds among 0.01 to 1.50% Cu, 0.01 to 1.50% Cr and 0.01 to 1.50% Mo and the balance Fe with inevitable impurities. The value of the parameter (x) expressed by the equation is furthermore regulated to 18 to 24. If required, 0.005 to 0.02% Ti is incorporated into the steel.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶接入熱が8〜1okJ/ms程度の大人熱溶
接においても、良好な溶接継手靭性を有する母材の引張
り強さが70kgf/+m4以上の裔張力鋼にかかわる
ものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is capable of achieving a tensile strength of the base material of 70 kgf/ms with good weld joint toughness even in adult heat welding where the welding heat input is about 8 to 1 okJ/ms. This relates to tensile strength steel of +m4 or more.

(従来の技術) 近年、溶接施工の能率向上を9指して大人熱溶接が用い
られるようになってきているが、一般的に高張力鋼は大
入熱溶接により、その継手靭性が大きく劣化するため、
低温靭性を要求される構造物においては高張力鋼に対し
て大入熱溶接の使用が制限されることが多かった。特に
引張り強さが70kg f / wJ以上の高張力鋼に
おいて、溶接継手の低温靭性の確保が非常に難しく、問
題が大きかった。
(Conventional technology) In recent years, adult heat welding has been used to improve the efficiency of welding work, but in general, the joint toughness of high-strength steel deteriorates significantly due to high heat input welding. For,
In structures requiring low-temperature toughness, the use of high-heat-input welding is often restricted for high-strength steel. Particularly in the case of high-strength steel with a tensile strength of 70 kg f/wJ or more, it is extremely difficult to ensure the low-temperature toughness of welded joints, which is a major problem.

最近ようやく、引張り強さが50kg f / mJ級
の鋼において、特開昭80−245788号公報等に見
られるように、TIの酸化物や窒化物等を利用して溶接
熱影響部の粒内フェライト変態を促進したり、オーステ
ナイト粒径の微細化を計るなどの方法を用いて、溶接熱
影響部の組織を微細なフェライト・パーライト組織とす
ることによって、大入熱溶接部の低温靭性の改善が可能
になってきた。
Recently, in steels with a tensile strength of 50 kg f / mJ, as seen in Japanese Patent Application Laid-open No. 80-245788, TI oxides and nitrides have been used to strengthen the grains of the weld heat-affected zone. The low-temperature toughness of high-heat-input welds can be improved by creating a fine ferrite-pearlite structure in the weld heat-affected zone by promoting ferrite transformation and refining the austenite grain size. has become possible.

しかしながら、引張り強さが70kg f / +++
i以上の高張力鋼においては、このような手段によって
は低温靭性の改善は期待できず、むしろ靭性が劣化する
場合さえ見られる。
However, the tensile strength is 70 kg f / +++
In high-strength steels with a tensile strength of i or higher, improvement in low-temperature toughness cannot be expected by such measures, and in fact, the toughness may even deteriorate.

これは、引張り強さが70)cgf/mJ以上の高張力
鋼は、合金元素を母材特性の確保の点から必然的に多量
に含んでおり、TIの酸化物や窒化物等を含むと、逆に
焼入性が低下して靭性に有害な島状マルテンサイトを多
く含んだ上部ベイナイト主体組織となるためである。
This is because high-strength steel with a tensile strength of 70) cgf/mJ or higher necessarily contains a large amount of alloying elements in order to maintain the properties of the base material, and if it contains TI oxides or nitrides, On the contrary, the hardenability decreases, resulting in an upper bainite-based structure containing a large amount of island martensite, which is harmful to toughness.

従って、50kg f /−扱銅とは全く異なった靭性
改善法が必要であり、従来技術の延長上にその解決策を
見いだすことは全く不可能である。
Therefore, a method for improving toughness that is completely different from that for copper treated with 50 kg f/- is required, and it is completely impossible to find a solution by extending the conventional technology.

このクラスの高張力鋼における大入熱溶接部靭性向上技
術としては、特開昭61−441G1号公報に示される
ようなものがある。本公報の技術は大入熱溶接時のBN
による靭性劣化を防ぐために、B無添加を大きな特徴の
一つにして、ボンド部(Fusion Llnc)のシ
ャルピー破面遷移温度O℃以下を達成することを目的と
したものである。
As a technique for improving the toughness of a high heat input weld in this class of high tensile strength steel, there is a technique as disclosed in Japanese Patent Laid-Open No. 61-441G1. The technology in this publication is for BN during high heat input welding.
In order to prevent the deterioration of toughness caused by this, one of the major characteristics is that no B is added, and the aim is to achieve a Charpy fracture surface transition temperature of 0° C. or lower in the bond portion (Fusion Llnc).

しかし、最近は構造物の使用環境が苛酷化、多様化しつ
つあり、従って、鋼材に対して低温靭性の要求がますま
すきびしくなると同時に、それ以外の種々の特性も要求
されるようになってきており、−層の高靭性化をより低
コストで、Rつ幅広い成分範囲の中で選択できることが
必要になっている。
However, recently, the environments in which structures are used have become more severe and diverse, and as a result, demands for low-temperature toughness have become increasingly strict for steel materials, and at the same time, various other properties have also come to be required. Therefore, it is necessary to increase the toughness of the layer at a lower cost and to be able to select from a wide range of ingredients.

(発明が解決しようとする課題) 大人熱溶接部の靭性を向上させるためには、溶接部のF
usion Line近傍の粗粒域に靭性に有害な島状
マルテンサイトを多量に含む上部ベイナイトが生じない
ような成分とすることが好ましい。
(Problem to be solved by the invention) In order to improve the toughness of the adult heat welded part, it is necessary to
It is preferable to use a component that does not generate upper bainite containing a large amount of island-like martensite, which is harmful to toughness, in the coarse grain region near the usion line.

そのための方法としては合金元素量を低減したり、析出
物、介在物を利用してオーステナイト粒径を微細化、あ
るいは粒内変態を促進することにより、焼入性を下げて
フェライト・パーライト組織にする方法、逆に焼入性を
上げて下部ベイナイトないしは下部ベイナイトとマルテ
ンサイトの混合組織にして、組織の微細化を計る方法、
の2通りが考えられる。
Methods for this purpose include reducing the amount of alloying elements, making the austenite grain size finer using precipitates and inclusions, or promoting intragranular transformation to reduce hardenability and create a ferrite/pearlite structure. conversely, increasing the hardenability and creating a lower bainite or mixed structure of lower bainite and martensite to refine the structure.
There are two possible ways.

引張り強さが70kgf/mJ以上の高張力鋼は、母ヰ
」特性の確保の点から合金元素を必然的に多量に含んで
いることから、前者の方法は採用が難しい。
The former method is difficult to adopt because high-tensile steel with a tensile strength of 70 kgf/mJ or more necessarily contains a large amount of alloying elements in order to maintain the matrix properties.

従って、後者の方法が、基本的に採用し得る方法と考え
られる。
Therefore, the latter method is considered to be the method that can basically be adopted.

しかし、大入熱溶接のように溶接時のオーステナイト域
からの冷却速度の遅い条件下で上部ベイナイトの生成を
抑制して、下部ベイナイトないしはマルテンサイト主体
の組織にするためにはこの種の鋼においてさえ、通常よ
りも合金元素量を多く含Hさせる必要があり、そのため
に他の特性が劣化したり、鋼材が高価になりすぎて工業
上の利点が低下する等の問題が生じる。
However, under conditions such as high heat input welding where the cooling rate from the austenite region during welding is slow, it is necessary to suppress the formation of upper bainite and create a structure consisting mainly of lower bainite or martensite. Even so, it is necessary to contain a larger amount of alloying elements than usual, which causes problems such as deterioration of other properties and making the steel material too expensive, reducing its industrial advantages.

(課題を解決するための手段) 本発明はこれらの課題を解決すべく、鋼材の合金元素量
を極端に増やさずに、上部ベイナイトをある程度の割合
金んでも、大入熱溶接部の靭性劣化を生じないための成
分組成の検討を種々行った結果、発明に至ったものであ
り、その要旨とするところは、重量%で、C: 0.0
2〜0.06%、Sに〇、05〜0.20%、Mn:0
.50〜3.0%、P :0.010%以ド、S :0
.010%以下、AI:0.03〜0.10%、NI:
1.0〜10.0%、B : 0.0005〜0.00
20%、N:0.0040%以下、且ツCu、 Cr、
MoをCu:0.01〜1.50%、Cr : 0.0
1〜1..5096、Mo : 0.01〜1.50%
の範囲で、1tTlまたは2種以上を含み、残部が鉄及
び不可避不純物よりなり、且つ以下の式で示されるパラ
メターXの値が、18から24であることを特徴とする
大入熱溶接用高張力鋼である。
(Means for Solving the Problems) In order to solve these problems, the present invention aims to solve the problems by reducing the toughness of high heat input welded parts even if a certain percentage of upper bainite is added to the steel without drastically increasing the amount of alloying elements in the steel material. As a result of conducting various studies on the composition of ingredients to prevent the occurrence of
2-0.06%, S 〇, 05-0.20%, Mn: 0
.. 50-3.0%, P: 0.010% or more, S: 0
.. 010% or less, AI: 0.03-0.10%, NI:
1.0-10.0%, B: 0.0005-0.00
20%, N: 0.0040% or less, and Cu, Cr,
Mo to Cu: 0.01-1.50%, Cr: 0.0
1-1. .. 5096, Mo: 0.01-1.50%
1 tTl or two or more types, with the balance consisting of iron and unavoidable impurities, and the value of parameter X expressed by the following formula is from 18 to 24. It is tension steel.

x=[C(%)]’/2X [1+0.[34xS1(
X)]X[1+4.lOxMn(%)]x [1+0.
27×Cu(%)]X[1+ 0.52X Nl(%)
] X [L+ 2.33X Cr(%)コ×[1+ 
3.14X No(%)] 更に本発明はTIを0.005〜0.02%含むことが
できる大人熱溶接用高張力鋼である。
x=[C(%)]'/2X [1+0. [34xS1(
X)]X[1+4. lOxMn(%)]x [1+0.
27×Cu(%)]X[1+ 0.52X Nl(%)
] X [L+ 2.33X Cr(%)ko×[1+
3.14X No (%)] Furthermore, the present invention is a high-strength steel for adult heat welding that can contain TI in an amount of 0.005 to 0.02%.

(作  用) 本発明は大入熱溶接時に溶接部のFusion Lin
e近傍に生成する組織の上部ベイナイトの割合を、適切
な合金元素の配合により一定以下に抑制した上で、その
上部ベイナイトによる靭性の劣化を極力低減するための
方法を、種々検討した結果により発明に至ったものであ
る。
(Function) The present invention improves the fusion line of the welded part during large heat input welding.
As a result of various studies, we invented a method for suppressing the proportion of upper bainite in the structure that forms near e to a certain level or less by mixing appropriate alloying elements, and then minimizing the deterioration of toughness due to the upper bainite. This is what led to this.

以下、本発明の要旨を実験結果に基づいて詳細に説明す
る。
Hereinafter, the gist of the present invention will be explained in detail based on experimental results.

本発明者らは第1表に示す成分範囲内の化学成分をaす
る種々の鋼を真空溶解炉で溶製し、熱間圧延後、焼入れ
焼戻しを施した素材に、大入熱溶接における溶接熱影響
部の粗粒域が受ける熱履歴をシミュレートした再現熱サ
イクルを加えた。
The present inventors melted various steels with chemical components a within the range of components shown in Table 1 in a vacuum melting furnace, hot-rolled them, and then quenched and tempered them. A reproducible thermal cycle was added to simulate the thermal history experienced by the coarse-grained region of the heat-affected zone.

再現熱サイクル条件は、加熱温度1400℃、保持1秒
で、800〜500℃までの冷却時間(Δt815)が
80秒と120秒の2種類とした。この冷却時間はサブ
マージドアーク(SAW)溶接の入熱8〜10に」/I
II■におおよそ対応する条件となっている。
The reproducible thermal cycle conditions were a heating temperature of 1400°C, a holding time of 1 second, and two types of cooling time (Δt815) from 800 to 500°C: 80 seconds and 120 seconds. This cooling time is equivalent to a heat input of 8 to 10 for submerged arc (SAW) welding.''/I
The conditions roughly correspond to II■.

その素材を試験片に加工し、シャルピー試験を行って、
50%破面遷移温度(vTrs)と化学成分の関係を調
べた。
Process the material into a test piece, perform a Charpy test,
The relationship between 50% fracture surface transition temperature (vTrs) and chemical components was investigated.

引張り強さが70kgf/−以上の鋼のHAZ靭性はミ
クロ組織、特に上部ベイナイト量の影響を最も強く受け
ることから、本発明者らは溶接熱影響部あるいは再現熱
サイクル材のミクロ組織と良く対応する、以下の式で示
すパラメターXにより実験結果を整理した。
Since the HAZ toughness of steel with a tensile strength of 70 kgf/- or more is most strongly affected by the microstructure, especially the amount of upper bainite, the present inventors found that it corresponds well to the microstructure of the weld heat affected zone or simulated thermal cycle material. The experimental results were organized according to the parameter X shown in the following formula.

x−[C(%)]1/2x[l+0,84xSl(%)
]×[1+ 4.10 X Mn(%)] X [1+
 0.27X Cu(1%)] X[1+ 0.52X
 N1(1%)] X [1+ 2J3 X Cr(%
)コ×[1+ 3.14 x No(%)] 第1図及び第2図にこのパラメターXとvTrsの関係
を示す。
x-[C(%)]1/2x[l+0,84xSl(%)
]×[1+ 4.10 X Mn(%)] X [1+
0.27X Cu (1%)] X[1+ 0.52X
N1 (1%)] X [1+ 2J3
)ko×[1+3.14×No(%)] FIG. 1 and FIG. 2 show the relationship between this parameter X and vTrs.

第1図はΔt815が80秒の結果であり、第2図はΔ
t815が120秒の結果である。これらの結果からそ
れぞれの冷却時間毎にvTrsはXとCmにより整理さ
れることが判明した。
Figure 1 shows the result when Δt815 is 80 seconds, and Figure 2 shows the result when Δt815 is 80 seconds.
t815 is the result of 120 seconds. These results revealed that vTrs is organized by X and Cm for each cooling time.

パラメターXは上部ベイナイト量と対応するので、言い
替えれば靭性は上部ベイナイト量とCmに支配され、上
部ベイナイト量、Cff1が低減するにつれて靭性が向
上すると言える。
Since the parameter X corresponds to the amount of upper bainite, in other words, the toughness is controlled by the amount of upper bainite and Cm, and it can be said that the toughness improves as the amount of upper bainite, Cff1, decreases.

靭性に最も大きな影響を及ぼすのは上部ベイナイト量で
あるが、本実験の冷却条件(Δt815で80ないしは
120秒)に代表される大入熱溶接の条件においては、
パラメターXの値が30程度と大きくなっても、組織中
に20〜b 存在し、その生成を完全に抑制することはできない。
The amount of upper bainite has the greatest effect on toughness, but under high heat input welding conditions represented by the cooling conditions of this experiment (80 to 120 seconds at Δt815),
Even if the value of parameter

しかしながら、第1図、第2図から明らかなように、上
部ベイナイトが存在する場合でもパラメターXが18以
上で且つ、Cmが0.02〜0.06%と低ければ、Δ
t815が120秒とかなり、遅い場合でも靭性はvT
rsで約−60℃以下の良好な値を示すことが判明した
However, as is clear from FIGS. 1 and 2, even if upper bainite exists, if the parameter X is 18 or more and Cm is as low as 0.02 to 0.06%,
Even if t815 is quite slow, 120 seconds, the toughness is vT.
It was found that a good value of about −60° C. or lower was exhibited at rs.

CQが0.06%以上の場合にはパラメターXが同じで
も、従って上部ベイナイ14が同じレベルでも、靭性は
0.02〜0.06%Cの場合に比べて大きく劣る。
When the CQ is 0.06% or more, even if the parameter

また、本実験に用いた鋼の中にはB添加鋼だけでなく、
Bを実質的に含まない鋼も含まれているが、第1図、第
2図において特にB添加鋼の方が靭性が劣化する結果と
はなっていなかったことから、Btil、Nft等の成
分組成を適切にすれば、B添加は必ずしも大人熱溶接部
靭性に有害ではなく、母材の焼入性確保のために桔極的
に用いることが可能であると結論された。
In addition, some of the steels used in this experiment include not only B-added steel, but also
Steels that do not substantially contain B are also included, but as shown in Figures 1 and 2, the B-added steel did not show any deterioration in toughness. It was concluded that B addition is not necessarily harmful to the toughness of the hot welded joint if the composition is appropriate, and that it can be used to ensure the hardenability of the base metal.

なお、本発明においては熱サイクル靭性に対するCmの
検討は0.02%以上で行っており、Cmが0.02%
未満については検討していない。これは、本発明は引張
り強さが70kgf/mA以上の鋼に関するものであり
、0.02%未満のCEIでは母材強度の確保が困難で
あるためである。即ち、本発明のCmの下限は母材強度
確保の点から決定されたものである。
In addition, in the present invention, the study of Cm with respect to thermal cycle toughness is carried out at 0.02% or more, and Cm is 0.02% or more.
We have not considered anything less than that. This is because the present invention relates to steel with a tensile strength of 70 kgf/mA or more, and it is difficult to ensure the base material strength with a CEI of less than 0.02%. That is, the lower limit of Cm in the present invention is determined from the viewpoint of ensuring the strength of the base material.

以上の検討結果から、大入熱溶接の熱影響部の靭性向上
のためには、パラメターXが18以上、且つCfnが0
.02〜0.06%が必須であるとの結論に至った。ま
た、パラメターXが高ければ高いほど靭性向上には有利
であるが、その分合全元素の添加量が多くなってコスト
上不利となること、及び第1図からXが18程度以上で
は靭性向上効果が漸減する傾向があるので、合金元素を
最も有効に使える範囲という観点からパラメターXの上
限を24とした。
From the above study results, in order to improve the toughness of the heat affected zone in high heat input welding, the parameter
.. It was concluded that 0.02 to 0.06% is essential. In addition, the higher the parameter Since there is a tendency for the effect to gradually decrease, the upper limit of parameter

以上がパラメターXとCmの限定理由であるが、次に本
発明における成分限定理由を述べる。
The reasons for limiting the parameters X and Cm have been described above. Next, the reasons for limiting the components in the present invention will be described.

Siは島状マルテンサイトを作り易くする元素で、大入
熱溶接においては特に悪影響が大きいことからその上限
を0.20%とした。一方、0.05%未満では脱酸が
不十分となり、鋼材の内部欠陥を増加せしめるため、下
限を0.05%とした。
Si is an element that facilitates the formation of island-shaped martensite, and since it has a particularly large negative effect on high heat input welding, its upper limit was set at 0.20%. On the other hand, if it is less than 0.05%, deoxidation becomes insufficient and internal defects in the steel material increase, so the lower limit was set at 0.05%.

Mnは0.5096未満では母材の強度靭性の確保に問
題があり、3.0%超では焼戻し脆化が顕著となるため
、0.50〜3.0%の範囲とした。
If Mn is less than 0.5096, there is a problem in ensuring the strength and toughness of the base material, and if it exceeds 3.0%, tempering embrittlement becomes noticeable, so it is set in the range of 0.50 to 3.0%.

Pは本発明が対象としている高強度鋼では、焼戻し脆性
を抑制する必要性からo、oto%以下とした。
In the high-strength steel targeted by the present invention, P is set to 0.0% or less because of the need to suppress temper brittleness.

SはMnSを形成して延性を低下させる元素であり、特
に高強度鋼においてその影響が大であるので0.010
%以下とした。
S is an element that forms MnS and reduces ductility, and its influence is particularly large in high-strength steel, so the value of 0.010
% or less.

Apは母材の熱処理においてBの焼入性向上効果を阻害
するNをAINとして固定して、Bの焼入性向上効果を
高める効果があるが、0.03%未満ではその効果が不
十分であり、一方0.lO%を超えると↑■人な析出物
を形成して、靭性に悪影響を及ぼすので0.03〜0.
10%の範囲とした。
Ap has the effect of increasing the hardenability improvement effect of B by fixing N, which inhibits the hardenability improvement effect of B, as AIN during heat treatment of the base metal, but if it is less than 0.03%, this effect is insufficient. , while 0. If it exceeds 10%, ↑■ will form unnatural precipitates, which will have a negative effect on toughness, so 0.03 to 0.
The range was set at 10%.

NiはパラメターXを介した靭性向上効果の他こマトリ
クス自体の靭性を改善する効果を有する。
Ni has the effect of improving the toughness of the matrix itself in addition to the effect of improving the toughness via the parameter X.

Ntが1.0%未満ではその効果が不十分であり、特に
高強度鋼において良好な大人熱溶接部靭性を安定して得
るためには1.0%以上のN1が必要である。但し、N
1は高価な元素であることと、1090%超では不純物
元素による靭性劣化の感受性を高めるため、本発明では
10,0%を上限とした。
If Nt is less than 1.0%, the effect is insufficient, and in order to stably obtain good adult heat weld joint toughness, especially in high-strength steel, N1 of 1.0% or more is required. However, N
In the present invention, the upper limit is set at 10.0% because 1 is an expensive element and if it exceeds 1090%, the susceptibility to toughness deterioration due to impurity elements increases.

Bは微量で母材の焼入性向上を計れる元素であり、本発
明の鋼はC量が少なく、他の合金元素量がパラメターX
の限定により無制限に添加できないことから、強度確保
のために必須の元素である。
B is an element that can improve the hardenability of the base metal in trace amounts, and the steel of the present invention has a small amount of C, and the amounts of other alloying elements are controlled by parameter X.
Since it cannot be added unlimitedly due to the limitation of , it is an essential element to ensure strength.

1日し、焼入性向上効果を十分発揮するためには0.0
005%以上必要である。一方、B量が0.0020%
を超えると、Nff1が低くても大入熱溶接では溶接部
の靭性を劣化せしめるので、Bは0.0005〜0.0
020%の範囲とした。
0.0 in order to fully exhibit the hardenability improvement effect after 1 day.
005% or more is required. On the other hand, the amount of B is 0.0020%
If B exceeds 0.0005 to 0.0, even if Nff1 is low, the toughness of the weld will deteriorate in high heat input welding.
The range was 0.020%.

Nは大人熱溶接においては特にB添加鋼で靭性劣化を大
きく生じさせる元素であり、その童が0.0040%超
で靭性に対する悪影響が顕著となるため、上限を0.0
040%とした。
In adult heat welding, N is an element that causes a significant deterioration of toughness, especially in B-added steel, and if its content exceeds 0.0040%, the adverse effect on toughness becomes significant, so the upper limit is set to 0.0.
040%.

Cu 、Cr 、Moは発明においてはいずれもパラメ
ターXの式に含まれ、組織を改善するために含有せしめ
る。いずれもその組織制御に対する影での仕方が同様で
あるので、これらのうちのどれか1種または2種、さら
にはBFJとも含有させることが可能である。但し、い
ずれも0.01%未満では含有せしめても組織改善効果
が明確でなく、また1、50〜超になると析出脆化が顕
著となるので0.01〜1,50%の範囲とした。
Cu, Cr, and Mo are all included in the formula of parameter X in the invention, and are included in order to improve the structure. Since both have similar effects on tissue control, it is possible to contain any one or two of these, or even BFJ. However, if the content is less than 0.01%, the effect of improving the structure will not be clear, and if it exceeds 1,50%, precipitation embrittlement will become noticeable, so the range was set from 0.01 to 1,50%. .

以上が、本発明の基本成分であるが、本発明においては
この他に鋼の要求特性に応じて、TIを0.005〜0
.02%の範囲で含有せしめることが可能である。即ち
、TIはAgと同様にNの固定に有効であり、また母材
製造時の熱間圧延前の再加熱あるいは熱処理加熱時にオ
ーステナイト粒の粗大化防止に有効であるので、成分組
成、製造板厚、加熱温度に応じてTIを含有させる。
The above are the basic components of the present invention.
.. It is possible to contain it in the range of 0.02%. That is, like Ag, TI is effective in fixing N, and is also effective in preventing coarsening of austenite grains during reheating before hot rolling or heat treatment during base material production. TI is added depending on the thickness and heating temperature.

但し、0.005%未満ではオーステナイト拉粗大化防
市効果が不十分であり、0.020%を超えると粗大な
析出物を作り、靭性劣化を招き易いので、0.005〜
0.020%の範囲に限定する。
However, if it is less than 0.005%, the austenite coarsening prevention effect is insufficient, and if it exceeds 0.020%, coarse precipitates are formed and toughness is likely to deteriorate.
Limited to a range of 0.020%.

本発明は以上の成分組成からなる大入熱溶接用l高張力
鋼である。製造に際しては、転炉または電気炉等で溶製
した後、造塊−分塊または連続鋳造によりスラブとなし
、通常の加熱−圧延−焼入れ一焼戻しにより製造すれば
よい。加熱〜圧延後、制御冷却により製造することも可
能である。
The present invention is a high tensile strength steel for high heat input welding having the above-mentioned composition. In manufacturing, after melting in a converter or electric furnace, a slab is formed by ingot-blowing or continuous casting, and then manufactured by ordinary heating-rolling-quenching-tempering. It is also possible to manufacture by controlled cooling after heating and rolling.

溶製に当たっては必要に応じて従来公知の真空脱ガス処
理等により成分5!1整を行うこともIIJ能である。
When melting, it is also possible to perform a 5:1 adjustment of the components by conventionally known vacuum degassing treatment, etc., if necessary.

(実 、I+f  例) 第2表に実施例を示す。(Actual, I+f example) Examples are shown in Table 2.

No、 1〜IOが本発明鋼であり、Na 11〜I5
が比較鋼である。いずれも熱間圧延により板厚30mm
とじた後、母材の引張り強度が約75〜90kg f 
/−となるように適当は焼入れ焼戻し処理を行った。
No. 1 to IO are the steels of the present invention, and Na 11 to I5
is the comparative steel. Both plates are 30mm thick by hot rolling.
After binding, the tensile strength of the base material is approximately 75 to 90 kg f
Appropriate quenching and tempering treatment was performed to obtain /-.

そしてX開先により、入熱8.0ないしは1060kJ
/關のサブマージドアーク溶接を施し、試験片の中心部
が鋼板表面から約71■となる位置よりシャルピー試験
片を採取して−BO℃でシャルピー試験を行った。ノツ
チはいずれもFuslon Lineとした。
Depending on the X groove, the heat input is 8.0 or 1060kJ.
A Charpy test piece was taken from a position where the center of the test piece was about 71 cm from the surface of the steel plate and subjected to a Charpy test at -BO°C. The knots were all Fuslon Line.

第2表から分かるように、パラメターXの値が18〜2
4、C量が0.02〜[+、[)8%の範囲内にあり、
且つ他成分も本発明の範囲内にあるm1kl〜lOは大
人熱溶接でありながら、−60℃においても非常に優れ
たシャルピー特性を示している。
As can be seen from Table 2, the value of parameter X is 18 to 2.
4. The amount of C is within the range of 0.02 to [+, [)8%,
In addition, m1kl to lO, whose other components are also within the range of the present invention, exhibits extremely excellent Charpy properties even at -60°C, although they are adult heat welded.

一方、比較鋼N11Li1.12はパラメターXの値が
小さいため、No、13はC量が多いため、N11L1
4はC量が多く、且つパラメターXの値が小さいため、
またNa15はC量、パラメターXの範囲は本発明の範
囲内にあるもののSl、B、N等が範囲を外れているた
めいずれも本発明鋼に比べて溶接部の靭性が劣っている
On the other hand, comparative steel N11Li1.12 has a small value of parameter X, so No. 13 has a large amount of C, so N11L1
4 has a large amount of C and a small value of parameter X,
In addition, although the C content of Na15 and the range of parameter

従って、以上の実施例から本発明範囲を満足しない場合
は、−60℃における大人熱溶接部の低温靭性の優れた
鋼が得られないことは明白である。
Therefore, from the above examples, it is clear that if the scope of the present invention is not satisfied, a steel with excellent low-temperature toughness of the adult heat welded part at -60°C cannot be obtained.

(発明の効果) 引張り強さが70kgf/d以上の高張力鋼は母材強度
確保の要求から合金元素の含有量が多く、そのため従来
は優れた大入熱溶接継手靭性を得ることが非常に困難で
あった。
(Effect of the invention) High-strength steel with a tensile strength of 70 kgf/d or more has a high content of alloying elements due to the requirement to ensure base metal strength, and for this reason, conventionally it has been extremely difficult to obtain excellent high heat input welded joint toughness. It was difficult.

本発明はこのような高合金成分の高張力鋼においても、
優れた大入熱溶接継手靭性が得られる適切な成分組成範
囲を明確にしたもので、本発明によれば高価な合金元素
を多量に含有することなく、優れた大入熱溶接継手靭性
を得ることが可能となり、産業上の効果はきわめて顕著
である。
The present invention also applies to high tensile strength steel with high alloy components.
The appropriate composition range for obtaining excellent high heat input welded joint toughness is clarified, and according to the present invention, excellent high heat input welded joint toughness can be obtained without containing large amounts of expensive alloying elements. The industrial effects are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパラメターXとΔt815が80秒の再現熱サ
イクルを加えた鋼のシャルピー特性(50%破而i面i
移温度:vTrs)との関係を示す図表、第2図はパラ
メターXとΔt815が120秒の再現熱サイクルを加
えた鋼のシャルピー特性(50%破而遷面iR度:vT
rs)との関係を示す図表である。 代 理 人  弁理士  茶野木 立 夫グ0 パラメター× 第2区 手続ネ市正書 (自発) 1、弱性の表示 昭和63年特許願第317841号 2、発明の名称 大入熱溶接用高張力鋼 3、補正をする者 慣性との関係 特許出願人 住所 東京都千代田区大手町2丁目683号名称 (6
65)新日本製鐵株式会社 代表者 齋  藤   裕 4、代 理 人 住所 東京都台東区蔵前3丁目4番5号t5    2
つ    25 パラメター× S 56補正の対象 明1wJ古の特許請求の範囲、発明の詳細(1)特許請
求の範囲を別紙の通り補正する。 (2)明細書11頁11行「120秒とかなり、遅い場
合」を「120秒と、かなり遅い場合」に補正する。 (3)同19頁第2表中r (kj/■)Jをr (k
J/+i+n)Jに補正する。 特許請求の範囲 1、重;%で C:0.02〜0.06% Si:0.05〜0,20% Mn : 0.50〜3.0% P  : O,OLo 96以下 S  : 0.010%以下 Ap:0.03〜0.10% Ni:1.0〜10.0% B  : 0.0005〜0.0020%N  : 0
.0040%以下 且つCu、Cr、〜工0を Cu:0.旧〜1.5096 Cr : 0.01〜1.50% Mo:0.旧〜1.509TS のL種または2種以上を含み、残部が鉄及び不可避不純
物よりなり、且つ以下の式で示されるパラメターXの1
直が、18から24であることを特徴とする大入熱溶接
用高張力鋼。 x −rc(%)]1/2x [1+ 0.84X S
i (X)] X[1+4.IO×Mn(%)]X[l
+0.27×Cu(%)〕×[1+ 0.52 X N
i (%)コX [1+2.33×Cr(%)]×(1
+3.I4xMoC%)] 2、Tiを0.005〜0.02%の範囲で含むことを
特徴とする特許請求の範囲第1項記載の大入熱溶接用高
張力鋼。
Figure 1 shows the Charpy characteristics of steel (50% fracture i-plane i
Figure 2 shows the relationship between parameter
rs). Agent Patent Attorney Tatsuo Chanoki Parameters × 2nd District Procedural City Authorization (Spontaneous) 1. Indication of Weakness Patent Application No. 317841 of 1988 2. Name of Invention High Tension for Large Heat Input Welding Steel 3, relationship with inertia of the person making the amendment Patent applicant address 2-683 Otemachi, Chiyoda-ku, Tokyo Name (6
65) Nippon Steel Corporation Representative Yutaka Saito 4, Agent Address 3-4-5 Kuramae, Taito-ku, Tokyo T5 2
25 Parameters (2) In the specification, page 11, line 11, "In the case of 120 seconds, which is quite slow" is corrected to "In the case, which is quite slow, 120 seconds." (3) In Table 2, page 19, r (kj/■)J is r (k
J/+i+n) Corrected to J. Claim 1, Weight: C: 0.02-0.06% Si: 0.05-0.20% Mn: 0.50-3.0% P: O, OLo 96 or less S: 0 .010% or less Ap: 0.03-0.10% Ni: 1.0-10.0% B: 0.0005-0.0020% N: 0
.. 0040% or less and Cu: 0. Old ~ 1.5096 Cr: 0.01 ~ 1.50% Mo: 0. Contains L species or two or more of old ~ 1.509TS, the balance consists of iron and unavoidable impurities, and 1 of parameter X shown by the following formula
A high tensile strength steel for high heat input welding, characterized in that the straightness is from 18 to 24. x - rc (%)] 1/2x [1+ 0.84X S
i (X)] X[1+4. IO×Mn(%)]X[l
+0.27×Cu(%)]×[1+ 0.52 X N
i (%) koX [1+2.33×Cr(%)]×(1
+3. 2. The high-strength steel for high heat input welding according to claim 1, which contains Ti in a range of 0.005 to 0.02%.

Claims (1)

【特許請求の範囲】 1、重量%で C:0.02〜0.06% Si:0.05〜0.20% Mn:0.50〜3.0% P:0.010%以下 S:0.010%以下 Al:0.03〜0.10% Ni:1.0〜10.0% B:0.0005〜0.0020% N:0.0040%以下 且つCu、Cr、Moを Cu:0.01〜1.50% Cr;0.01〜1.50% Mo:0.01〜1.50% の1種または2種以上を含み、残部が鉄及び不可避不純
物よりなり、且つ以下の式で示されるパラメターxの値
が、18から24であることを特徴とする大入熱溶接用
高張力鋼。x−[C(%)]^1^/^2×[1+0.
64×Si(%)]×[1+4.10×Mn(%)]×
[1+0.27×Cu(%)]×[1+0.52×Ni
(%)]×[1+2.33×Cr(%)]×[1+3.
14×Mo(%)] 2、Ti0.005〜0.02%を含むことを特徴とす
る特許請求の範囲第1項記載の大入熱溶接用高張力鋼。
[Claims] 1. C: 0.02-0.06% Si: 0.05-0.20% Mn: 0.50-3.0% P: 0.010% or less S: 0.010% or less Al: 0.03-0.10% Ni: 1.0-10.0% B: 0.0005-0.0020% N: 0.0040% or less and Cu, Cr, Mo : 0.01 to 1.50% Cr; 0.01 to 1.50% Mo: 0.01 to 1.50% Contains one or more of the following, the balance being iron and inevitable impurities, and the following: A high-strength steel for high heat input welding, characterized in that the value of the parameter x expressed by the formula is from 18 to 24. x-[C(%)]^1^/^2×[1+0.
64×Si(%)]×[1+4.10×Mn(%)]×
[1+0.27×Cu(%)]×[1+0.52×Ni
(%)]×[1+2.33×Cr(%)]×[1+3.
14×Mo(%)] 2. The high-strength steel for high heat input welding according to claim 1, which contains 0.005 to 0.02% of Ti.
JP31784188A 1988-12-16 1988-12-16 High strength steel for large heat imput welding Pending JPH02163342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31784188A JPH02163342A (en) 1988-12-16 1988-12-16 High strength steel for large heat imput welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31784188A JPH02163342A (en) 1988-12-16 1988-12-16 High strength steel for large heat imput welding

Publications (1)

Publication Number Publication Date
JPH02163342A true JPH02163342A (en) 1990-06-22

Family

ID=18092654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31784188A Pending JPH02163342A (en) 1988-12-16 1988-12-16 High strength steel for large heat imput welding

Country Status (1)

Country Link
JP (1) JPH02163342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204074A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379921A (en) * 1986-09-24 1988-04-09 Nippon Steel Corp Welding method for providing superior toughness to haz of multilayer build-up welded joint of high tension steel
JPS6393845A (en) * 1986-10-08 1988-04-25 Nippon Steel Corp High-tensile steel excellent in cod characteristic in weld zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379921A (en) * 1986-09-24 1988-04-09 Nippon Steel Corp Welding method for providing superior toughness to haz of multilayer build-up welded joint of high tension steel
JPS6393845A (en) * 1986-10-08 1988-04-25 Nippon Steel Corp High-tensile steel excellent in cod characteristic in weld zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204074A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding

Similar Documents

Publication Publication Date Title
US4629504A (en) Steel materials for welded structures
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP4317499B2 (en) High tensile strength steel sheet having a low acoustic anisotropy and excellent weldability and having a tensile strength of 570 MPa or higher, and a method for producing the same
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JP3893921B2 (en) Low temperature Ni-containing steel and method for producing the same
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JPH0541683B2 (en)
JP7410438B2 (en) steel plate
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JP3468168B2 (en) High-strength steel sheet with excellent economy and toughness
JPH02163342A (en) High strength steel for large heat imput welding
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JP2002317242A (en) High tensile strength steel for welding structure used under low temperature having excellent weld heat affected zone toughness
JPH05163527A (en) Manufacture of high tension steel superior in weldability
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JPH0543765B2 (en)
JP3618270B2 (en) High-tensile steel plate with excellent weldability and base metal toughness