JPH02163315A - Manufacture of homogeneous high carbon steel - Google Patents

Manufacture of homogeneous high carbon steel

Info

Publication number
JPH02163315A
JPH02163315A JP31986288A JP31986288A JPH02163315A JP H02163315 A JPH02163315 A JP H02163315A JP 31986288 A JP31986288 A JP 31986288A JP 31986288 A JP31986288 A JP 31986288A JP H02163315 A JPH02163315 A JP H02163315A
Authority
JP
Japan
Prior art keywords
carbon steel
high carbon
hot working
slab
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31986288A
Other languages
Japanese (ja)
Inventor
Hiromichi Hirano
平野 宏通
Hatsuo Hayakawa
早川 初男
Takamichi Hamanaka
浜中 孝道
Takuyoshi Yamamoto
山本 卓良
Shinji Shirasawa
白澤 真二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31986288A priority Critical patent/JPH02163315A/en
Publication of JPH02163315A publication Critical patent/JPH02163315A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a homogeneous high carbon steel free from segregation and having uniform internal quality by successively subjecting a continuously cast high carbon steel slab or a high carbon steel billet to primary hot working under specified conditions and diffusion treatment by soaking, removing the decarburized surface with a solvent and carrying out reheating and secondary hot working. CONSTITUTION:A continuously cast high carbon steel slab or a high carbon steel billet contg., by weight, 0.25-0.61% C, 0.15-0.35% Si, 0.60-0.90% Mn, <0.030% P, and <0.035% S is subjected to primary hot working at 1,000-1,300 deg.C and 18-30% draft to press the internal pores and to diffuse the segregated components. The hot worked slab or billet is held at 1,250-1,300 deg.C for >=10hr to sufficiently diffuse the segregated components by soaking and the decarburized surface layer is removed with a solvent, e.g. by 2-3mm thickness. The slab or billet is then heated again to 1,000-1,300 deg.C and subjected to secondary hot working. A homogeneous high carbon steel having uniform internal quality is manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は均質高炭素鋼の製造方法に関し、さらに詳しく
は、鯛の鋳片或いは鋼片の偏析を軽減し、均一な内部品
質を存する均質高炭素鋼の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing homogeneous high-carbon steel, and more specifically, to reduce segregation of sea bream slabs or steel slabs, and to produce homogeneous high-carbon steel having uniform internal quality. This invention relates to a method for manufacturing high carbon steel.

[従来技術] 従来において、鋼の鋳片或いは鋼片内に存在する合金元
素および不純物元素の偏析を加熱、熱間加工において除
去ないし軽減させる技術としては、例えば、特開昭58
−001210号公報には鋳片或いは鋼片の断面減少率
20%以上の一次熱間加工を行ない、その後、連続的に
或いは一次熱間加工終了温度以下から再加熱して、鋳片
或いは鋼片の中心温度をl000℃以上で30分以上保
持する方法が開示されている。
[Prior Art] Conventionally, as a technique for removing or reducing the segregation of alloying elements and impurity elements existing in steel slabs or steel slabs by heating and hot working, for example, JP-A-58
Publication No. 001210 discloses that the slab or steel slab is subjected to primary hot working with a cross-section reduction rate of 20% or more, and then reheated continuously or below the temperature at which the primary hot working ends. A method for maintaining the center temperature of 1000° C. or more for 30 minutes or more is disclosed.

しかしながら、この方法では大きな断面を有する偏平鋳
片で、かつ、高炭素鋼の場合には、短時間の均熱拡散で
は偏析の軽減が不充分であり、局部的ま濃厚偏析が残存
するという問題がある。
However, with this method, in the case of flat slabs with large cross sections and high carbon steel, the problem is that short-time soaking diffusion is insufficient to reduce segregation, and locally dense segregation remains. There is.

一般に、高炭素鋼は機械部品や金型部材として使用され
ているが、局部的な濃厚偏析に起因する割れ、機械加工
時の加工精度不良、工具の早期摩耗等の問題があり、さ
らに、近年になって被削面の外観不良が大きく取り上げ
られるようになってきており、この解決が大きな課題で
ある。
Generally, high carbon steel is used for machine parts and mold members, but there are problems such as cracking due to localized dense segregation, poor machining accuracy during machining, and early tool wear. In recent years, poor appearance of the machined surface has become a focus of attention, and resolving this issue is a major issue.

[発明が解決しようとする課題] 本発明は上記に説明した従来の高炭素鋼における偏析お
よび外観不良に鑑み、本発明者が鋭意研究を行なった結
果、鋼、特に、高炭素鋼の鋳片或いは鋼片の局部偏析を
軽減し、かつ、均一な内部品質を有する高炭素鋼の製造
方法を開発したのである。
[Problems to be Solved by the Invention] In view of the segregation and poor appearance in the conventional high carbon steel explained above, the present inventor has conducted extensive research, and as a result, the present invention has been made to solve the problem of steel, particularly high carbon steel slabs. Alternatively, they developed a method for producing high carbon steel that reduces local segregation of steel slabs and has uniform internal quality.

[課題を解決するための手段] 本発明に係る均質高炭素鋼の製造方法の特徴とするとこ
ろは、 C0.25〜0.61wt%、S i 0.f5〜0.
35wt%、Mn 0.60〜0.90wt%、P 0
.030wt%以下、S 0.035wt%以下 を含有し、残部Feおよび不可避不純物からなる鋼の鋳
片或いは鋼片を圧下率18〜30%の一次熱間加工を行
ない、その後、1250〜1300℃の温度において1
0時間以上保持する均熱拡散処理を行なって脱炭層を除
去した後、再加熱して二次熱間加工を行なうことにある
[Means for Solving the Problems] The method for producing homogeneous high carbon steel according to the present invention is characterized by: C0.25 to 0.61 wt%, Si 0. f5~0.
35wt%, Mn 0.60-0.90wt%, P 0
.. A steel slab or slab containing 0.030 wt% or less, S 0.035 wt% or less, and the balance consisting of Fe and unavoidable impurities is subjected to primary hot working at a reduction rate of 18 to 30%, and then heated at 1250 to 1300°C. 1 at temperature
After removing the decarburized layer by performing soaking diffusion treatment for 0 hours or more, reheating is performed to perform secondary hot working.

本発明に係る均質高炭素鋼の製造方法について、以下詳
細に説明する。
The method for producing homogeneous high carbon steel according to the present invention will be described in detail below.

先ず、本発明に係る均質高炭素鋼の製造方法において、
使用する鋼の含有成分および成分割合について説明する
First, in the method for producing homogeneous high carbon steel according to the present invention,
The components and component ratios of the steel used will be explained.

Cは強度確保のために含有させる元素であり、含有量が
0.25wt%未満では強度が不足し、また、0.61
wt%を越えて含有さ仕ると熱的取り扱いが複雑となる
。よって、機械部品や金型部材等に使用する場合にはC
含有量は0,25〜0.61wt%とする。
C is an element that is included to ensure strength, and if the content is less than 0.25 wt%, the strength will be insufficient;
If the content exceeds wt%, thermal handling becomes complicated. Therefore, when used for machine parts, mold parts, etc., C.
The content is 0.25 to 0.61 wt%.

StSMnは脱酸のために含有させる元素であり、Si
含1¥1が0.15wt%未満、Mn含有量が0.60
wt%未満ではこの効果は少なく、また、Si含有電が
0.35wt%、Mn含有量が0.90wt%を越えて
含有させると非金属介在物として含有されて実用上有害
となる。よって、Si含有量は0.15〜0.35wt
%、Mn含有量は0.80〜0.90wt%とする。
StSMn is an element contained for deoxidation, and
Contains 1¥1 less than 0.15wt%, Mn content is 0.60
If the Si content exceeds 0.35 wt% and the Mn content exceeds 0.90 wt%, they will be contained as non-metallic inclusions, which will be harmful in practice. Therefore, the Si content is 0.15 to 0.35wt
%, and the Mn content is 0.80 to 0.90 wt%.

P%Sは不純物元素であり、P含有量が0.030wt
%、S含有量が0.035wt%を越えて含有されると
内部品質を劣化させる。よって、P含有量はQ、030
wt%以下、S含有量は0.035wt%以下とす次に
、本発明に係る均質高炭素鋼の製造方法について説明す
る。
P%S is an impurity element, and the P content is 0.030wt
%, and if the S content exceeds 0.035 wt%, the internal quality will deteriorate. Therefore, the P content is Q, 030
wt % or less, and the S content is 0.035 wt % or less. Next, a method for producing homogeneous high carbon steel according to the present invention will be described.

本発明に係る均質高炭素鋼の製造方法において、圧下率
18〜30%の一次熱間加工を行なうのは、鋼の鋳片或
いは鋼片の内部ポロシティを圧着することにより偏析し
た元素を効果的に拡散させるためであり、圧下率を18
〜30%とするのは、圧下率を大きくすればするほどポ
ロシティの圧着効果は大きいのであるが、偏析した元素
を拡散させるためには、圧下率は少なくとも18%は必
要であるので下限は18%とするのがよく、また、ある
一定値以上の圧下率になると偏析の拡散を行なう上から
は効果は飽和してしまい、かつ、圧下率が大き過ぎると
鋼の鋳片或いは鋼片の単重が小さくなり、製品の製造寸
法に大きな制約を受けるようになるので、圧下率の上限
は30%とする。
In the method for producing homogeneous high carbon steel according to the present invention, the primary hot working with a reduction rate of 18 to 30 is performed to effectively remove segregated elements by compressing the internal porosity of the steel slab or steel slab. This is to diffuse the
The reason why it is set at ~30% is that the higher the rolling reduction rate, the greater the porosity compression effect, but in order to diffuse the segregated elements, the rolling reduction rate must be at least 18%, so the lower limit is 18%. %, and if the reduction rate exceeds a certain value, the effect of diffusion of segregation will be saturated, and if the reduction rate is too large, the steel slab or steel billet will become isolated. Since the weight is reduced and the manufacturing dimensions of the product are subject to significant restrictions, the upper limit of the rolling reduction is set at 30%.

そして、−火熱間加工においては鋼の鋳片或いは鋼片を
加熱する必要があり、また、連続鋳造片の場合には凝固
後の冷却過程において熱間加工を行なってもよい。
- In hot working, it is necessary to heat the steel slab or steel billet, and in the case of continuously cast slabs, hot working may be performed during the cooling process after solidification.

この−火熱間加工前の加熱による偏析元素の拡散効果を
考慮すると高い方がよいが、鋳片或いは鋼片の軟化防止
やスケールの発生を抑制するために、1300℃の温度
を上限とするのがよく、また、−火熱間加工前の加熱に
よる偏析元素の拡散効果は1000℃未満の温度では効
果が少ないので1000℃を下限とする。
Considering the diffusion effect of segregated elements caused by heating before hot working, the higher the temperature, the better, but in order to prevent softening of slabs or steel slabs and to suppress the formation of scale, it is recommended to set the temperature to 1300℃ as the upper limit. Moreover, the diffusion effect of the segregated elements due to heating before hot working is less effective at temperatures below 1000°C, so 1000°C is set as the lower limit.

一次熱間加工を終了後、1250〜1300°Cの温度
において10時間以上保持するのは、均熱温度は高い方
が、また、均熱時間が長い方が偏析した元素の拡散には
有効であるが、均熱温度か低いと均熱時間が長くなり、
量産を行なう場合には問題があるので、可能な限り均熱
温度を高温とし、均熱時間を短くすることが量産には有
利である。
After the primary hot working is completed, holding the temperature at 1250 to 1300°C for 10 hours or more is because the higher the soaking temperature and the longer the soaking time, the more effective it is for diffusing segregated elements. However, if the soaking temperature is low, the soaking time will be longer.
Since there are problems in mass production, it is advantageous for mass production to make the soaking temperature as high as possible and shorten the soaking time.

このことから、均熱温度は少なくとも1250℃以上と
しなければ上記の効果を期待することはできず、また、
鋼の鋳片或いは鋼片の融着を起こさない温度として13
00℃を上限とした。
From this, the above effects cannot be expected unless the soaking temperature is at least 1250°C or higher, and
13 as a temperature that does not cause fusion of steel slabs or steel slabs
The upper limit was 00°C.

そして、均熱温度り月250℃で被削面の外観不良を起
こさないためには、均熱時間は最低10時間は必要であ
り、10時間未満では局部的に濃厚偏析が残存し、被削
面の外観不良を生じるようになるので、均熱時間は10
時間以上とするのである。
In order to avoid deteriorating the appearance of the machined surface at a soaking temperature of 250°C, a soaking time of at least 10 hours is required; if the soaking time is less than 10 hours, locally concentrated segregation will remain, and the workpiece surface will deteriorate. The soaking time should be set to 10 minutes to prevent appearance defects.
It should be more than an hour.

さらに、上記した均熱拡散処理が高温、長時間となり、
鋼の鋳片あるいは綱片の表裏両面および側面に脱炭が生
じて軟化の原因となるので、二次熱間加工を前に脱炭層
を除去する必要がある。
Furthermore, the above-mentioned soaking/diffusion treatment requires high temperatures and long periods of time.
Since decarburization occurs on both the front and back sides and sides of a steel slab or steel slab, causing softening, it is necessary to remove the decarburized layer before secondary hot working.

この脱炭層の除去はホットスカーフにより、2〜3mm
の厚さを溶剤するのがよい。
This decarburized layer is removed by 2 to 3 mm using a hot scarf.
It is best to use a solvent with a thickness of .

脱炭層の除去後に二次熱間加工を行なうのである。Secondary hot working is performed after removing the decarburized layer.

この二次熱間加工における圧下率と温度について説明す
ると、内部ポロシティを完全に圧着するためには、トー
タルの圧下比を4以上のとする必要があり、−火熱間加
工における圧下率の最大値30%を適用した場合、トー
タルの圧下比4を確保するためには、二次熱間加工にお
ける圧下率は64.3%以上となる。従って、二次熱間
加工における圧下率は64%以上とする必要がある。
To explain the rolling reduction ratio and temperature in this secondary hot working, in order to completely compress the internal porosity, the total rolling reduction ratio must be 4 or more, and - the maximum rolling reduction ratio in the hot working process. When 30% is applied, in order to ensure a total reduction ratio of 4, the reduction ratio in the secondary hot working is 64.3% or more. Therefore, the reduction ratio in the secondary hot working needs to be 64% or more.

また、二次熱間加工における温度は一次熱間加工と同様
な理由から1000〜1300℃の温度とする。
Further, the temperature in the secondary hot working is set at 1000 to 1300°C for the same reason as in the primary hot working.

[実 施 例コ 本発明に係る均質高炭素鋼の製造方法の実施例を説明す
る。
[Example] An example of the method for producing homogeneous high carbon steel according to the present invention will be described.

実施例1 第1表に示す含有成分および成分割合の鋼を連続鋳造に
より、板厚30mmの鋼板を製造した。
Example 1 A steel plate having a thickness of 30 mm was produced by continuous casting of steel having the components and proportions shown in Table 1.

第2表に、−火熱間加工条件、即ち、圧下率、加熱温度
、均熱条件、即ち、均熱温度、均熱時間、二次熱間加工
条件、即ち、圧下率、加熱温度、板厚および被削面の外
観検査の結果を示しである。
Table 2 shows - Hot working conditions, namely rolling reduction, heating temperature, soaking conditions, soaking temperature, soaking time, secondary hot working conditions, rolling reduction, heating temperature, plate thickness. and the results of visual inspection of the machined surface.

被削面の外観検査は、切断した鋼板をフライス盤により
大面加工を行ない、目視により外観の良否を判断した。
For the appearance inspection of the cut surface, the cut steel plate was processed into a large surface using a milling machine, and the quality of the appearance was determined by visual inspection.

例1は、均熱拡散処理を行なわない場合である。Example 1 is a case where soaking and diffusion treatment is not performed.

例2および例3は、−火熱間加工条件の圧下率が小さい
場合である。
Examples 2 and 3 are cases where the rolling reduction ratio under the -fire hot working conditions is small.

例4〜例6は、−火熱間加工条件の圧下率18%以上で
あるので被削面の外観は良好である。
In Examples 4 to 6, the reduction rate under the -fire hot working conditions was 18% or more, so the appearance of the machined surface was good.

例7および例8は、均熱温度が低い場合であり、例9は
および例1Oは、均熱時間が短い場合であり、何れら被
削面の外観は不良である。
Examples 7 and 8 are cases where the soaking temperature is low, and Examples 9 and 1O are cases where the soaking time is short, and the appearance of the machined surface is poor in both cases.

第2表から明らかなように、本発明に係る均質高炭素鋼
の製造方法によれば、屑の鋳片内に存在する偏析を充分
に軽減することかでき、さらに、被削面の外観も良好で
あることがわかる。
As is clear from Table 2, according to the method for producing homogeneous high carbon steel according to the present invention, the segregation present in the scrap slab can be sufficiently reduced, and the appearance of the machined surface is also good. It can be seen that it is.

実施例2 第3表に示す含有成分および成分割合の鋼を連続鋳造法
により鋳造し、板厚30mmの鋼板を作製しノこ。
Example 2 A steel plate having a thickness of 30 mm was produced by casting steel having the components and proportions shown in Table 3 using a continuous casting method.

第4表に一次熱間加工条件、即ち、圧下率、加熱温度、
均熱条件、即ち、均熱温度、均熱時間および二次熱間加
工条件、即ち、圧下率、加熱温度、板厚および被削面の
外観検査の結果を示しである。
Table 4 shows the primary hot working conditions, namely rolling reduction rate, heating temperature,
The soaking conditions, that is, the soaking temperature, the soaking time, and the secondary hot working conditions, that is, the rolling reduction ratio, heating temperature, plate thickness, and the results of the appearance inspection of the machined surface are shown.

被削面の外観検査は、切断した鋼板をフライス盤により
大面加工を行ない、目視により外観の良否を判断した。
For the appearance inspection of the cut surface, the cut steel plate was processed into a large surface using a milling machine, and the quality of the appearance was determined by visual inspection.

例11は均熱拡散処理を行なわない場合である。Example 11 is a case where soaking and diffusion treatment is not performed.

例12は一次熱間加工条件の圧下率が小さい場合であり
、何れの被削面の外観は不良である。
Example 12 is a case in which the rolling reduction ratio of the primary hot working conditions is small, and the appearance of all machined surfaces is poor.

例13、例14は一次熱間加工条件の圧下率が18%以
上であるので被削面の外観は良好である。
In Examples 13 and 14, the rolling reduction ratio under the primary hot working conditions was 18% or more, so the appearance of the machined surface was good.

例I5は均熱温度が低い場合であり、例16は均熱時間
が短い場合で、何れも被削面の外観は不良である。
Example I5 is a case where the soaking temperature is low, and Example 16 is a case where the soaking time is short, and in both cases, the appearance of the machined surface is poor.

[発明の効果] 以上説明したように、本発明に係る均質高強度鋼の製造
方法は上記の構成であるから、鋼の鋳片或いは鋼片の断
面中央部に合金元素および不純物が偏析することがなく
、初期の鋼の含有成分および含何割合とは昔しく異なっ
た合金状態が生成することもなく、被削面の外観も良好
となるという優れた効果を有しているものである。
[Effects of the Invention] As explained above, since the method for producing homogeneous high-strength steel according to the present invention has the above configuration, alloying elements and impurities are not segregated in the center of the cross section of the steel slab or steel slab. It has the excellent effect that it does not produce an alloy state that is different from the content and proportion of the initial steel, and the appearance of the machined surface is also good.

Claims (1)

【特許請求の範囲】 C0.25〜0.61wt%、Si0.15〜0.35
wt%、Mn0.60〜0.90wt%、P0.030
wt%以下、S0.035wt%以下 を含有し、残部Feおよび不可避不純物からなる鋼の鋳
片或いは鋼片を圧下率18〜30%の一次熱間加工を行
ない、その後、1250〜1300℃の温度において1
0時間以上保持する均熱拡散処理を行なって脱炭層を除
去した後、再加熱して二次熱間加工を行なうことを特徴
とする均質高炭素鋼の製造方法。
[Claims] C0.25-0.61wt%, Si0.15-0.35
wt%, Mn0.60-0.90wt%, P0.030
wt% or less, S0.035wt% or less, and the balance consists of Fe and unavoidable impurities, primary hot working is performed at a reduction rate of 18 to 30%, and then at a temperature of 1250 to 1300 ° C. In 1
A method for producing homogeneous high carbon steel, which comprises performing soaking diffusion treatment for 0 hours or more to remove a decarburized layer, and then reheating and performing secondary hot working.
JP31986288A 1988-12-19 1988-12-19 Manufacture of homogeneous high carbon steel Pending JPH02163315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31986288A JPH02163315A (en) 1988-12-19 1988-12-19 Manufacture of homogeneous high carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31986288A JPH02163315A (en) 1988-12-19 1988-12-19 Manufacture of homogeneous high carbon steel

Publications (1)

Publication Number Publication Date
JPH02163315A true JPH02163315A (en) 1990-06-22

Family

ID=18115062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31986288A Pending JPH02163315A (en) 1988-12-19 1988-12-19 Manufacture of homogeneous high carbon steel

Country Status (1)

Country Link
JP (1) JPH02163315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056944A1 (en) * 1999-03-19 2000-09-28 Sumitomo Special Metals Co., Ltd. Maraging steel excellent in fatigue characteristics and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056944A1 (en) * 1999-03-19 2000-09-28 Sumitomo Special Metals Co., Ltd. Maraging steel excellent in fatigue characteristics and method for producing the same
US6776855B1 (en) 1999-03-19 2004-08-17 Honda Giken Kogyo Kabushiki Kaisha Maraging steel excellent in fatigue characteristics and method for producing the same
US7323070B2 (en) 1999-03-19 2008-01-29 Neomax Materials Co., Ltd. Maraging steel excellent in fatigue characteristics and method for producing the same

Similar Documents

Publication Publication Date Title
CN109894473B (en) Method for producing hot work die steel by directly forging continuous casting billet
JPH01268846A (en) Hot pressing tool steel
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
US2859143A (en) Ferritic aluminum-iron base alloys and method of producing same
JPH02163315A (en) Manufacture of homogeneous high carbon steel
JP3709003B2 (en) Thin plate continuous casting method
JPS6223930A (en) Production of high-strength spur gear
JPS60121220A (en) Production of hot rolled steel wire rod and bar having excellent cold forgeability
JPH0561343B2 (en)
US3471340A (en) Regeneration of refused rolls
JP2004269981A (en) Production method of steel bar
JPS5910987B2 (en) Aluminum alloy with excellent formability and method for manufacturing its thin plate
JPS6396221A (en) Production of boron-containing austenitic stainless steel strip
JPH10202331A (en) Manufacture of hot working die
SU1206325A1 (en) Method of heating steel ingots
JPH0578750A (en) Manufacture of forged steel roll for cold rolling
JPH04346616A (en) Manufacture of high toughness tool steel
JPH01195243A (en) Manufacture of hot coil of austenitic stainless steel containing boron
JPH05279826A (en) Production of &#39;permalloy(r)&#39; excellent in impedance relative magnetic permeability
JPH05320748A (en) Production of high strength shaft parts excellent in form rollability and machinability
EP0045815B1 (en) Semi-finished steel article and method for producing same
JPH0158251B2 (en)
CN105200312A (en) High-yield production method for 4J42 alloy wire for discharge tube electrode
JPH05192736A (en) Manufacture of hexagon socket head cap screw
JPH0564209B2 (en)