JPH02161267A - Heat pump air conditioner - Google Patents

Heat pump air conditioner

Info

Publication number
JPH02161267A
JPH02161267A JP31733088A JP31733088A JPH02161267A JP H02161267 A JPH02161267 A JP H02161267A JP 31733088 A JP31733088 A JP 31733088A JP 31733088 A JP31733088 A JP 31733088A JP H02161267 A JPH02161267 A JP H02161267A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
flow
tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31733088A
Other languages
Japanese (ja)
Inventor
Tadao Otani
忠男 大谷
Kenichi Inui
謙一 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP31733088A priority Critical patent/JPH02161267A/en
Publication of JPH02161267A publication Critical patent/JPH02161267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE:To remarkably improve a heat transfer coefficient of evaporation and condensation of a refrigerant by forming spiral channels having mutually reverse directional angles to a pipe axis in the form of halving the inner circumference of the pipe on the inner face of a using heat transfer pipe to specify the direction of a refrigerant flow. CONSTITUTION:Spiral channels 11a, 11a and 11b, 11b having mutually reverse directional angles to a pipe axis in the form of halving the inner circumference of the pipe on the inner face of a heat transfer pipe 10 are formed, and refrigerant steam is made turbulent to improve a heat transfer effect in either flow direction in the case where a refrigerant is allowed to flow. In the case where the refrigerant is allowed to flow from B to A direction, when the heat transfer pipes 10 are assembled in an indoor heat exchanger 6, in the case of cooling operation the refrigerant is allowed to flow from B to A direction and in the case of heating operation the reverse flow of A to B direction is performed, since the refrigerant is effectively agitated by the channels 11a, 11b.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、熱交換系内を流れる冷媒の流れ方向を切換え
ることにより、1台の装置によって冷房と暖房の両方を
行なわせ得るように構成されてなるヒートポンプエアコ
ンの改良に関するものである。
Detailed Description of the Invention [Industrial Application Field 1] The present invention is configured such that one device can perform both cooling and heating by switching the flow direction of the refrigerant flowing within the heat exchange system. This paper concerns improvements to heat pump air conditioners.

[従来の技術1 管内に冷媒を流し必要な熱交換を行なわせる伝熱管の内
面は、当初は平滑なものであったが、熱力学的研究が進
むにつれ、管内面は平滑のままではなく所定の凹凸を形
成させた方が熱伝達率が良くなることがわかり、最近で
は第4図に示すように伝熱管10′の内面にらせん状の
連続溝11′を形成させたものが主流を占めるようにな
った。
[Prior art 1] The inner surface of the heat transfer tube, which allows the refrigerant to flow through the tube and perform the necessary heat exchange, was initially smooth, but as thermodynamic research progressed, the inner surface of the tube did not remain smooth but had a certain shape. It has been found that the heat transfer coefficient is better when the unevenness is formed, and recently, as shown in Fig. 4, the mainstream is to form a spiral continuous groove 11' on the inner surface of the heat exchanger tube 10'. It became so.

このようにらせん清11′を形成することの効果として
、一つにはそれにより管内面の表面積が大きくなり伝熱
面積が増大することがあげられる。
One of the effects of forming the spiral groove 11' in this way is that it increases the surface area of the inner surface of the tube and increases the heat transfer area.

しかし、それだけではなく、管内にらせん状の凹凸が存
在することで流通する冷媒が攪拌乱流化され、それによ
って熱伝達率が向上することになるし、管内で冷媒を沸
騰させて熱交換する場合には、管内に流れる冷媒液がら
せん消tt′、tt’に沿ってかき上げられ、管内面全
体が冷媒液でぬらされることによる熱伝達率の向上効果
を期待することもできるものである。
However, not only that, the presence of spiral irregularities inside the pipes causes the circulating refrigerant to become agitated and turbulent, which improves the heat transfer coefficient. In some cases, the refrigerant liquid flowing inside the pipe is scraped up along the spiral ends tt', tt', and the entire inner surface of the pipe is wetted with the refrigerant liquid, which can be expected to improve the heat transfer coefficient. .

上記内面らせん消付き伝熱管は、前記したようなすぐれ
た熱伝達特性を発揮するが、すべてにおいて好都合なわ
けではない、とくに管内で冷媒を凝縮させて使用する場
合にはっぎのような問題点のあることが指摘されている
Although the above-mentioned heat exchanger tube with an inner spiral extinguisher exhibits the excellent heat transfer characteristics described above, it is not advantageous in all cases, and there are problems such as the following, especially when the refrigerant is condensed inside the tube. It has been pointed out that there is.

すなわち、管内で凝縮した冷媒液は重力により管の下方
に溜り、管の下側を流れることになるが、らせん消11
’、11’が存在するために液化した冷媒の流れが円滑
にいかず、らせん?1111’11′による前記かき上
げ現象が起り、管内面全体をぬらすような結果になる。
In other words, the refrigerant liquid condensed in the pipe accumulates at the bottom of the pipe due to gravity and flows down the pipe.
Because of the presence of ', 11', the liquefied refrigerant does not flow smoothly, causing a spiral? 1111'11' occurs, resulting in the entire inner surface of the tube being wetted.

このように管内面が液でぬらされると、管内壁面と気体
である冷媒蒸気とが直接的に接触しないために、熱伝達
率を大IJに低下させてしまうおそれがある。この故に
、凝縮用の伝熱管の場合には、管内壁面と冷媒蒸気とが
より多くの表面積において直接的に接触できるようにす
ることがより重要である。
When the inner surface of the tube is wetted with liquid in this manner, the inner wall surface of the tube does not come into direct contact with the gaseous refrigerant vapor, which may reduce the heat transfer coefficient to a large IJ. Therefore, in the case of a condensing heat transfer tube, it is more important to enable direct contact between the inner wall surface of the tube and the refrigerant vapor over a larger surface area.

〔発明が解決しようとする課題1 近年、1台のエアコンを冷房と暖房に両用できるヒート
ポンプエアコンがめざましい背反をみせている。
[Problem to be Solved by the Invention 1] In recent years, heat pump air conditioners that allow one air conditioner to be used for both cooling and heating have shown remarkable contradictions.

このヒートポンプエアコンは、一つの熱交換系を用い、
冷媒回路を切換えることにより冷媒を伝熱管内で沸騰さ
せたりあるいは凝縮させたりしく、冷媒が一方側に流れ
る場合は冷房効果を発揮させ、それと反対側に流れる場
合は暖房効果を発揮させ得る構造となっている。
This heat pump air conditioner uses one heat exchange system,
By switching the refrigerant circuit, the refrigerant is boiled or condensed within the heat transfer tube, and when the refrigerant flows to one side, it produces a cooling effect, and when it flows to the opposite side, it produces a heating effect. It has become.

従って、冷媒を沸騰させて熱交換する冷房時には、前記
らせん状溝it′、tt’が極めて有効に作用し、熱交
換効率を大巾に向上させ得るが、同じ伝熱管が凝縮用に
使用される暖房時には、前記らせん状溝11”、11’
による冷媒液のかき上ばか起ることによって上記したよ
うな熱伝達率を低下させる要因となることが考えられる
Therefore, during cooling in which heat exchange is performed by boiling the refrigerant, the spiral grooves it' and tt' function extremely effectively and can greatly improve heat exchange efficiency, but the same heat transfer tube is used for condensing. During heating, the spiral grooves 11'', 11'
It is conceivable that the scraping up of the refrigerant liquid caused by the above-mentioned reduction in the heat transfer coefficient may occur.

本発明の目的は、上記した従来技術の問題点を解消し、
凝縮時には伝熱管内での冷媒液のかき上げ現象を有効に
防止し、蒸発時には反対にかき上げ現象を促進させて、
熱伝達上での最大効率を発揮させ得るように構成してな
るし−トボンブエアコンを提供しようとするものである
The purpose of the present invention is to solve the problems of the prior art described above,
It effectively prevents the scraping up of the refrigerant liquid within the heat transfer tube during condensation, and promotes the scraping up phenomenon during evaporation.
It is an object of the present invention to provide a bomb air conditioner that is constructed so as to exhibit maximum efficiency in heat transfer.

「課題を解決するための手段J 本発明は、伝熱管内を流れる冷媒の方向を切換えて冷房
と暖房を行なうし−トボンプエアコンにおいて、使用す
る伝熱管の内面に管の内周を2分割する形で管軸に対し
互いに逆向きの角度を有するらせん状溝を形成させ、冷
媒を凝縮させる際には前記溝の角度に沿い凝縮した冷媒
液が溝の交差方向に流動する溝角度となるように伝熱管
を配置したものである。
``Means for Solving the Problems J'' The present invention performs cooling and heating by switching the direction of the refrigerant flowing inside the heat transfer tube. In this way, spiral grooves having opposite angles to the tube axis are formed, and when condensing the refrigerant, the groove angle is such that the condensed refrigerant liquid flows in the cross direction of the grooves along the angle of the groove. The heat exchanger tubes are arranged like this.

[作用J 伝熱管の内面に形成されたらせん状溝を、管の内周を2
分割する形で管軸に対し互いに逆向きの角度を有する構
成とすれば、湧の存在によって冷媒の沸騰時にも凝縮時
にも冷媒蒸気は乱流化され伝熱効果を向上させ得る一方
、当該伝熱管内に−の方向より冷媒を流すときには溝に
よって冷媒がかき上げられ、その反対の方向より流すと
きには冷媒は溝の交差方向に集められる状態となって前
記かき上げは生じない、従って、この冷媒が集められる
方向を凝縮した冷媒液の流される方向に選択して伝熱管
を組み込めば、ヒートポンプの熱伝達効果は最大効率と
なる。
[Action J: The spiral groove formed on the inner surface of the heat transfer tube is
If the configuration is such that the tubes are divided and have opposite angles to the tube axis, the presence of the springs will make the refrigerant vapor turbulent both when the refrigerant boils and when it condenses, improving the heat transfer effect. When the refrigerant flows into the heat tube from the - direction, the refrigerant is scraped up by the grooves, and when it flows from the opposite direction, the refrigerant is collected in the cross direction of the grooves, and the scraping does not occur. If heat transfer tubes are installed by selecting the direction in which the refrigerant is collected in the direction in which the condensed refrigerant flows, the heat transfer effect of the heat pump will be maximized.

[実施例] 以下に、本発明について実施例を9魚し説明する。[Example] Below, nine examples of the present invention will be explained.

第1図は、ヒートボン1エアコンの配管回路を示す説明
図であり、本装置を用いて冷房運転する場合についてま
ず説明する。
FIG. 1 is an explanatory diagram showing the piping circuit of the HEATBON 1 air conditioner, and the case of cooling operation using this device will first be described.

冷房運転時にはバルブ2.2’ 、2″を閉とし、コン
プレッサ1より冷媒蒸気を図中矢印のように送り出す、
冷媒蒸気はバルブ3′を通り、室外熱交換器7において
凝縮され、バルブ3″を通り受注器5に流入する。さら
に、膨張弁4′で断熱膨張し冷えた冷媒液は、室内熱交
換器6に流れ、ここで冷媒は蒸発して室内を冷やし、バ
ルブ3を通って図中矢印のように再びコンプレッサ1に
戻る。
During cooling operation, valves 2.2' and 2'' are closed, and refrigerant vapor is sent out from the compressor 1 as shown by the arrow in the figure.
The refrigerant vapor passes through the valve 3', is condensed in the outdoor heat exchanger 7, and flows into the order receiver 5 through the valve 3''.Furthermore, the refrigerant liquid that has been adiabatically expanded and cooled by the expansion valve 4' is transferred to the indoor heat exchanger. 6, where the refrigerant evaporates to cool the room, passes through the valve 3, and returns to the compressor 1 as indicated by the arrow in the figure.

暖房運転の場合には、冷媒の流れる方向は上記冷房の場
合の逆向きとなる。
In the case of heating operation, the direction in which the refrigerant flows is opposite to that in the case of cooling.

すなわち、バルブ3.3’ 、3″を閉としてコンプレ
ッサ1より矢印のように冷媒蒸気が送り出され、バルブ
2′を通り、室内熱交換器6で熱放散しつつ凝縮し、以
下上記と逆の挙動をもって冷媒はバルブ2を通り矢印の
ようにコンプレッサ1に戻ってくる。
That is, with the valves 3.3' and 3'' closed, refrigerant vapor is sent out from the compressor 1 as shown by the arrow, passes through the valve 2', and is condensed while dissipating heat in the indoor heat exchanger 6. With this behavior, the refrigerant passes through the valve 2 and returns to the compressor 1 as shown by the arrow.

上記の熱交換器に配管される伝熱管は、従来は第4図に
示すように管軸に対して同一角度のらせん状溝11’、
11’を形成させたものであり、すでに説明したように
凝縮の際の清によるかき上げ現象が避けられなかった。
Conventionally, the heat transfer tubes installed in the heat exchanger have spiral grooves 11' having the same angle with respect to the tube axis, as shown in FIG.
11' was formed, and as explained above, the phenomenon of stirring up by the liquid during condensation was unavoidable.

本発明においては、第2図にその半割断面図を示したよ
うな伝熱管10が配管される。
In the present invention, a heat exchanger tube 10 as shown in a half-cut cross-sectional view in FIG. 2 is installed.

本発明に係る伝熱管10の内面には、管の内周を2分割
する形で管軸に対し互いに逆向きの角度を有するらせん
状溝11a、llaおよび11b。
The inner surface of the heat exchanger tube 10 according to the present invention has spiral grooves 11a, lla, and 11b that divide the inner circumference of the tube into two and have opposite angles to the tube axis.

ttbが形成されており、両方の渭11aおよび11b
には交差部12において互いに交差する関係に形成され
る。
ttb is formed and both arms 11a and 11b
are formed in such a relationship that they intersect with each other at an intersection 12.

このような渭11a、11bを有する伝熱管10を製造
するには、第3図に示す方法を用いればよい、まず、長
尺板材を表面に交差状突起を有するロールで圧延して前
記らせん状溝に形成するための傾斜消11a、11bを
加工し、ついでこれを図に示すようにパイプ状に丸めて
、その端縁合せ目を例えば高周波誘導加熱によりシーム
溶接13してやればよいのである。もつとも、図示した
例では、消11aとttbが交差部12において正確に
交わっているが、この消11aとllbは正確に交わら
ずに食い違い状となってもいいし、先端に多少離間部が
あってもいいものであり、消の巾もllaとllbでは
異なるように構成しても差支えはない、しかし、図示の
ように対称形とすることで圧延の際の蛇行などが防止さ
れ、品質的にも良好ならしめ得るメリットがある。
In order to manufacture the heat exchanger tube 10 having such arms 11a and 11b, the method shown in FIG. All that is required is to process the inclined erasers 11a and 11b for forming grooves, then roll them into a pipe shape as shown in the figure, and seam weld 13 the edges together by, for example, high-frequency induction heating. Of course, in the illustrated example, the erasers 11a and ttb intersect exactly at the intersection 12, but the erasers 11a and llb may not intersect exactly, but may be staggered, or there may be some separation at the tips. There is no problem in configuring the width of the eraser to be different for lla and llb.However, by making it symmetrical as shown in the figure, meandering during rolling is prevented, and the quality is improved. There are also benefits that can be achieved if it is good.

らせん状溝11aおよびllbが上記のように構成され
ていれば、伝熱管10内に冷媒を流した場合には、その
流れる方向がいずれであってもこれらの湧11a、ll
bの存在によって冷媒蒸気は乱流化され、伝熱効果は向
上される。
If the spiral grooves 11a and llb are configured as described above, when the refrigerant flows into the heat exchanger tube 10, these gushes 11a and llb will flow regardless of the direction in which the refrigerant flows.
The presence of b makes the refrigerant vapor turbulent and improves the heat transfer effect.

しかして、その場合の冷媒の流れが第2図のAからB方
向であるか、あるいはその逆のBからA方向であるかに
よって、当該冷媒の伝熱管10内における挙動に明らか
な差異が現われる。すなわち、冷媒がBからA方向に向
って流れる場合には涌11aとllbによって冷媒は効
果的にかき上げられるのに対し、AがらB方向に流れる
場合には、冷媒は消11aとllbに沿って交差部方向
に集められる状態となり、冷媒のかき上げは生じない。
Therefore, depending on whether the refrigerant flows in the direction from A to B in FIG. . That is, when the refrigerant flows from B to A direction, the refrigerant is effectively scooped up by the fountains 11a and llb, whereas when A flows from A to B direction, the refrigerant is drawn up along the fountains 11a and llb. The refrigerant is collected in the direction of the intersection, and no scraping of the refrigerant occurs.

従って、第1図に示した室内熱交換器6に伝熱管lOを
組み込む際には、冷房運転の場合には冷媒が第2図のB
からA方向の流れとなるようにし、暖房運転の場合には
その逆のAからB方向の流れとなるようにし、さらに好
ましくは溝の交差部12が下側に位置す、る関係となる
ように配置すればよい、かくして、冷房運転の場合には
沸騰した冷媒が伝熱管内にかき上げられ、すでに説明し
た冷房としての熱交換効率を向上させ得る一方、暖房運
転の場合には、al縮した冷媒液のかき上げが湧11a
、llbにより抑制されて、冷媒の管内面との直接的接
触面積が大きく維持され、暖房としての熱交換効率を向
上させ得るという最適効率の下での熱交換を確立するこ
とができる。
Therefore, when installing the heat transfer tubes 1O in the indoor heat exchanger 6 shown in FIG. 1, in the case of cooling operation, the refrigerant is
The flow should be in the direction A from A, and in the case of heating operation, the flow should be the opposite from A to B. More preferably, the intersection 12 of the grooves should be located on the lower side. Thus, in the case of cooling operation, the boiling refrigerant is stirred up into the heat transfer tube, improving the heat exchange efficiency for cooling as described above, while in the case of heating operation, the boiling refrigerant is pumped up into the heat transfer tube. The pumping up of the refrigerant liquid caused by
, llb, it is possible to maintain a large direct contact area of the refrigerant with the inner surface of the tube, and to establish heat exchange under optimal efficiency, which can improve the heat exchange efficiency for heating.

なお、上記涌角度の設定は室外熱交換器においても同じ
関係となるようにすることが望ましい。
Note that it is desirable that the above-mentioned angle of rotation be set in the same manner in the outdoor heat exchanger.

[発明の効果] 以上の通り、本発明に係る伝熱管を本発明に係る配置と
してなるし−トボンプエアコンによれば、冷媒流の方向
を特定することで、蒸発の熱伝達率のみならず冷媒の凝
縮熱伝達率を著しく向上させることができ、熱交換器の
小型化ひいては冷媒装置の小型化を達成することが可能
となり、設備費やランニングコストの低減を図り得るな
ど、その工業上の価値は非常に大きなものがある。
[Effects of the Invention] As described above, the heat exchanger tubes according to the present invention are arranged according to the present invention. The condensation heat transfer coefficient of the refrigerant can be significantly improved, making it possible to downsize the heat exchanger and ultimately the refrigerant equipment, and reduce equipment costs and running costs. There is great value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヒートポンプエアコンの配管回路を示す説明図
、第2図は第1図の装置において使用される本発明に係
る伝熱管の半割り断面図、第3図は第2図に示す伝熱管
を製造する様子を示す説明図、第4図は従来の伝熱管の
半割り断面図である。 10゜ la。 :コンプレッサ、 :バルブ、 :バルブ、 :!lj張弁、 :受注器、 王室内熱交換器、 :室外熱交換器、 :伝熱管、 :逆向き角のらせん状溝、 ニ一方向のらせん状溝、 :情交差部。
Fig. 1 is an explanatory diagram showing the piping circuit of a heat pump air conditioner, Fig. 2 is a half cross-sectional view of the heat exchanger tube according to the present invention used in the device of Fig. 1, and Fig. 3 is the heat exchanger tube shown in Fig. 2. FIG. 4 is a half-cut sectional view of a conventional heat exchanger tube. 10゜la. :Compressor, :Valve, :Valve, :! lj Zhang valve, : Order receiver, Royal indoor heat exchanger, : Outdoor heat exchanger, : Heat exchanger tube, : Reverse angle spiral groove, Two-way spiral groove, : Information cross section.

Claims (1)

【特許請求の範囲】[Claims] (1)熱交換器の伝熱管内を流れる冷媒の流れ方向を冷
房時と暖房時では逆方向となるようにし、1台の装置を
用いて冷媒回路を切換えることにより冷房と暖房の両方
を行なわせ得るエアコンにおいて、使用する伝熱管の内
面に管の内周を2分割する形で管軸に対し互いに逆向き
の角度を有するらせん状溝を形成させ、冷媒を凝縮させ
て熱交換する際には前記溝の角度に沿い凝縮した冷媒液
が溝の交差方向に流動する溝角度となるように伝熱管を
配置してなるヒートポンプエアコン。
(1) The flow direction of the refrigerant in the heat transfer tubes of the heat exchanger is reversed during cooling and heating, and by switching the refrigerant circuit using one device, both cooling and heating can be performed. In air conditioners that can be used for air conditioning, a spiral groove is formed on the inner surface of the heat transfer tube to divide the inner periphery of the tube into two and have opposite angles to the tube axis to condense the refrigerant and exchange heat. is a heat pump air conditioner in which heat transfer tubes are arranged such that the groove angles allow condensed refrigerant liquid to flow in the cross direction of the grooves.
JP31733088A 1988-12-15 1988-12-15 Heat pump air conditioner Pending JPH02161267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31733088A JPH02161267A (en) 1988-12-15 1988-12-15 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31733088A JPH02161267A (en) 1988-12-15 1988-12-15 Heat pump air conditioner

Publications (1)

Publication Number Publication Date
JPH02161267A true JPH02161267A (en) 1990-06-21

Family

ID=18087009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31733088A Pending JPH02161267A (en) 1988-12-15 1988-12-15 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JPH02161267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108399A (en) * 1997-10-02 1999-04-23 Daikin Ind Ltd Air conditioner
JP2008205087A (en) * 2007-02-19 2008-09-04 Fuji Electric Systems Co Ltd Cooling device and semiconductor power converter
US20090008075A1 (en) * 2002-11-25 2009-01-08 Outokumpu Oyj Polyhedral array heat transfer tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108399A (en) * 1997-10-02 1999-04-23 Daikin Ind Ltd Air conditioner
US20090008075A1 (en) * 2002-11-25 2009-01-08 Outokumpu Oyj Polyhedral array heat transfer tube
US10267573B2 (en) * 2002-11-25 2019-04-23 Luvata Alltop (Zhongshan) Ltd. Polyhedral array heat transfer tube
JP2008205087A (en) * 2007-02-19 2008-09-04 Fuji Electric Systems Co Ltd Cooling device and semiconductor power converter

Similar Documents

Publication Publication Date Title
CN103842760B (en) Heat exchanger and use the refrigerating circulatory device of this heat exchanger
US20160298886A1 (en) Heat exchanger and heat pump apparatus
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
KR100479781B1 (en) Evaporator and refrigerator
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
CN108351188A (en) Heat exchanger and air-conditioning
JPH02161267A (en) Heat pump air conditioner
JP2012167913A (en) Air conditioner
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
SE2050097A1 (en) A plate heat exchanger
SE2050092A1 (en) A refrigeration system and a method for controlling such a refrigeration system
WO2014125997A1 (en) Heat exchange device and refrigeration cycle device equipped with same
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP2005127570A (en) Heat transfer pipe and refrigeration unit using the same
JP2013148284A (en) Throttle device and air conditioning device provided with the same
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JPH11264630A (en) Air-conditioning equipment
JPH0250086A (en) Heat transfer tube for condensing within tube and manufacture thereof
CN218916041U (en) Phase change type heat exchanger and air conditioner outdoor unit
JP2012167912A (en) Air conditioner
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
WO2019026242A1 (en) Heat exchanger, and refrigeration cycle device
WO2023119468A1 (en) Heat exchanger and air conditioner
KR200314025Y1 (en) Fin tube type heat exchanger and airconditioner and refrigerator using the heat exchanger