JPH0216029B2 - - Google Patents

Info

Publication number
JPH0216029B2
JPH0216029B2 JP59131706A JP13170684A JPH0216029B2 JP H0216029 B2 JPH0216029 B2 JP H0216029B2 JP 59131706 A JP59131706 A JP 59131706A JP 13170684 A JP13170684 A JP 13170684A JP H0216029 B2 JPH0216029 B2 JP H0216029B2
Authority
JP
Japan
Prior art keywords
constriction
thin film
microbridge
metal thin
josephson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59131706A
Other languages
Japanese (ja)
Other versions
JPS6110286A (en
Inventor
Masanori Kobayashi
Kunihiko Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59131706A priority Critical patent/JPS6110286A/en
Publication of JPS6110286A publication Critical patent/JPS6110286A/en
Publication of JPH0216029B2 publication Critical patent/JPH0216029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はジヨセフソン素子等に用いられるサブ
ミクロン級のくびれ部を有するマイクロブリツジ
にバンプ(導電層の隆起部)を形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming bumps (protrusions of a conductive layer) on microbridges having submicron constrictions used in Josephson devices and the like.

〔従来の技術〕[Conventional technology]

第3図は従来例によるマイクロブリツジの斜視
図である。
FIG. 3 is a perspective view of a conventional microbridge.

図において、基板1上にサブミクロン程度の厚
さの超伝導金属薄膜2を蒸着し、中央部にサブミ
クロン程度の長さLと幅Wのくびれを有する図示
の形状のマイクロブリツジを電子線露光を用いた
パターニングにより形成する。
In the figure, a superconducting metal thin film 2 with a thickness of about submicron is deposited on a substrate 1, and a microbridge having the shape shown in the figure, which has a constriction of length L and width W of about submicron in the center, is formed with an electron beam. Formed by patterning using exposure.

くびれの両側にインジウムを圧着して電流端子
3,4と、電圧端子5,6を形成する。
Current terminals 3 and 4 and voltage terminals 5 and 6 are formed by crimping indium on both sides of the constriction.

上記構造のマイクロブリツジ型のジヨセフソン
素子を臨界温度以下に下げ、くびれ部にマイクロ
波を照射するとジヨセフソン効果があらわれ、第
4図のようにジヨセフソン素子の電流I−電圧V
特性はジヨセフソン・ステツプまたはShappiro
Stepと呼ばれる階段状の特性を示す。この場合
各ステツプの電圧vは次式に示されるように、照
射したマイクロ波の周波数により一義的に決ま
るので、電圧標準として用いられる。
When the microbridge-type Josephson element with the above structure is lowered to below the critical temperature and the constriction is irradiated with microwaves, the Josephson effect appears, and as shown in Figure 4, the electric current I - voltage V of the Josephson element.
Characteristics: Josephson Stepp or Shappiro
It exhibits a step-like characteristic called a step. In this case, the voltage v at each step is uniquely determined by the frequency of the irradiated microwave, as shown in the following equation, and is therefore used as a voltage standard.

v=h/2e, ここに、hはPlanck常数、eは素電荷をあら
わす。
v=h/2e, where h represents the Planck constant and e represents the elementary charge.

このようなマイクロブリツジ構造においては、
くびれ部で超伝導が保持できなくなつて常伝導に
なりジヨセフソン効果をあらわす。ジヨセフソン
効果は常伝導領域が長くなると起きなくなり、ま
たくびれの形状によつてあらわれるジヨセフソ
ン・ステツプの数が異なる。
In such a microbridge structure,
At the constriction, superconductivity can no longer be maintained and normal conduction occurs, resulting in the Josephson effect. The Josephson effect no longer occurs as the normal conduction region becomes longer, and the number of Josephson steps that appear differs depending on the shape of the constriction.

例えば超伝導材料として鉛(Pb)を用いると、
臨界温度7.2K以下で、照射したマイクロ波の周
波数が10GHzで20μV毎のステツプが得られる。
ステツプ数が100であれば、100倍の2mVの電圧
標準が得られる。
For example, if lead (Pb) is used as a superconducting material,
When the critical temperature is below 7.2K and the frequency of the irradiated microwave is 10GHz, steps of 20μV can be obtained.
If the number of steps is 100, a voltage standard of 2 mV will be obtained, which is 100 times larger.

あるいは逆にステツプの電圧vを測定して照射
したマイクロ波の周波数を正確に知ることがで
きる。
Alternatively, the frequency of the irradiated microwave can be accurately determined by measuring the voltage v of the step.

さらにSQID(Super Quantum Interference
Device)として生体等よりでる微少磁場の測定
に利用できる。
Furthermore, SQID (Super Quantum Interference)
It can be used as a device to measure minute magnetic fields emitted from living organisms, etc.

以上のようにマイクロブリツジ型のジヨセフソ
ン素子は種々の用途に用いられるが、ジヨセフソ
ン・ステツプの数が多くなるような構造が望まれ
る。そのためにはくびれ部の両側を厚くし、従来
の1次元的なくびれを2次元的なくびれにすれば
よいことが確かめられている。
As described above, the microbridge type Josephson device is used for various purposes, but a structure in which the number of Josephson steps is increased is desired. It has been confirmed that this can be achieved by increasing the thickness on both sides of the constriction and changing the conventional one-dimensional constriction into a two-dimensional constriction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

マイクロブリツジ構造において、くびれ部の微
少寸法を保持して、その両側を厚くする製造技術
的に効果のある簡易な方法はなかつた。
In the microbridge structure, there has been no simple method that is effective in terms of manufacturing technology to maintain the minute dimensions of the constriction and thicken both sides of the constriction.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、マイクロブリツジ型ジヨ
セフソン素子形成に際し、基板上に金属薄膜を被
着し、該金属薄膜をパターニングして中央部にく
びれを有する金属パターンを形成し、真空中で該
金属パターンに電流を流して該くびれ部分を溶断
して溶断部の両側に該金属薄膜からなるバンプを
形成する工程を有するバンプ形成方法により達成
される。
The solution to the above problem is to deposit a metal thin film on a substrate, pattern the metal thin film to form a metal pattern with a constriction in the center, and then deposit the metal thin film on the substrate in a vacuum. This is achieved by a bump forming method that includes the step of passing an electric current through the pattern to fuse the constricted portion to form bumps made of the metal thin film on both sides of the fused portion.

〔作用〕[Effect]

金属薄膜よりなるマイクロブリツジのくびれ部
を、真空中で電流を流してジユール熱により溶断
すると、溶融した金属は表面張力により、くびれ
の両側に2個のバンプを形成する。
When the constriction of a microbridge made of a thin metal film is fused by Joule heat by passing an electric current in a vacuum, the molten metal forms two bumps on both sides of the constriction due to surface tension.

形成された2個のバンプを覆つて金属薄膜を被
着してパターニングすれば3次元のくびれは簡単
に形成できる。
A three-dimensional constriction can be easily formed by covering the two formed bumps with a metal thin film and patterning it.

また本発明により形成されたマイクロブリツジ
のバンプはジヨセフソン素子の他に基板上のコネ
クタとして利用できる。
Further, the microbridge bump formed according to the present invention can be used not only as a Josephson device but also as a connector on a substrate.

〔実施例〕〔Example〕

第1図は本発明によるマイクロブリツジの斜視
図である。
FIG. 1 is a perspective view of a microbridge according to the present invention.

図において、基板1上に金属薄膜2としてサブ
ミクロン程度の厚さの超伝導薄膜を蒸着し、中央
部にサブミクロン程度の長さと幅を有するくびれ
の両側にバンプ7,8が形成されている。
In the figure, a superconducting thin film with a thickness of about submicrons is deposited as a metal thin film 2 on a substrate 1, and bumps 7 and 8 are formed on both sides of a constriction having a length and width of about submicrons in the center. .

第2図は本発明によるマイクロブリツジの製造
方法を工程順に示す断面図である。図は第1図の
A−A断面を示す。
FIG. 2 is a cross-sectional view showing the method for manufacturing a microbridge according to the present invention in the order of steps. The figure shows a cross section taken along line AA in FIG.

第2図aにおいて、基板1の上に、レジスト9
を被着し、電子線露光を用いてくびれ部の長さと
幅がそれぞれ5000Åのマイクロブリツジの形状に
パターニングする。
In FIG. 2a, a resist 9 is placed on the substrate 1.
is deposited and patterned using electron beam exposure into the shape of a microbridge with a constriction length and width of 5000 Å.

第2図bにおいて、金属薄膜2として厚さ1000
Åの超伝導Pb薄膜を蒸着し、5×10-6の真空中
でくびれ部に0.5Aのステツプ状電流を流してく
びれ部を溶断してバンプ7,8を形成する。
In Fig. 2b, the metal thin film 2 has a thickness of 1000 mm.
A superconducting Pb thin film having a thickness of 1.5 Å is deposited, and a step current of 0.5 A is passed through the constriction in a vacuum of 5×10 -6 to fuse the constriction to form bumps 7 and 8.

第2図cにおいて、マイクロブリツジ部を覆つ
て金属薄膜10として厚さ1000Åの超伝導Pb薄
膜を蒸着し、レジスト9の上の金属薄膜10をリ
フトオフすると第1図に示されるマイクロブリツ
ジを得ることができる。
In FIG. 2c, a superconducting Pb thin film with a thickness of 1000 Å is deposited as a metal thin film 10 to cover the microbridge part, and when the metal thin film 10 on the resist 9 is lifted off, the microbridge shown in FIG. 1 is formed. Obtainable.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、マ
イクロブリツジ構造において、くびれ部の微少寸
法を保持して、その両側を厚くする簡易で確実な
方法が得られる。
As described in detail above, according to the present invention, a simple and reliable method for maintaining the minute dimensions of the constriction and thickening both sides of the constriction in a microbridge structure can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により製造されたマイクロブリ
ツジの斜視図、第2図は本発明によるマイクロブ
リツジの製造方法を工程順に示す断面図、第3図
は従来例によるマイクロブリツジの斜視図、第4
図はジヨセフソン素子の電流−電圧特性を示す図
である。 図において、1は基板、2,10は金属薄膜、
3,4は電流端子、5,6は電圧端子、7,8は
バンプ、9はレジストを示す。
FIG. 1 is a perspective view of a microbridge manufactured according to the present invention, FIG. 2 is a sectional view showing the method for manufacturing a microbridge according to the present invention in order of steps, and FIG. 3 is a perspective view of a conventional microbridge. , 4th
The figure is a diagram showing the current-voltage characteristics of the Josephson device. In the figure, 1 is a substrate, 2 and 10 are metal thin films,
3 and 4 are current terminals, 5 and 6 are voltage terminals, 7 and 8 are bumps, and 9 is a resist.

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロブリツジ型ジヨセフソン素子形成に
際し、基板上に金属薄膜を被着し、該金属薄膜を
パターニングして中央部にくびれを有する金属パ
ターンを形成し、真空中で該金属パターンに電流
を流して該くびれ部分を溶断して溶断部の両側に
該金属薄膜からなるバンプを形成する工程を有す
ることを特徴とするバンプ形成方法。
1. When forming a micro bridge type Josephson device, a metal thin film is deposited on a substrate, the metal thin film is patterned to form a metal pattern having a constriction in the center, and a current is passed through the metal pattern in a vacuum. A bump forming method comprising the step of fusing the constricted portion and forming bumps made of the metal thin film on both sides of the fusing portion.
JP59131706A 1984-06-26 1984-06-26 Formation of bump Granted JPS6110286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59131706A JPS6110286A (en) 1984-06-26 1984-06-26 Formation of bump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131706A JPS6110286A (en) 1984-06-26 1984-06-26 Formation of bump

Publications (2)

Publication Number Publication Date
JPS6110286A JPS6110286A (en) 1986-01-17
JPH0216029B2 true JPH0216029B2 (en) 1990-04-13

Family

ID=15064296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131706A Granted JPS6110286A (en) 1984-06-26 1984-06-26 Formation of bump

Country Status (1)

Country Link
JP (1) JPS6110286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170088682A1 (en) * 2014-05-21 2017-03-30 Toyobo Co., Ltd. Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183177A (en) * 1988-01-18 1989-07-20 Agency Of Ind Science & Technol Superconducting ceramic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170088682A1 (en) * 2014-05-21 2017-03-30 Toyobo Co., Ltd. Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film

Also Published As

Publication number Publication date
JPS6110286A (en) 1986-01-17

Similar Documents

Publication Publication Date Title
US5481119A (en) Superconducting weak-link bridge
KR100365894B1 (en) Josephson junction device and its manufacturing method
JP2569408B2 (en) Josephson device composed of many small weak couplings
JPS61114585A (en) Electric connection structure and formation thereof
US5981443A (en) Method of manufacturing a high temperature superconducting Josephson device
EP0538077B1 (en) Super conducting quantum interference device
US4494131A (en) Josephson junction element and method of making the same
JPH0216029B2 (en)
EP0394742B1 (en) Superconducting three terminal device and process of fabrication thereof
EP0381541B1 (en) Superconductive magnetoresistive device
JPS5846197B2 (en) Josephson junction device and its manufacturing method
JPH0328838B2 (en)
JP2682136B2 (en) Method of manufacturing Josephson device
JPS59182586A (en) Josephson junction element
JP3267353B2 (en) Manufacturing method of weak junction type Josephson device using edge junction of submicron area
JP2656364B2 (en) Superconducting element manufacturing method
JPH0142148B2 (en)
JPS6167974A (en) Superconductive circuit device
KR100480743B1 (en) A method for fabricating a high-tc ramp-edge josephson junctions using rf plasma
JP2978738B2 (en) Electrostatic Josephson interferometer
KR100267974B1 (en) method for fabricating josephson junction device operating on high temperature
JPS592390B2 (en) Josephson junction device and its manufacturing method
JPH0141225B2 (en)
JPS6029234B2 (en) Microbridge type Josephson device, its manufacturing method, and its manufacturing device
JPH01197677A (en) Superconducting magnetometer