JPH0215976A - Thin plate rotary tool with diamond film - Google Patents

Thin plate rotary tool with diamond film

Info

Publication number
JPH0215976A
JPH0215976A JP16267588A JP16267588A JPH0215976A JP H0215976 A JPH0215976 A JP H0215976A JP 16267588 A JP16267588 A JP 16267588A JP 16267588 A JP16267588 A JP 16267588A JP H0215976 A JPH0215976 A JP H0215976A
Authority
JP
Japan
Prior art keywords
diamond
tool
thin plate
thin
diamond film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16267588A
Other languages
Japanese (ja)
Inventor
Shinsuke Matsui
伸介 松井
Junji Watanabe
純二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16267588A priority Critical patent/JPH0215976A/en
Publication of JPH0215976A publication Critical patent/JPH0215976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To be able to obtain a rotary grindstone tool for fine processing which has a high density continuous cutting edge and high rigidity in spite of being thin by coatingly forming a diamond film on a thin plate material by a gaseous phase composite method. CONSTITUTION:On the surface of a core material 1 of thin ceramics or the like, diamond 2 is coatingly formed by a gaseous phase composite method. As a result, a tool surface on which single crystal diamond particles are densely distributed can be made, and apparent abrasive grain space in a grindstone with this cutting edge is made to be approximately the size of a diamond crystal grain (mum). Further, its Young's modulus can be 5-7X10<6>kg/cm<2>t, and the rigidity of the grindstone can be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラス、結晶材、セラミックス等の硬脆材料を
切断したり、細い溝を形成するためのダイヤモンド膜付
き薄板回転工具に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a diamond-coated thin plate rotary tool for cutting hard and brittle materials such as glass, crystalline materials, and ceramics, and for forming narrow grooves. .

(従来の技術) 従来、上記の様な硬脆材料に溝形成や切断等の加工を行
う薄板回転工具として、ダイヤモンド砥粒を金属あるい
はガラス状物質又は樹脂材料で結合したダイヤモンド工
具を高速に回転させて研削加工を行っていた。
(Prior art) Conventionally, a diamond tool in which diamond abrasive grains are bonded with a metal, a glassy substance, or a resin material is rotated at high speed as a thin plate rotary tool for forming grooves, cutting, etc. in hard and brittle materials such as those mentioned above. The grinding process was then carried out.

結合されたダイヤモンド工具の中で、電着法で作成する
場合は、砥粒の径は10μm以上であってその配列間隔
も50μm〜100μm程度が普通であって、工具の円
板の厚みは50μm以上であった。
When a bonded diamond tool is made by electrodeposition, the diameter of the abrasive grains is usually 10 μm or more, the arrangement interval is usually about 50 μm to 100 μm, and the thickness of the tool disk is 50 μm. That was it.

又焼成法によるダイヤモンド砥石では、砥粒の径を2μ
m〜4μm程度まで小さく出来て、その間隔も20μm
〜30μmに設定可能のものがあった。
In addition, the diameter of the abrasive grains for diamond whetstones made using the firing method is 2μ.
It can be made as small as 20μm to 4μm, and the distance between them is 20μm.
There was one that could be set to ~30 μm.

(発明が解決しようとする課題) 従来の結晶材料、ガラス質又はセラミックス焼結体等を
加工し所定の機能を有する部品を製作する場合前記の部
品は次第に高性能、小型化が要求され数μm単位の加工
精度の向上や加工部分に傷のないことが要求されて来た
、しかしこれらの材料は硬度が高く脆性材料なので割れ
、欠け、等のチッピングを起しやすいものであり、該チ
ッピングが部品の機能を低下させるとともに加工精度向
上の妨げになっていた。又、従来の技術では、電着法に
よる砥石は50μm以下の細い溝を形成することは不可
能であり焼成法による砥石作成中に不可避の砥粒の塊が
形成されることがあり、加工面に大きな欠けが残ること
があった。そのために高精度の加工面を持続させるには
砥石の薄片化による加工抵抗の低減及び砥石の加工能力
の向上が必要だがこれらの砥石は結合材の材料強度が低
く、薄片化が困難であシ、又、加工に関与するダイヤモ
ンド砥粒が送シ方向と平行に一直線状に配列する間隔は
、最小のもので100μm〜20011m程度で砥石の
剛性も結合剤のヤング率で決定され、銅系金属で1.5
 X 10’Kf/cIL”、石英ガラスで0.7〜I
X I Q’ Kg/an”、合成樹脂系で0.1〜0
.2 X 10’ K4/crIL2であるため薄片化
は出来ていない。又、砥石の刃間隔が大で材料強度が小
さいという問題に対し、S 15NaやSiC等セラミ
ックスそのものを10 am以下に薄片化した砥石も提
案され石英や81等一部材料の切断や微細溝入れ加工に
有効なことが示されているがさらに高硬度の材料に対し
ては加工能率は低いと言う問題があった。
(Problem to be Solved by the Invention) When manufacturing parts with a predetermined function by processing conventional crystalline materials, glassy or ceramic sintered bodies, etc., the above-mentioned parts are gradually required to have high performance and be miniaturized, and the size of the parts is several μm. It has become necessary to improve the processing accuracy of the unit and to ensure that there are no scratches on the machined part. However, these materials are highly hard and brittle, so they are prone to cracking, chipping, and other chipping. This not only degraded the functionality of the parts but also hindered improvements in machining accuracy. In addition, with conventional technology, it is impossible to form fine grooves of 50 μm or less with a grinding wheel using the electrodeposition method, and unavoidable lumps of abrasive grains may be formed during grinding wheel creation using the firing method, which may damage the machined surface. There were times when large chips remained. Therefore, in order to maintain a high-precision machined surface, it is necessary to reduce the machining resistance by making the grinding wheel into thin pieces and improve the processing ability of the grindstone. In addition, the distance at which the diamond abrasive grains involved in processing are arranged in a straight line parallel to the feeding direction is approximately 100 μm to 20,011 m at the minimum, and the rigidity of the grinding wheel is determined by the Young's modulus of the binder. So 1.5
X 10'Kf/cIL", 0.7~I with quartz glass
X I Q'Kg/an", 0.1 to 0 for synthetic resin type
.. Since it was 2 x 10' K4/crIL2, it could not be sliced. In addition, to address the problem of low material strength due to the large spacing between the blades of grindstones, grindstones made by cutting ceramics such as S15Na and SiC into thin slices of 10 am or less have been proposed, and are suitable for cutting and making fine grooves in some materials such as quartz and 81. Although it has been shown to be effective for machining, there is a problem in that the machining efficiency is low for materials with high hardness.

本発明の目的は薄片化しても剛性の高いセラミックス等
の薄板材料を芯材として使用し、その表面に気相合成に
より得られる膜状化した結晶ダイヤモンドを被覆するこ
とによって極めて密度の高い連続切れ刃を持つ薄くても
剛性の高い、硬脆材料の微細加工用回転砥石工具を提供
することにある。
The purpose of the present invention is to use a thin plate material such as ceramics, which has high rigidity even when it is made into flakes, as a core material, and to coat the surface with a film of crystalline diamond obtained by vapor phase synthesis, thereby creating continuous cuts with extremely high density. An object of the present invention is to provide a rotary grindstone tool for fine machining of hard and brittle materials, which has a thin but highly rigid blade.

(課題を解決するだめの手段) 上記目的を達成するために本発明は、薄板材料に気相合
成法によるダイヤモンド膜を、被覆形成したダイヤモン
ド膜付き薄板回転工具としたもので、上記気相合成法に
よるダイヤモンド膜と、薄膜材料を交互に多層積層し薄
板材料に対しダイヤモンド層をわずか突出させ多刃化し
て使用することも可能であり、またダイヤモンド膜が多
結晶及び多結晶と非結晶との複合となったダイヤモンド
膜付きの薄板回転工具としたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a thin plate rotary tool with a diamond film coated with a diamond film formed by vapor phase synthesis on a thin plate material. It is also possible to use a multi-layered diamond film produced by the method and a thin film material alternately to make the diamond layer slightly protrude from the thin plate material to make the diamond film multi-bladed. This is a thin plate rotary tool with a composite diamond film.

(作用) 上記の様に構成された本発明は、砥粒間隔が短く、剛性
が高い理想的工具を薄いセラミックスなどの窓材料の表
面にダイヤモンドを気相合成によ多形成して実現するも
ので、気相合成によれば単結晶ダイヤモンド粒子が全面
に密に分布した工具面を作ることができ、これを切れ刃
とする砥石は見掛けの砥粒間隔がダイヤモンド結晶粒子
の大きさ程度(数μm)にすることが出来、またヤング
率5〜7 X 10’ Kg/♂tと従来の結合剤の3
〜5倍以上になり非常に優れた性質を有するものである
(Function) The present invention configured as described above realizes an ideal tool with short abrasive grain spacing and high rigidity by forming diamonds on the surface of a thin window material such as ceramics by vapor phase synthesis. By vapor phase synthesis, it is possible to create a tool surface with single-crystal diamond particles densely distributed over the entire surface, and a grinding wheel that uses this as a cutting edge has an apparent abrasive grain spacing about the size of a diamond crystal grain (a few μm) and Young's modulus of 5 to 7 x 10' Kg/♂t and 3
~5 times or more, and has very excellent properties.

今砥粒−個あたりの実質切削量をgとすると、この値が
大きいほど砥粒による被加工物への加工抵抗が大きく重
切削となシチッピングが大となるものである。今、砥石
の切込み深さをt、連続切刃間隔をa1砥石の周速度を
V、砥石の送シ速度τ、砥石の直径をDとすると、g=
2aev/V・(t/D)で表され連続切刃間隔a(砥
粒の間隔)を極カ密にすることがチッピングを少くする
ために必要である。又砥石の加工抵抗が大きくなると回
転工具のふれを引き起こし、チッピングの原因となる。
Assuming that the actual cutting amount per abrasive grain is g, the larger the value, the greater the machining resistance of the abrasive grains to the workpiece, and the greater the chipping caused by heavy cutting. Now, if the depth of cut of the grindstone is t, the interval between continuous cutting edges is a1, the circumferential speed of the grindstone is V, the feed speed of the grindstone is τ, and the diameter of the grindstone is D, then g=
In order to reduce chipping, it is necessary to make the continuous cutting edge interval a (interval between abrasive grains) extremely dense, which is expressed as 2aev/V·(t/D). Also, when the grinding wheel's processing resistance increases, it causes the rotating tool to run out, causing chipping.

この抵抗は、工具の厚さに比例するので工具を極力薄く
する必要がある。更に工具のふれは、剛性とも関係があ
り剛性の高い事が必要である。以上のことから本発明に
関する砥粒密度が高く、且つ剛性が高い厚さの薄い工具
としては理想的なものである。
This resistance is proportional to the thickness of the tool, so it is necessary to make the tool as thin as possible. Furthermore, tool runout is also related to rigidity, so it is necessary to have high rigidity. From the above, the present invention is ideal as a thin tool with high abrasive grain density and high rigidity.

(実施例) 以下本発明の実施例を図面を参照して該実施例中の工具
の構成、切れ刃の配置及加工結果を説明する。
(Example) Examples of the present invention will be described below with reference to the drawings, including the structure of a tool, the arrangement of cutting edges, and the machining results.

1)工具の構造 第1図は薄−板回転工具の外観図であ右。第2図は薄板
材料を全面をダイヤモンドで被覆した工具の断面図であ
り1は薄板材料であり極薄いもので、材質として剛性が
高いものが有利であって、St。
1) Tool structure Figure 1 is an external view of a thin plate rotary tool. FIG. 2 is a cross-sectional view of a tool made of a thin plate material whose entire surface is coated with diamond, and 1 is a thin plate material that is extremely thin and advantageously has high rigidity.

WCT SiC* 5tsN<あるいは、At203等
が考えられる。
WCT SiC* 5tsN<or At203 etc. can be considered.

2は気相合成により被覆したダイヤモンド膜である。2 is a diamond film coated by vapor phase synthesis.

第3図(a)は薄板材料の外周部にダイヤモンドを堆積
させた工具の断面図である。剛性は少し小さくなるがダ
イヤモンドの堆積による基板のそシを容易に回避するこ
とができ工具固定部の平滑性、加工抵抗の低減、切屑の
排出等の点で有利である。
FIG. 3(a) is a cross-sectional view of a tool in which diamond is deposited on the outer periphery of a thin plate material. Although the rigidity is slightly lower, warping of the substrate due to diamond deposition can be easily avoided, and it is advantageous in terms of smoothness of the tool fixing part, reduction of machining resistance, and discharge of chips.

この様に部分的にダイヤモンド膜を形成することは堆積
において基板にマスク処理を施すことにより可能となシ
、同様に薄板材料に対して内周部のみに膜形成をするこ
とによって内周刃砥石を形成することもできる。第3図
(b)は剛性の高い薄板材料1の外縁部にダイヤモンド
膜を外径方向に成長させた砥石例で、パイプ状の基板材
の外周にダイヤモンド層を成長させた後、輪切りにして
両面を研磨して薄片工具としたものである。同様に・ぐ
イブ状の基板材の内面にダイヤモンドAを成長させるこ
とにより内周刃砥石を形成することができる。
It is possible to form a diamond film partially in this way by masking the substrate during deposition. Similarly, by forming a film only on the inner periphery of a thin plate material, it is possible to form a diamond film only on the inner periphery. can also be formed. Fig. 3(b) is an example of a grinding wheel in which a diamond film is grown in the outer radial direction on the outer edge of a highly rigid thin plate material 1. After growing a diamond layer on the outer periphery of a pipe-shaped substrate material, it is sliced Both sides are polished to create a thin piece tool. Similarly, an inner peripheral grindstone can be formed by growing diamond A on the inner surface of a rib-shaped substrate material.

第4図は5iJ4とダイヤモンドA3を交互に積層する
ことによりダイヤモンド層を刃とする多刃工具の工具先
端断面(第1図の薄板回転工具の外周部断面)を示した
ものである。この図のように積層した後にセラミックス
材料等に切り込むことによってダイヤモンド層よシ軟ら
かいSi層を優先的に摩耗させたり、先端部を化学的に
僅かにエツチングしてダイヤモンド層を突出させること
が可能で、こうすることにより極めて薄い多刃工具を剛
性高く構成することができる。
FIG. 4 shows a cross-section of the tool tip of a multi-blade tool (a cross-section of the outer periphery of the thin-plate rotary tool of FIG. 1) having a diamond layer as a blade formed by alternately laminating 5iJ4 and diamond A3. As shown in this figure, by cutting into the ceramic material after lamination, it is possible to wear out the Si layer, which is softer than the diamond layer, preferentially, or to make the diamond layer protrude by slightly chemically etching the tip. By doing so, an extremely thin multi-edged tool can be constructed with high rigidity.

2)切れ刃の形成 第5図は薄板に極薄い複合膜を形成した断面図であって
気相合成によってまづ島状の結晶ダイヤモンドを形成し
、さらにその間をアモルファス(非晶質)ダイヤモンド
で埋めることによシ極薄い複合膜を形成することが出来
、工具自体の剛性を高めることが出来る。
2) Formation of cutting edge Figure 5 is a cross-sectional view of an ultra-thin composite film formed on a thin plate. First, island-shaped crystalline diamonds are formed by vapor phase synthesis, and then amorphous diamond is added between them. By filling it, an extremely thin composite film can be formed and the rigidity of the tool itself can be increased.

第6図(、)は気相合成により形成した結晶ダイヤモン
ド工具の切れ方正面図で図に示すように切れ刃が連続分
布して居シ、表面を平滑にすることにより第6図(b)
のように連続面状にすることも出来る。又結晶は成長条
件によシ様々な大きさに出来て且つ結晶の配向性も制御
する事が可能である。
Figure 6(a) is a front view of the cutting method of a crystalline diamond tool formed by vapor phase synthesis.
It can also be made into a continuous surface like this. Furthermore, crystals can be formed into various sizes depending on the growth conditions, and the orientation of the crystals can also be controlled.

第7図は非晶質(アモルファス)のダイヤモンドを結合
剤として用いた工具である。これにより剛性を高くする
ことが出来るのである。
FIG. 7 shows a tool using amorphous diamond as a bonding agent. This makes it possible to increase the rigidity.

第8図(a) 、 (b)は複合膜形成方法を示す説明
図であって ■ 結晶ダイヤモンドを形成する ■ アモルファスダイヤモンドを結晶ダイヤモンド上に
形成する ■ 上面をドレッシング加工することにより結晶より軟
いアモルファスが優先的に削除され所望の形状に複合膜
が形成される。この場合結晶ダイヤモンドの切れ刃をわ
づかに突出させることが出来、平滑ではあるがチップポ
ケットが形成され、加工時に出る切削ぐずが離脱しやす
くなり加工物との衝撃を少くすることが出来る。
FIGS. 8(a) and (b) are explanatory diagrams showing the method for forming a composite film, in which: ■ Forming crystalline diamond ■ Forming amorphous diamond on crystalline diamond ■ Dressing the upper surface to make it softer than crystal The amorphous layer is preferentially removed to form a composite film in the desired shape. In this case, the cutting edge of the crystalline diamond can be made to protrude slightly, and a smooth chip pocket is formed, making it easier for cutting waste generated during machining to be removed and reducing impact with the workpiece.

3)加工特性、硬度及び剛性の高いセラミックス材料A
t203. TtCに幅4ottm深さ0.5鶴の狭い
溝を製作するために幅35mmの従来から用いられてい
たSiC工具を使用して加工を行った結果、工具の加工
能力、剛性ともに上記のセラミック材料に対して不十分
であって加工途中に工具が破壊してしまった。之に対し
本発明によるダイヤモンド工具を使用して加工を行った
所、完全に加工を完成することが出来た。
3) Ceramic material A with high processing characteristics, hardness and rigidity
t203. As a result of machining using a conventionally used SiC tool with a width of 35 mm to produce a narrow groove with a width of 4 ottm and a depth of 0.5 ott on TtC, both the machining ability and rigidity of the tool were superior to the above ceramic material. The tool was broken during machining because it was insufficient. When this was processed using a diamond tool according to the present invention, the processing was completed completely.

又S%Oガラスに対しても同様な加工を行った結果は、
SiC工具を使用した場合に比べ、条痕、かけの少い平
滑な加工面がより高能率な作業によって得られた。
Furthermore, the results of similar processing on S%O glass were as follows.
Compared to the case of using a SiC tool, a smooth machined surface with fewer scratches and chips was obtained through more efficient work.

第9図は回転工具に砥粒を混入させた加工液を供給しな
がら、加工を行う非接触加工の斜視図を示したものであ
るが、従来から使用しているSiC回転工具では砥粒と
してAt203ダイヤモンドを使用した場合、回転工具
自体の摩耗が早く、高い加工精度を得られなかったが、
ダイヤモンド工具を用いることによりこれらの材料も砥
粒として用いて高精度、高能率に加工が出来るのである
。これらの硬い砥粒を使用することにより、ニオブ酸リ
チウムなどの難加工材、或いは、PLZT等の焼結体等
にも、この非接触加工法を適用することが容易になった
Figure 9 shows a perspective view of non-contact machining in which machining is performed while supplying machining fluid mixed with abrasive grains to a rotary tool. When using At203 diamond, the rotating tool itself wore out quickly and high machining accuracy could not be obtained.
By using diamond tools, these materials can be used as abrasive grains and processed with high precision and efficiency. By using these hard abrasive grains, it has become easy to apply this non-contact processing method to difficult-to-process materials such as lithium niobate or sintered bodies such as PLZT.

(発明の効果) 本発明は以上説明した様に構成されているので以下に記
載されるような効果を奏する。
(Effects of the Invention) Since the present invention is configured as described above, it produces the effects described below.

砥粒の径を1μm、その配列間隔を1μm程度に、又工
具の厚みを10μm〜20μm程度に製作することが可
能であるので、切れ刃間隔が小さく、工具の厚みも薄く
且剛性のある工具を提供することが可能となり、又本工
具は硬脆な材料の加工に対して、最適の条件を有してい
る。
It is possible to manufacture abrasive grains with a diameter of 1 μm, an arrangement interval of about 1 μm, and a tool thickness of about 10 μm to 20 μm, so the cutting edge spacing is small, the tool thickness is thin, and the tool is rigid. Moreover, this tool has optimal conditions for machining hard and brittle materials.

又、切れ刃の間隔、切れ刃の形状、切れ刃の硬度に対し
ては、制御性を有するので結晶やセラミックス材料を欠
けを作ることなく高能率に、切断、溝入れ加工が出来る
という効果がある。
In addition, the spacing between the cutting edges, the shape of the cutting edges, and the hardness of the cutting edges can be controlled, making it possible to cut and groove crystals and ceramic materials with high efficiency without creating chips. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄板回転工具の外観斜視図、第2図は薄板材料
を全部ダイヤモンドで被覆した工具の断面図、第3図(
、)は薄板材料の外周部にダイヤモンドを被覆した工具
断面図、第3図(b)は外縁部にダイヤモンド膜を形成
した工具の断面図、第4図は複合多刃工具先端部の断面
図、第5図は極薄板に形成した複合膜の断面図、第6図
(、)は工具表面の切れ刃の説明図、第6図(b)は加
工して表面を平滑にした切れ刃の説明図、第7図は非晶
質(アモルファス)のものを結合材として用いた切れ刃
の説明図、第8図(、)及(b)は、結晶質のものと非
晶質のものとの複合膜の形成方法を示す説明図、第9図
は回転工具によって非接触加工を行う工具の斜視図であ
る。 l・・・薄板材料、2・・・ダイヤモンド、3・・・ダ
イヤモンド層、4・・・Si 層、5・・・結晶ダイヤ
モンド、6・・・非晶質(アモルファス)ダイヤモンド
、7・・・加工液供給ノズル、8・・・砥粒を混入した
加工液、9・・・被加工物、lO・・・工具。 第4図 第5図 第6 rl!J(0) 嬉6 図(b) wE7図 第3 図(G) 第 3 図(b)
Figure 1 is an external perspective view of a thin plate rotary tool, Figure 2 is a sectional view of a tool in which the thin plate material is entirely coated with diamond, and Figure 3 (
,) is a cross-sectional view of a tool in which the outer periphery of a thin plate material is coated with diamond, Figure 3 (b) is a cross-sectional view of a tool in which a diamond film is formed on the outer edge, and Figure 4 is a cross-sectional view of the tip of a composite multi-blade tool. , Figure 5 is a cross-sectional view of the composite film formed on an ultra-thin plate, Figure 6 (,) is an explanatory diagram of the cutting edge on the tool surface, and Figure 6 (b) is a diagram of the cutting edge with a smoothed surface. An explanatory diagram, Fig. 7 is an explanatory diagram of a cutting edge using an amorphous material as a binding material, and Fig. 8 (,) and (b) show a cutting edge using a crystalline material and an amorphous material. FIG. 9 is a perspective view of a tool that performs non-contact processing using a rotary tool. l...Thin plate material, 2...Diamond, 3...Diamond layer, 4...Si layer, 5...Crystalline diamond, 6...Amorphous diamond, 7... Machining fluid supply nozzle, 8... Machining fluid mixed with abrasive grains, 9... Workpiece, lO... Tool. Figure 4 Figure 5 Figure 6 rl! J(0) Happy 6 Figure (b) wE7 Figure 3 (G) Figure 3 (b)

Claims (1)

【特許請求の範囲】 1、薄板材料に気相合成法によるダイヤモンド膜を被覆
形成したことを特徴としたダイヤモンド膜付き薄板回転
工具。 2、薄板材料と気相合成ダイヤモンド膜を交互に多層積
層し、薄板材料に対し、ダイヤモンド層を微少量突出し
多刃化したことを特徴とする請求項第1項記載の工具。 3、ダイヤモンド膜が、多結晶及び多結晶と非晶質との
複合となっていることを特徴とする請求項第1項記載の
工具。
[Scope of Claims] 1. A thin plate rotary tool with a diamond film, characterized in that a diamond film is coated on a thin plate material using a vapor phase synthesis method. 2. The tool according to claim 1, characterized in that a thin plate material and a vapor phase synthesized diamond film are alternately laminated in multiple layers, and a minute amount of the diamond layer protrudes from the thin plate material to provide multiple blades. 3. The tool according to claim 1, wherein the diamond film is polycrystalline or a composite of polycrystalline and amorphous.
JP16267588A 1988-07-01 1988-07-01 Thin plate rotary tool with diamond film Pending JPH0215976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16267588A JPH0215976A (en) 1988-07-01 1988-07-01 Thin plate rotary tool with diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16267588A JPH0215976A (en) 1988-07-01 1988-07-01 Thin plate rotary tool with diamond film

Publications (1)

Publication Number Publication Date
JPH0215976A true JPH0215976A (en) 1990-01-19

Family

ID=15759156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16267588A Pending JPH0215976A (en) 1988-07-01 1988-07-01 Thin plate rotary tool with diamond film

Country Status (1)

Country Link
JP (1) JPH0215976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123137A (en) * 1997-08-28 2000-09-26 Hunter Douglas International N.V. Combined multiple-glazed window and light-control assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294263A (en) * 1985-10-17 1987-04-30 Showa Denko Kk Cutter blade and manufacture thereof
JPH01177973A (en) * 1987-12-28 1989-07-14 Idemitsu Petrochem Co Ltd Grinding tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294263A (en) * 1985-10-17 1987-04-30 Showa Denko Kk Cutter blade and manufacture thereof
JPH01177973A (en) * 1987-12-28 1989-07-14 Idemitsu Petrochem Co Ltd Grinding tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123137A (en) * 1997-08-28 2000-09-26 Hunter Douglas International N.V. Combined multiple-glazed window and light-control assembly
US6397917B1 (en) 1997-08-28 2002-06-04 Hunter Douglas Industries B.V. Combined multiple-glazed window and light-control assembly

Similar Documents

Publication Publication Date Title
KR102022753B1 (en) Dicing blade
JP3406774B2 (en) Diamond-coated insert tool and method of manufacturing the same
US6161990A (en) Cutting insert with improved flank surface roughness and method of making the same
JPH11267902A (en) Tool having ultra-fine cutting blade and processing tool having ultra-fine cutting blade
GB2078145A (en) Trueing tool
JP2533049B2 (en) Diamond tools
US5008513A (en) Shaping of bonded abrasive products
CN103367242A (en) Combined trimmer and manufacturing method thereof and chemical mechanical polishing method
JP3050379B2 (en) Diamond wrap surface plate
JPH0215976A (en) Thin plate rotary tool with diamond film
JPH0629401B2 (en) Abrasive grain coated with super hard material
US4286568A (en) Tool for trueing and dressing a grinding wheel
JPH04135176A (en) Dressing method for poreless type grinding wheel
EP2790877B1 (en) Method of dressing an abrasive wheel using a polycrystalline cvd synthetic diamond dresser and method of fabricating the same
US4285324A (en) Tool for trueing and dressing a grinding wheel
JP2006088243A (en) Abrasive grain and grindstone
JPH11207731A (en) Narrow width cutting and narrow groove working method
JPH04201102A (en) Diamond-covered throw away tip
JP6578985B2 (en) Substrate, substrate cutting method
JPH01208397A (en) Diamond coated product and cutting tool using said product
JPS61265207A (en) Electrodeposited milling tool
JPH11165262A (en) Cup shaped grinding wheel
JP2002127102A (en) Cutter
JP2001334469A (en) Diamond wheel for glass substrate work and working method of glass substrate
JPH0639716A (en) Grinding wheel dresser