JPH01177973A - Grinding tool - Google Patents

Grinding tool

Info

Publication number
JPH01177973A
JPH01177973A JP33278587A JP33278587A JPH01177973A JP H01177973 A JPH01177973 A JP H01177973A JP 33278587 A JP33278587 A JP 33278587A JP 33278587 A JP33278587 A JP 33278587A JP H01177973 A JPH01177973 A JP H01177973A
Authority
JP
Japan
Prior art keywords
polishing
diamond
diamond film
gas
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33278587A
Other languages
Japanese (ja)
Inventor
Satoshi Katsumata
聡 勝又
Osamu Nakamura
中村 収
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP33278587A priority Critical patent/JPH01177973A/en
Publication of JPH01177973A publication Critical patent/JPH01177973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To keep excellent grinding possible for long time by forming a diamond film on a backing, and thereby preventing the falling off of a diamond grain during the grinding to widen an effective grinding area. CONSTITUTION:Fine diamond crystals are firmly stuck onto a backing 2 by plasma CVD method to form a fine crystal diamond film 3 and thereby to produce a desired grinding tool. Thus the diamond film 1 can be distributedly formed in a fine structural state to widen an effective grinding area, and excellent grinding can be kept for long time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は研磨工具に関し、さらに詳しくはダイヤモンド
膜を基板上に形成してなる研磨工具に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polishing tool, and more particularly to a polishing tool formed by forming a diamond film on a substrate.

[従来の技術およびその問題点] 従来より、ダイヤモンド粒子を金属メツキ層などを介し
て基板上に付着してなる研磨工具が、知られている(実
開昭第56−28856号)。
[Prior Art and its Problems] Conventionally, a polishing tool in which diamond particles are attached to a substrate via a metal plating layer or the like has been known (Utility Model Application No. 56-28856).

この種研磨工具においては、ミクロに見ると、ダイヤモ
ンド粒子か金属メツキ層からその一部が埋め込まれ、か
つその一部が金属メツキ層から突出した状態で付着して
いる。しかも、金属メツキ層から突出したダイヤモンド
粒子の分布かその状態となっている。
In this type of polishing tool, when viewed microscopically, some of the diamond particles are embedded in the metal plating layer, and some of them are attached to the metal plating layer in a protruding state. Moreover, the distribution of diamond particles protruding from the metal plating layer is in that state.

そこで、前記研磨工具で非研磨具を研磨すると、被研府
具の表面とダイヤモンド粒子の存在する研磨工具面とが
非常に大きな摩擦力でもって摺接するので、これをミク
ロの状態について考察すると、ダイヤモンドの凹凸面に
巨大な応力が掛かるのに対してニッケルメッキ層のダイ
ヤモンド保持力が余りに弱いことによって、研磨中に容
易にダイヤモンド粒子かニッケルメッキ層から脱落し、
研磨能力が急速に低下するとの問題点か有る。
Therefore, when a non-abrasive tool is polished with the above-mentioned polishing tool, the surface of the tool to be polished and the surface of the polishing tool where diamond particles are present come into sliding contact with a very large frictional force. Considering this in terms of the microscopic state, While a huge stress is applied to the uneven surface of the diamond, the diamond retention force of the nickel plating layer is too weak, so diamond particles easily fall off from the nickel plating layer during polishing.
There is a problem that the polishing ability rapidly decreases.

しかも前述のように、ダイヤモンド粒子の金属メウキ層
からの突出部分が金属メツキ層表面において粗に分布し
ているにで、研磨能力か十分でないと言う問題点もある
Moreover, as mentioned above, the protruding portions of the diamond particles from the metal plating layer are coarsely distributed on the surface of the metal plating layer, so there is a problem that the polishing ability is not sufficient.

本発明は前記従来技術の不都合を解消したところの、ダ
イヤモンド砥粒が全面にわたって密に分布し、しかも基
材に強固に付若していることにより、研PI 1F、力
の急激な低下のない研磨工具を提供することを目的とす
る。
The present invention solves the disadvantages of the prior art as described above.Diamond abrasive grains are densely distributed over the entire surface and are firmly attached to the base material. The purpose is to provide polishing tools.

[問題点を解決するための手段] 本発明者らは、前記目的を達成するべく鋭意研究した結
果、基材表面に直接に形成してなるダイヤモンド膜は研
磨有効面積が大きくて研磨面として最適であり、しかも
研磨中に容易にダイヤモンド粒子が剥離しないことを見
出して本発明に到達した。
[Means for Solving the Problems] As a result of intensive research to achieve the above object, the present inventors found that a diamond film formed directly on the surface of a base material has a large effective polishing area and is ideal as a polishing surface. The present invention was achieved by discovering that the diamond particles do not easily peel off during polishing.

すなわち、本発明の構成は、基材上にダイヤモンド膜を
形成してなることを特徴とする研磨工具である。
That is, the structure of the present invention is a polishing tool characterized by forming a diamond film on a base material.

本発明の研磨工具において、基材の材質としては、特に
制限はなく、たとえば、鉄、銅、コバルト、クロム、マ
ンガン、モリブデン、ニオブ、ニッケル、パラジウム、
白金、レニウム、ロジウム、ルテニウム、タンタル、ト
リウム、チタン。
In the polishing tool of the present invention, the material of the base material is not particularly limited, and examples thereof include iron, copper, cobalt, chromium, manganese, molybdenum, niobium, nickel, palladium,
Platinum, rhenium, rhodium, ruthenium, tantalum, thorium, titanium.

ウラン、バナジウム、タングステン、イツトリウム、ジ
ルコニウムなどの金属、これらの酸化物、窒化物および
炭化物、これらの合金、W−C系およびTi−C系など
の超硬合金、Ai、O,−Fe系、TiC−Ni系、T
iC−Go系およびB、C−Fe系などのサーメットな
らびに各種セラミックスからなるもののいずれをも使用
することができる。前記のものの中でもステンレス鋼、
W−C系およびTi−C系の超硬合金、セラミックスが
通常用いられる。
Metals such as uranium, vanadium, tungsten, yttrium, and zirconium, their oxides, nitrides, and carbides, their alloys, cemented carbide such as W-C type and Ti-C type, Ai, O, -Fe type, TiC-Ni system, T
Any of cermets such as iC-Go type and B, C-Fe type and various ceramics can be used. Among the above, stainless steel,
W-C type and Ti-C type cemented carbide and ceramics are usually used.

前記基材の形状には、特に制限がなく、たとえば円板状
、方形板状、長方形板状、丸棒状、角棒状、シート状な
ど種々の形状を採ることができる。
The shape of the base material is not particularly limited, and can take various shapes such as a disk shape, a square plate shape, a rectangular plate shape, a round bar shape, a square bar shape, and a sheet shape.

本発明の研磨工具において、ダイヤモンド膜の性状につ
いて一概に規定することができないが、ダイヤモンド膜
の性状の一例を挙げるとすれば、 。
Although the properties of the diamond film in the polishing tool of the present invention cannot be unconditionally defined, an example of the properties of the diamond film is as follows.

それはダイヤモンド微結晶の緻密な集合体であると形容
することができる。
It can be described as a dense aggregate of diamond microcrystals.

前記ダイヤモンド粒子の平均粒径は、通常、0.1〜コ
OILm程度、好ましくは0.3〜ルmである。このよ
うな極微細なダイヤモンド粒子の緻密な集合体であるこ
とによってダイヤモンド膜を得ることができる。
The average particle diameter of the diamond particles is usually about 0.1 to about 0.0 m, preferably about 0.3 to about 0.0 m. A diamond film can be obtained by being a dense aggregate of such ultrafine diamond particles.

前記ダイヤモンド膜の厚さは1通常、0.1〜50uL
m 、好ましくは0.5〜lOILmである。
The thickness of the diamond film is usually 0.1 to 50 μL.
m, preferably 0.5 to lOILm.

前記ダイヤモンド膜を得る方法としては、たとえば、炭
素源ガスを含有するガスを励起して得られた励起ガスを
、前記基材と接触させる方法などがある。
As a method for obtaining the diamond film, for example, there is a method in which an excited gas obtained by exciting a gas containing a carbon source gas is brought into contact with the base material.

前記方法において、炭素源ガスとしては、たとえば、メ
タン、エタン、プロパン、ブタン、ペンタン、ヘキサン
などのアルカン類、エチレン、プロピレン、ブテン、ペ
ンテン、ブタジェンなどのアルケン類、アセチレンなど
のアルキン類、ベンゼン、トルエン、キシレン、インデ
ン、ナフタリン、フェナントレンなとの芳香族炭化水素
類、シクロプロパン、シクロヘキサンなどのシクロパラ
フィン類、シクロペンテン、シクロヘキセンなどのシク
ロオレフィン類あるいは前記種々の化合物のハロゲン化
物などを挙げることができる。
In the method, the carbon source gas includes, for example, alkanes such as methane, ethane, propane, butane, pentane, and hexane, alkenes such as ethylene, propylene, butene, pentene, and butadiene, alkynes such as acetylene, benzene, Examples include aromatic hydrocarbons such as toluene, xylene, indene, naphthalene, and phenanthrene; cycloparaffins such as cyclopropane and cyclohexane; cycloolefins such as cyclopentene and cyclohexene; and halides of the various compounds mentioned above. .

また、炭素源ガスとして、−酸化炭素、二酸化炭素、メ
チルアルコール、エチルアルコールなどの含酸素炭素化
合物、メチルアミン、エチルアミン、アニリンなどの含
窒素炭素化合物なども使用することかてきる。さらに、
単体ではないが、ガソリンなどの消防法危険物第4類、
第1類、ケロシン、テレピン油、樟脳油、松根油などの
第2石油類、重油などの第3石油類、ギヤー油、シリン
ダー油などの第4石油類も有効に使用することかできる
。また前記各種の炭素化合物を混合して使用することも
できる 前記の炭素源ガスの中でもメタン、−酸化炭素、二酸化
炭素などが好ましい。
Further, as the carbon source gas, carbon oxide, carbon dioxide, oxygen-containing carbon compounds such as methyl alcohol and ethyl alcohol, and nitrogen-containing carbon compounds such as methylamine, ethylamine and aniline can also be used. moreover,
Although it is not a single item, it is classified as Class 4 hazardous materials under the Fire Service Act, such as gasoline.
Class 1 petroleum, class 2 petroleum such as kerosene, turpentine oil, camphor oil, pine oil, etc., class 3 petroleum such as heavy oil, and class 4 petroleum such as gear oil and cylinder oil can also be effectively used. Also, among the carbon source gases that can be used in combination with the various carbon compounds described above, methane, carbon oxide, carbon dioxide, and the like are preferred.

前記−酸化炭素および二酸化炭素として、たとえば石炭
、コークスなどと空気とを熱時反応させて(すられる発
生炉ガスや水性ガスを十分に精製したもの、通常に市販
されているボンベ入り一酸化炭素ガスや二酸化炭素ガス
、あるいはメタノールを分解して得られる分解ガスを使
用することかてきる。
The above carbon oxide and carbon dioxide can be obtained by, for example, reacting coal, coke, etc. with air at a hot time (sufficiently purified generating furnace gas or water gas, or commercially available carbon monoxide in cylinders). Gas, carbon dioxide gas, or cracked gas obtained by decomposing methanol can be used.

前記炭素源ガスを使用する際に、水素ガスを併用すると
好ましい結果がもたらされることがある。
When using the carbon source gas, preferable results may be obtained if hydrogen gas is used in combination.

水素ガスは、これを励起すると、前記炭素源ガスを励起
して得られる励起ガス中の励起炭素が黒鉛構造の炭素を
除去する作用、および析出したダイヤモンド結晶中の炭
素原子のs’ p 3構造を高温においても維持する作
用とを有する。
When hydrogen gas is excited, the excited carbon in the excited gas obtained by exciting the carbon source gas removes graphite-structured carbon, and the s' p 3 structure of carbon atoms in the precipitated diamond crystal. It has the effect of maintaining the temperature even at high temperatures.

それ故、水素ガスの使用量には注意することが必要であ
るが、炭素源ガスが一酸化炭素ガスである場合、通常、
水素ガスの使用量は、−酸化炭素ガスに対して20〜9
9.9モル%、好ましくは50〜99.9モル%である
Therefore, it is necessary to be careful about the amount of hydrogen gas used, but if the carbon source gas is carbon monoxide gas, usually
The amount of hydrogen gas used is -20 to 9 for carbon oxide gas.
It is 9.9 mol%, preferably 50 to 99.9 mol%.

前記の方法において、炭素源ガスを励起して得られる励
起状態の炭素を含有する混合ガスを得る手段としては、
たとえば、プラズマCVD法、スパッタ法、イオン化蒸
着法、イオンビーム蒸着法、熱フイラメント法、化学輸
送法などの方法を用いることができる。好ましいのは、
プラズマCVD法である。
In the above method, the means for obtaining a mixed gas containing carbon in an excited state obtained by exciting the carbon source gas includes:
For example, methods such as a plasma CVD method, a sputtering method, an ionization vapor deposition method, an ion beam vapor deposition method, a thermal filament method, and a chemical transport method can be used. Preferably,
This is a plasma CVD method.

前記の方法においては、前記炭素源ガスのキャリヤーと
して、不活性ガスを用いることもてきる。
In the above method, an inert gas may be used as a carrier for the carbon source gas.

前記不活性ガスの具体例としては、アルゴンガス、ネオ
ンガス、ヘリウムガス、キセノンガス、窒素ガスなどが
挙げられる。
Specific examples of the inert gas include argon gas, neon gas, helium gas, xenon gas, and nitrogen gas.

これらは、1種単独で用いてもよいし、2種以上を組合
わせて用いてもよい、前記キャリヤーガスの中でも窒素
ガス、アルゴンガスなどが好ましい。
These carrier gases may be used alone or in combination of two or more. Among the carrier gases, nitrogen gas, argon gas, etc. are preferable.

前記の方法においては、以下の条件下に反応が進行して
、基材上にダイヤモンド膜が形成される。
In the above method, the reaction proceeds under the following conditions to form a diamond film on the substrate.

すなわち、前記基材の表面の温度は、前記炭素源ガスの
励起手段によって異なるので、−概に決定することはで
きないが、たとえば、プラズマCVD法を用いる場合に
は、通常、400〜1,400℃、好ましくは450℃
〜1,200℃である。
That is, since the temperature of the surface of the base material differs depending on the excitation means of the carbon source gas, it cannot be determined generally, but for example, when using the plasma CVD method, it is usually 400 to 1,400 ℃. °C, preferably 450 °C
~1,200°C.

前記温度が、400℃より低い場合には、ダイヤモンド
膜の堆積速度が遅くなったり、励起状態の炭素が生成し
ないことがある。一方、1,400℃より高い場合には
、ダイヤモンドが生成しにくかったり、基材上に堆積し
たダイヤモンド膜がエツチングにより削られたりして、
堆積速度の向上が見られないことかある。
If the temperature is lower than 400° C., the deposition rate of the diamond film may be slow or excited carbon may not be produced. On the other hand, if the temperature is higher than 1,400°C, it may be difficult to form diamonds, or the diamond film deposited on the base material may be etched away.
There may be no improvement in the deposition rate.

反応圧力は、通常、 10−3〜10コtorr 、好
ましくは1〜800Lorrである0反応圧力が10−
”torrよりも低い場合には、ダイヤモンド膜の堆積
速度が遅くなったり、ダイヤモンド膜が析出しなくなっ
たりする。一方、 103torrより高くしてもそれ
に相当する効果は得られない。
The reaction pressure is usually 10 to 10 torr, preferably 1 to 800 Lorr.
If it is lower than 103 torr, the deposition rate of the diamond film will be slow or the diamond film will not precipitate.On the other hand, if it is higher than 103 torr, no corresponding effect will be obtained.

なお1本発明の一実施例を図面を用いて説明する。An embodiment of the present invention will be described with reference to the drawings.

第1図に示されている研磨工具lにおいては、適宜の基
材2上に、ダイヤモンド膜3が形成されている。
In the polishing tool 1 shown in FIG. 1, a diamond film 3 is formed on a suitable base material 2.

このダイヤモンドW23は、プラズマCVD法によって
形成されたものであり、ダイヤモンド砥粒が緻密な状態
で分布してなる集合体であり、大きな研磨有効面積を有
する。
This diamond W23 is formed by a plasma CVD method, is an aggregate of diamond abrasive grains distributed in a dense state, and has a large polishing effective area.

本発明の研磨工具を実際に使用するに当っては、ダイヤ
モンド膜面によって研磨な行ない、前記ダイヤモンド膜
は生成する粒子径を制御することによりその粒径に見合
った研磨精度を有するのて、高精度の研磨を行なうこと
ができる。
When the polishing tool of the present invention is actually used, polishing is performed using the diamond film surface, and the diamond film has a high polishing accuracy commensurate with the grain size by controlling the particle size produced. Precision polishing can be performed.

[実施例] 以下、実施例を示して本発明をさらに詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail by showing examples.

(実施例1) マイクロ波プラズマCVD装置において、周波数2.4
5GIIzのマイクロ波電源を使用し、基材温度900
℃、圧力50torrの条件下に出力を600wに設定
した。
(Example 1) In a microwave plasma CVD apparatus, a frequency of 2.4
Using a 5GIIz microwave power source, the substrate temperature was 900℃.
The output was set at 600 W under the conditions of temperature and pressure of 50 torr.

次に、この反応室内に一酸化炭素を流量3Scc■、水
素を流量100sec−て導入して、マイクロ波プラズ
マCVD法によりダイヤモンドの合成を1時間行なって
、前記温度に制御した基材上に厚み6ILmの表面平滑
なダイヤモンド膜を形成した。なお、基材として円板状
のタングステンカーバイド(WC)(Go含有量=12
%)を用いた。
Next, carbon monoxide was introduced into the reaction chamber at a flow rate of 3 Scc and hydrogen at a flow rate of 100 sec, and diamond was synthesized for 1 hour by the microwave plasma CVD method. A diamond film with a smooth surface of 6ILm was formed. Note that the base material is disc-shaped tungsten carbide (WC) (Go content = 12
%) was used.

このダイヤモンド膜付き超硬合金を研磨工具とし、硬度
か)IRC70以上である被研磨物に、直圧力12.7
7 kg/cs2にてこの研磨工具を押し付け1回転さ
せて前記被研磨物の表面を研磨した。
Using this diamond-coated cemented carbide as a polishing tool, a direct pressure of 12.7
This polishing tool was pressed at 7 kg/cs2 and rotated once to polish the surface of the object to be polished.

その結果、2,000回転のときの研磨くずの量は0.
11gであり、8,000回転目から10,000回転
目までの回転における研磨ぐずの量は、 0.10gて
あった。
As a result, the amount of polishing debris at 2,000 rotations was 0.
11 g, and the amount of polishing waste during rotations from 8,000th rotation to 10,000th rotation was 0.10g.

一方、比較のために、実開昭56−28856号公報を
参照すると、2,000回の研磨では研磨〈ずが0.1
25gであったが、a、ooo回転から10,000回
転目までの研磨では研磨くずが0.07gであった。す
なわち、前記実開昭56−28856号公報に記載され
た研磨工具ではa、ooo回転以後は初期2,000回
転迄の研磨fi力が半減しているのに対して1本発明の
研磨工具ではわずか10%の程度にしか研磨tF力が低
下していない。
On the other hand, for comparison, referring to Japanese Utility Model Application Publication No. 56-28856, it is found that after 2,000 times of polishing, the polishing ratio is 0.1.
However, during polishing from rotations a and ooo to the 10,000th rotation, the amount of polishing debris was 0.07g. That is, in the polishing tool described in the above-mentioned Japanese Utility Model Publication No. 56-28856, the polishing force after the a, ooo rotation is halved up to the initial 2,000 rotations, whereas in the polishing tool of the present invention, the polishing force is halved. The polishing tF force decreased by only about 10%.

(実施例2) 前記実施例1において、基材としてアルミナを用いると
ともに、基材温度930℃、圧力50torr、−酸化
炭素の流量5.0secm 、水素の流量95sec朧
の条件下に30分間反応を行なったところ、基材上に厚
み4IL園のダイヤモンド膜が形成された。
(Example 2) In Example 1, alumina was used as the base material, and the reaction was carried out for 30 minutes under conditions of a base material temperature of 930° C., a pressure of 50 torr, a carbon oxide flow rate of 5.0 sec, and a hydrogen flow rate of 95 sec. As a result, a diamond film with a thickness of 4 IL was formed on the substrate.

こ・のダイヤモンド膜付きアルミナを研磨工具とし、硬
度が前記実施例1におけるものよりも大きな被研磨物に
、直圧力12.77 kg/cm2にてこの研磨工具を
押し付け、回転させて前記被研磨物の表面を研磨した。
This alumina coated with a diamond film was used as a polishing tool, and this polishing tool was pressed against the object to be polished with a direct pressure of 12.77 kg/cm2 whose hardness was larger than that in Example 1, and the tool was rotated to remove the object to be polished. Polished the surface of the object.

その結果、 2,000回転のときの研磨くずの量はo
、togであり、8,000回転目から10,000回
転目まての回転における研磨くずの量は、0.08gで
あった。
As a result, the amount of polishing debris at 2,000 rotations is o
, tog, and the amount of polishing debris from the 8,000th rotation to the 10,000th rotation was 0.08 g.

[発明の効果] 前記のように1本発明の研磨工具は、基材上に強固に付
着した微結晶ダイヤモンド膜を形成しているので、被研
磨物を研磨するに当って、従来のようにダイヤモンド粒
子が脱落することはなく。
[Effects of the Invention] As mentioned above, the polishing tool of the present invention forms a microcrystalline diamond film firmly adhered to the base material, so when polishing the object to be polished, it is possible to polish the workpiece without using the conventional polishing tool. No diamond particles will fall off.

しかも研磨有効面積が大きいので、研磨能力を低下させ
ることなく、良好な研磨を長期間に亙って行なうことが
できるものであり、また、Sa面仕上げなどの高精度の
研磨を行なうことがてきるなど種々の利点を有するもの
である。
Moreover, since the effective polishing area is large, it is possible to perform good polishing over a long period of time without reducing the polishing ability, and it is also possible to perform high-precision polishing such as Sa surface finishing. It has various advantages such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例である研磨工具を示す縦断面
図である。 l・・・研磨工具  2・・・基材 3・・・ダイヤモンド膜 特許出願人  出光石油化学株式会社
FIG. 1 is a longitudinal sectional view showing a polishing tool according to an embodiment of the present invention. l... Polishing tool 2... Base material 3... Diamond film patent applicant Idemitsu Petrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)基材上にダイヤモンド膜を形成してなることを特
徴とする研磨工具。
(1) A polishing tool characterized by forming a diamond film on a base material.
(2)前記ダイヤモンド膜が、炭素源ガスを含むガスを
励起して得られた励起ガスを、基材に接触させることに
よって得られる特許請求の範囲第1項に記載の研磨工具
(2) The polishing tool according to claim 1, wherein the diamond film is obtained by bringing an excited gas obtained by exciting a gas containing a carbon source gas into contact with the base material.
JP33278587A 1987-12-28 1987-12-28 Grinding tool Pending JPH01177973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33278587A JPH01177973A (en) 1987-12-28 1987-12-28 Grinding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33278587A JPH01177973A (en) 1987-12-28 1987-12-28 Grinding tool

Publications (1)

Publication Number Publication Date
JPH01177973A true JPH01177973A (en) 1989-07-14

Family

ID=18258791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33278587A Pending JPH01177973A (en) 1987-12-28 1987-12-28 Grinding tool

Country Status (1)

Country Link
JP (1) JPH01177973A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215976A (en) * 1988-07-01 1990-01-19 Nippon Telegr & Teleph Corp <Ntt> Thin plate rotary tool with diamond film
JPH0382156U (en) * 1989-12-08 1991-08-21
WO1995014553A1 (en) * 1993-11-23 1995-06-01 Plasmoteg Engineering Center An abrasive material for precision surface treatment and a method for the manufacturing thereof
US5643343A (en) * 1993-11-23 1997-07-01 Selifanov; Oleg Vladimirovich Abrasive material for precision surface treatment and a method for the manufacturing thereof
US5711773A (en) * 1994-11-17 1998-01-27 Plasmoteg Engineering Center Abrasive material for precision surface treatment and a method for the manufacturing thereof
KR100380183B1 (en) * 2000-09-22 2003-04-11 한국과학기술연구원 CVD Diamond Polishing Die and Its manufacturing Method for Lapping
KR20030031403A (en) * 2001-10-15 2003-04-21 신에쓰 가가꾸 고교 가부시끼가이샤 An abrasive machining plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215976A (en) * 1988-07-01 1990-01-19 Nippon Telegr & Teleph Corp <Ntt> Thin plate rotary tool with diamond film
JPH0382156U (en) * 1989-12-08 1991-08-21
WO1995014553A1 (en) * 1993-11-23 1995-06-01 Plasmoteg Engineering Center An abrasive material for precision surface treatment and a method for the manufacturing thereof
US5643343A (en) * 1993-11-23 1997-07-01 Selifanov; Oleg Vladimirovich Abrasive material for precision surface treatment and a method for the manufacturing thereof
US5711773A (en) * 1994-11-17 1998-01-27 Plasmoteg Engineering Center Abrasive material for precision surface treatment and a method for the manufacturing thereof
KR100380183B1 (en) * 2000-09-22 2003-04-11 한국과학기술연구원 CVD Diamond Polishing Die and Its manufacturing Method for Lapping
KR20030031403A (en) * 2001-10-15 2003-04-21 신에쓰 가가꾸 고교 가부시끼가이샤 An abrasive machining plate

Similar Documents

Publication Publication Date Title
US5921856A (en) CVD diamond coated substrate for polishing pad conditioning head and method for making same
EP1649075B1 (en) Cvd diamond-coated composite substrate and method for making same
US6632127B1 (en) Fixed abrasive planarization pad conditioner incorporating chemical vapor deposited polycrystalline diamond and method for making same
US5433977A (en) Enhanced adherence of diamond coatings by combustion flame CVD
US20090224370A1 (en) Non-planar cvd diamond-coated cmp pad conditioner and method for manufacturing
JPS63241170A (en) Method for coating abrasion preventing layer and product produced thereby
Liu et al. Growth and mechanical properties of diamond films on cemented carbide with buffer layers
JPH04224128A (en) Glass cutting blade
JPH01177973A (en) Grinding tool
JPS63286576A (en) Production of rigid carbon film
Haubner et al. Influence of the cobalt content in hot-pressed cemented carbides on the deposition of low-pressure diamond layers
Berthet et al. Comparison of Pd/(bulk SiC) catalysts prepared by atomic beam deposition and plasma sputtering deposition: Characterization and catalytic properties
JPS6267174A (en) Production of hard carbon film coated sintered hard alloy
JP3199127B2 (en) Diamond-containing composite coated member and method for producing the same
Chakk et al. Mechanism of diamond formation on substrates abraded with a mixture of diamond and metal powders
JP3260156B2 (en) Method for producing diamond-coated member
JPH02126843A (en) Dental tool
JPH0762541A (en) Wear resistant member
JP3212057B2 (en) Diamond coated substrate and method for producing the same
JP2633968B2 (en) Diamond coating material and its manufacturing method
JP2831396B2 (en) Diamond coated cutting tool
JPH05270982A (en) Production of diamond film
JPH0625853A (en) Production of diamond coated member
JPH04272179A (en) Manufacture of diamond-coated member
Bhushan Tribology of Diamond, Diamond-Like Carbon, and Related Films