JPH02157608A - Focusing method - Google Patents

Focusing method

Info

Publication number
JPH02157608A
JPH02157608A JP31253188A JP31253188A JPH02157608A JP H02157608 A JPH02157608 A JP H02157608A JP 31253188 A JP31253188 A JP 31253188A JP 31253188 A JP31253188 A JP 31253188A JP H02157608 A JPH02157608 A JP H02157608A
Authority
JP
Japan
Prior art keywords
sample
focus
objective lens
light
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31253188A
Other languages
Japanese (ja)
Inventor
Satoshi Iwata
敏 岩田
Moritoshi Ando
護俊 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31253188A priority Critical patent/JPH02157608A/en
Publication of JPH02157608A publication Critical patent/JPH02157608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To easily perform focusing in an optical axis direction by placing a sample for detecting a focal point which has a transparent film with specified thickness instead of a sample and detecting the focusing position based on the interference of the reflected light of a projected light beam. CONSTITUTION:When the sample having a fine pattern such as an IC, etc., is irradiated with the linear light beam through an objective lens for illuminating so as to detect the image of the fine pattern through the objective lens for detecting, the focusing of each objective lens is performed to the sample. At such a time, the sample 26 for focusing which has the transparent film 26a with the specified thickness (d) is placed at the position of the sample instead of the sample and it is irradiated with the beam 41 which is the linear cutting light beam. When the focal point of the beam 41 agrees with the part of the transparent thin film 26a, detecting light which enters the objective lens for detecting which detects the reflected light becomes dark by the effect of the interference in the transparent thin film 26a. Therefore, the focusing position is found by detecting a point where the detected light quantity is minimum.

Description

【発明の詳細な説明】 〔概要〕 焦点調整方法に関し、 光軸方向の焦点を容易に合わすことのできる焦点調整方
法を提供することを目的とし、微細パターンを有する試
料に対して照明用対物レンズを介して線状の光ビームを
照射し、該光ビームによる微細パターンの像を検知側対
物レンズを介して検知するとともに、試料に対する各対
物レンズの焦点を調整するに際して、試料の位置、照明
用対物レンズの光軸方向、検知側対物レンズの光軸方向
のうち少なくとも1つ以上を変える焦点調整方法におい
て、前記試料の位置に、該試料に代えて所定の厚さの透
明膜を有する焦点検出用試料を置き、焦点用検出試料に
対して照射された光ビームの反射光の干渉に基づき前記
照明用対物レンズあるいは検知側対物レンズのうち少な
くとも1つ以上をその光軸方向に移動させて試料に対す
る焦点を調整するように構成する。
[Detailed Description of the Invention] [Summary] Regarding a focus adjustment method, the object of the present invention is to provide a focus adjustment method that can easily focus in the optical axis direction. A linear light beam is irradiated through the light beam, and an image of a fine pattern produced by the light beam is detected through the detection objective lens.In addition, when adjusting the focus of each objective lens on the sample, the position of the sample and the illumination In a focus adjustment method that changes at least one of the optical axis direction of an objective lens and the optical axis direction of a detection-side objective lens, the focus detection method includes a transparent film of a predetermined thickness at the position of the sample in place of the sample. A sample for detection is placed, and at least one of the illumination objective lens or the detection objective lens is moved in the optical axis direction based on the interference of the reflected light of the light beam irradiated onto the focus detection sample. Configure to adjust focus on.

〔産業上の利用分野〕[Industrial application field]

本発明は、焦点調整方法に係り、詳しくは、微細パター
ンの三次元形状をライン状の光ビームを用いて検知する
パターン検査装置等に適用される焦点調整方法に関する
The present invention relates to a focus adjustment method, and more particularly to a focus adjustment method applied to a pattern inspection device or the like that detects the three-dimensional shape of a fine pattern using a line-shaped light beam.

半導体の技術分野ではLSIの配線パターンの微細化、
高密度化に伴い、導体配線の三次元形状を検査する要求
が高まっている。特に、ICの導体形状はサブミクロン
以下となりつつある。このような分野では、もはや、人
間の目視による外観検査が不可能となり、検査の自動化
とともに高速化が望まれている。そのため、光ビームを
用いて外観検査を行うことが考えられているが、微細パ
ターン故に焦点合わせが重要となっている。
In the field of semiconductor technology, miniaturization of LSI wiring patterns,
With the increase in density, there is an increasing demand for inspecting the three-dimensional shape of conductor wiring. In particular, the shape of IC conductors is becoming submicron or smaller. In such fields, visual inspection by humans is no longer possible, and automation and faster inspections are desired. Therefore, it has been considered to perform visual inspection using a light beam, but focusing is important because of the fine pattern.

〔従来の技術〕[Conventional technology]

従来、ICあるいはLSI等の微細パターンを検査する
ために、スポット状の光ビームを用いて被検査対象上に
結像させ、これを二次元に走査させて検査するパターン
検査装置が用いられている。
Conventionally, in order to inspect fine patterns of ICs, LSIs, etc., pattern inspection equipment has been used that uses a spot-shaped light beam to form an image on the object to be inspected and scans it two-dimensionally for inspection. .

しかし、この装置では微小な光スポットをX軸、Y軸の
両方向に走査しなければならず、広い領域の検査に長時
間を要するという欠点がある。
However, this device has the disadvantage that it requires scanning a minute light spot in both the X-axis and Y-axis directions, and that it takes a long time to inspect a wide area.

そこで、本発明の出願人は上述の欠点を解消するために
、先に光切断法の原理に基づく装置を出願しており、第
5図のように示される。同図において、レーザ1からの
光ビーム2を線状のスリット3を通して対物レンズ4に
入射させ、試料台5の対象パターン(試料に相当)6上
に漱細なライン光7を形成する。このライン光7により
照明された対象パターン6を検知側対物レンズ8を用い
てTVカメラ9上に結像する。すると、第6図に拡大図
を示すように、幅W、高さHの微細な対象パターン6か
ら幅W、高さh′の検知信号10が得られる。これから
、対象パターン6の三次元形状が計算により求まる。
Therefore, in order to eliminate the above-mentioned drawbacks, the applicant of the present invention has previously filed an application for an apparatus based on the principle of the optical cutting method, as shown in FIG. In the figure, a light beam 2 from a laser 1 is made incident on an objective lens 4 through a linear slit 3 to form a thin line of light 7 on a target pattern (corresponding to a sample) 6 on a sample stage 5. The target pattern 6 illuminated by this line light 7 is imaged onto a TV camera 9 using a detection-side objective lens 8 . Then, as shown in an enlarged view in FIG. 6, a detection signal 10 having a width W and a height h' is obtained from a fine target pattern 6 having a width W and a height H. From this, the three-dimensional shape of the target pattern 6 is determined by calculation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の先願に係るKWにおいて用いられ
る焦点調整方法では、第7図に示すようにそのフォーカ
スを行う場合、焦点調整に必要な可動部分が3方向、す
なわち対物レンズ4を動かす方向t!iと、対物レンズ
8を動かす方向10と試料台5を動かす方向Zとの3方
向があるが、焦点合せのための技術が十分でなく、焦点
調整がスムーズに出来ないという問題点があった。
However, in the focus adjustment method used in the KW according to the above-mentioned prior application, when focusing is performed as shown in FIG. 7, the movable parts necessary for focus adjustment are in three directions, that is, the direction t! in which the objective lens 4 is moved. There are three directions: i, the direction 10 in which the objective lens 8 is moved, and the direction Z in which the sample stage 5 is moved, but there was a problem that the focusing technology was not sufficient and the focus adjustment could not be done smoothly. .

すなわち、上記フォーカシングを行う場合には、試料台
5の表面が光学的にフラットな(凹凸のない)面を用い
なければならないが、大開口数の対物レンズ4および対
物レンズ8を用いた場合、その焦点深度は非常に浅い。
That is, when performing the above-mentioned focusing, the surface of the sample stage 5 must be optically flat (without unevenness), but when the objective lens 4 and the objective lens 8 with a large numerical aperture are used, Its depth of focus is very shallow.

したがって、試料表面の平面度はできる限り小さくなけ
れば、焦点合わせの精度が出ない。例えば、上記先願例
では焦点深度が約1μm程度であり、1/10μm程度
の平面度が位置合わせに用いられる。
Therefore, the flatness of the sample surface must be as small as possible in order to obtain accurate focusing. For example, in the example of the prior application mentioned above, the depth of focus is about 1 μm, and the flatness of about 1/10 μm is used for alignment.

また、各方向の焦点調整に関する不具合は、次の通りで
ある。
Further, the following problems are related to focus adjustment in each direction.

(1)Z軸方向の焦点調整 Z軸方向の調整は、試料面のライン像が最も細(なる時
、ピント位置となることを利用して容易に行うことがで
きる。例えば、検出信号のラインプロファイルを計測し
、その半値幅を求め、その最小値になるよう、Z軸方向
にステージ(試料台)を移動させれば良いことになる。
(1) Focus adjustment in the Z-axis direction Adjustment in the Z-axis direction can be easily performed by taking advantage of the fact that the line image on the sample surface is at its narrowest (focus position). All that is required is to measure the profile, find its half-width, and move the stage (sample stand) in the Z-axis direction so that the half-width is the minimum value.

(n)光軸方向Li、Loの焦点調整 しかし、光軸方向Li、Loについて上記のような方法
を用いたとすると、二つの対物レンズ4・8間の距離を
焦点の2倍にすることはできるが、第8図(a)に示す
ように偶然にも試料台5の上の試料上に焦点を結んでい
る場合(fは焦点を表す)にはよいが、同図(b)に示
すように試料上から外れて虚像の位置で焦点を結んでい
るときには、例えば、試料表面やエツジ部での散乱が悪
影響を及ぼすため、正確なパターンの検知ができない。
(n) Focus adjustment in optical axis directions Li and Lo However, if the above method is used for optical axis directions Li and Lo, it is impossible to make the distance between the two objective lenses 4 and 8 twice the focal point. However, if the focus is coincidentally on the sample on the sample stage 5 as shown in Fig. 8 (a) (f represents the focus), it is good, but as shown in Fig. 8 (b) When focusing at a virtual image position that is off the sample, for example, scattering from the sample surface or edges has an adverse effect, making it impossible to accurately detect a pattern.

しかしながら、実際上、焦点が試料面上に結んでいるか
否かを検出することは困難である。
However, in practice, it is difficult to detect whether the focus is on the sample surface or not.

特に、サブミクロンオーダーのサンプルについては、そ
の表面は、はぼ、使用波長のl/10以下の凹凸となる
ために、鏡面反射となり、より虚像を検知し易くなる。
In particular, in the case of a submicron-order sample, the surface has irregularities of less than 1/10 of the used wavelength, resulting in specular reflection, making it easier to detect a virtual image.

そこで本発明は、光軸方向の焦点を容易に合わすことが
できる焦点調整方法を提供することを目的としている。
Therefore, an object of the present invention is to provide a focus adjustment method that allows easy focusing in the optical axis direction.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による焦点調整方法は上記目的達成のため、微細
パターンを有する試料に対して照明用対物レンズを介し
て線状の光ビームを照射し、該光ビームによる微細パタ
ーンの像を検知側対物レンズを介して検知するとともに
、試料に対する各対物レンズの焦点を調整するに際して
、試料の位置、照明用対物レンズの光軸方向、検知側対
物レンズの光軸方向のうち少なくとも1つ以上を変える
焦点調整方法において、前記試料の位置に、該試料に代
えて所定の厚さの透明膜を有する焦点検出用試料を置き
、焦点用検出試料に対して照射された光ビームの反射光
の干渉に基づき前記照明用対物レンダあるいは検知側対
物レンズのうち少なくとも1つ以上をその光軸方向に移
動させて試料に対する焦点を調整するようにしている。
In order to achieve the above object, the focus adjustment method according to the present invention irradiates a sample having a fine pattern with a linear light beam through an illumination objective lens, and images the fine pattern by the light beam through a detection objective lens. When adjusting the focus of each objective lens on the sample, focus adjustment changes at least one of the position of the sample, the optical axis direction of the illumination objective lens, and the optical axis direction of the detection side objective lens. In the method, a focus detection sample having a transparent film of a predetermined thickness is placed in place of the sample at the position of the sample, and the focus detection sample is detected based on interference of reflected light of a light beam irradiated to the focus detection sample. At least one of the illumination objective lens and the detection objective lens is moved in the direction of its optical axis to adjust the focus on the sample.

〔作用〕[Effect]

本発明では、被検査対象たる試料の位置に所定厚さの透
明膜を有する焦点検出用試料が置かれ、該焦点検出用試
料に対して照射された光ビームの反射光の干渉に基づい
て照明用対物レンズあるいは検知用対物レンズのうち1
つ以上をその光軸方向に移動させて焦点の調整が行われ
る。この場合、焦点検出用試料の透明膜により焦点位置
では光ビームがほぼ平行となり、焦点から外れると光ビ
ームの位置によって光路長が異なるから、干渉作用によ
り反射光の検出光量の特徴(例えば最小となる点)を見
つければ合焦位置が検出できる。
In the present invention, a focus detection sample having a transparent film of a predetermined thickness is placed at the position of the sample to be inspected, and the focus detection sample is illuminated based on the interference of reflected light of a light beam irradiated onto the focus detection sample. One of the objective lenses for use or the objective lenses for detection
The focal point is adjusted by moving one or more in the direction of the optical axis. In this case, the transparent film of the focus detection sample makes the light beam almost parallel at the focal position, and when it deviates from the focus, the optical path length differs depending on the position of the light beam. Therefore, due to interference, the characteristics of the detected light amount of the reflected light (for example, minimum and The in-focus position can be detected by finding the point).

したがって、試料の鏡面反射に関係なく光軸方向の焦点
を容易に合わすことが可能になる。
Therefore, it becomes possible to easily focus the optical axis direction regardless of the specular reflection of the sample.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1〜4図は本発明に係る焦点調整方法の一実施例を示
す図であり、特に本発明をrc等の微細パターンを検査
するためのパターン検査装置に適用した例である。
1 to 4 are diagrams showing an embodiment of the focus adjustment method according to the present invention, and in particular are examples in which the present invention is applied to a pattern inspection apparatus for inspecting fine patterns such as RC.

まず、構成を説明する。第1図は光切断型のパターン検
査装置における焦点検出系の構成を示す図であり、この
図において、20はレーザである。
First, the configuration will be explained. FIG. 1 is a diagram showing the configuration of a focus detection system in a light cutting type pattern inspection apparatus, and in this figure, 20 is a laser.

レーザ20からの光ビーム(レーザ光)21はガルバノ
ミラ−22で反射した後、線状のスリット23を介して
照明用対物レンズ24に入射し、試料台(ステージ)2
5上のフォーカス用試料(焦点検出用試料)26に結像
する。スリット23としては、例えば幅が狭く、長さが
入射瞳程度のスリット状の光ビームを形成するものが用
いられる。照明用対物レンズ24としては、大開口数の
レンズが用いられ、照明用対物、レンズ24は光軸方向
1iに移動可能である。試料台25は先頭例と同様に2
軸方向に移動可能であり、z軸方向の焦点調整は先願例
と同様に行われる。
A light beam (laser light) 21 from a laser 20 is reflected by a galvanometer mirror 22, and then enters an illumination objective lens 24 through a linear slit 23, and then passes through a sample stage 2.
The image is formed on a focus sample (focus detection sample) 26 on the sample 5 . As the slit 23, for example, one that forms a slit-shaped light beam with a narrow width and a length about the same as the entrance pupil is used. A lens with a large numerical aperture is used as the illumination objective lens 24, and the illumination objective and lens 24 are movable in the optical axis direction 1i. The sample stage 25 is 2 as in the first example.
It is movable in the axial direction, and focus adjustment in the z-axis direction is performed in the same manner as in the prior application.

フォーカス用試料26は所定の厚さ(後述の0式によっ
て決定)dを有する透明膜を有しており、被検査対象と
なる試料の位置に該試料のパターン検査に先立って予め
設置され、焦点合わせ終了後はフォーカス用試料26を
取り除き、検査すべき試料が置かれる。フォーカス用試
料26としては、例えばウェハ等の反射物体26b上に
光ビーム21の使用波長、入射角度、屈折率から決定さ
れる厚さdの透明薄膜26aを形成したものが用いられ
る(後述の第3図参照)。
The focus sample 26 has a transparent film having a predetermined thickness d (determined by the formula 0 described below), and is placed in advance at the position of the sample to be inspected prior to pattern inspection of the sample, and is After alignment is completed, the focusing sample 26 is removed and the sample to be inspected is placed. As the focusing sample 26, a transparent thin film 26a having a thickness d determined from the wavelength of the light beam 21 used, the angle of incidence, and the refractive index is formed on a reflective object 26b such as a wafer, for example. (See Figure 3).

フォーカス用試料26からの反射光は検知用対物レンズ
27を通った後、結像レンズ28によってディテクタ2
9に結像する。ディテクタ29としては、例えばCCD
あるいはTVカメラが用いられる。検知用対物レンズ2
7も光軸方向1oに移動が可能である。ディテクタ29
の検知画像はA/D変換器30によってA/D変換され
、CPU31に入力される。
After the reflected light from the focusing sample 26 passes through the detection objective lens 27, it is directed to the detector 2 by the imaging lens 28.
Imaged at 9. As the detector 29, for example, a CCD
Alternatively, a TV camera is used. Detection objective lens 2
7 is also movable in the optical axis direction 1o. Detector 29
The detected image is A/D converted by the A/D converter 30 and input to the CPU 31.

CP U31はフォーカス用試料26に対する照明用対
物レンズ24および検知用対物レンズ27のオートフォ
ーカスに必要な処理値を演算し、演算結果をフォーカス
コントローラ32に出力する。フォーカスコントローラ
32はCP U31からの命令に基づき照明用対物レン
ズ24あるいは検知用対物レンズ27を光軸方向1i、
loに移動させて焦点位置を自動的に検出、調整する。
The CPU 31 calculates processing values necessary for autofocusing the illumination objective lens 24 and the detection objective lens 27 on the focus sample 26, and outputs the calculation results to the focus controller 32. The focus controller 32 moves the illumination objective lens 24 or the detection objective lens 27 in the optical axis direction 1i based on a command from the CPU 31.
to automatically detect and adjust the focus position.

以上の構成において、照明用対物レンズ24からフォー
カス用試料26に入射する光ビームは入射角度αをα=
45°とした場合、第2図のように示される。第2図に
おいて、41は試料面を照射するビーム(特に、その形
状)であり、42は焦点があった場合の面(以下、ジャ
ストフォーカス面という)、43はフォーカスから外れ
た場合の面(以下、フォーカス外面という)である。ま
た、図中における太い矢印はビーム41内での波面の法
線方向、細い矢印は各面での反射方向を示している。大
開口数の照明用対物レンズ24を用いて光を絞った場合
、第2図に示すようにジャストフォーカス42では反射
光44の波面は一時的に平行になる。一方、フォーカス
面43では反射光45の波面が乱れ平行にはならない。
In the above configuration, the light beam entering the focusing sample 26 from the illumination objective lens 24 has an incident angle α=α=
When the angle is 45°, it is shown as shown in FIG. In FIG. 2, 41 is the beam (especially its shape) that irradiates the sample surface, 42 is the surface when it is in focus (hereinafter referred to as just focus surface), and 43 is the surface when it is out of focus ( (hereinafter referred to as the focus outer surface). Further, thick arrows in the figure indicate the normal direction of the wavefront within the beam 41, and thin arrows indicate the direction of reflection on each surface. When the light is focused using the illumination objective lens 24 with a large numerical aperture, the wavefront of the reflected light 44 temporarily becomes parallel at just focus 42, as shown in FIG. On the other hand, at the focus plane 43, the wavefront of the reflected light 45 is disturbed and does not become parallel.

本発明では、ジャストフォーカス42とフォーカス面4
3とで上記のように反射光の光路長が異なるという原理
に基づいている。
In the present invention, just focus 42 and focus plane 4
This is based on the principle that the optical path length of the reflected light differs between the two types as described above.

すなわち、第3図(a)(b)はフォーカス用試料26
に光が入射した場合の光路を示す図であり、そのうち同
図(a)はジャストフォーカスの場合、同図(b)はフ
ォーカスから外れた場合である。
That is, FIGS. 3(a) and 3(b) show the focusing sample 26.
FIG. 4 is a diagram showing an optical path when light is incident on the lens, of which (a) shows the case when the image is just in focus, and (b) shows the case when the image is out of focus.

フォーカス用試料26の透明薄膜26aに光のビーム4
1が入射した場合、焦点位置では第3図(a)に示すよ
うにビーム41がほぼ平行光となるため、その光路はビ
ーム41の断面すべてがほぼ同じになり、したがって、
フォーカス用試料26での反射光44の光路長は同じと
なる。ところが、焦点から外れた場合には第3図(b)
に示すようにビーム41の位置によって反射光45の光
路長が異なる。ここで、透明P#膜26aの膜厚dを次
式■■で示す値にしたとする。
The light beam 4 is applied to the transparent thin film 26a of the focusing sample 26.
1 is incident, the beam 41 becomes almost parallel light at the focal position as shown in FIG.
The optical path length of the reflected light 44 on the focusing sample 26 is the same. However, if it is out of focus, as shown in Figure 3(b)
As shown in FIG. 2, the optical path length of the reflected light 45 differs depending on the position of the beam 41. Here, it is assumed that the film thickness d of the transparent P# film 26a is set to a value expressed by the following formula (■■).

θ=sin −’  (n −5in  α〕・・・・
・・■但し、α:入射角 θ:屈折角 n:屈折率 λ:光源の波長 N:Q、  1. 2.・・・・・・ このとき、フォーカス用試料26の透明薄膜26aの部
分(すなわち、焦点を結ぶべき対象)に切断光であるビ
ーム41の焦点が合致したとすると、反射光を検出して
いる検知用対物レンズ27に入る検知光は透明薄膜26
aにおける干渉の影響で暗くなる。これは、透明薄膜2
6aの表面では入射と反射の光路長が等しくなって位相
差によって互いに打ち消し合うような関係になるからで
ある。例えば、フォーカス用試料26内の光路長をlと
すると、こ路長βはほぼ等しく、干渉すると反射光は暗
くなる。言い換えれば、このような干渉作用を作り出す
ために膜厚dのフォーカス用試料26が設置されたので
ある。一方、焦点が合致しない場合は入射光に角度のば
らつきがあるため、上記光路長βにの関係となり、短い
部分@については 焦位置に比べると、干渉の影響が小さく検知光量は大き
くなる。したがって、検出光量が最小の点を検出すれば
、合焦位置を見つけることができる。
θ=sin −' (n −5in α)...
...■ However, α: Incident angle θ: Refraction angle n: Refractive index λ: Light source wavelength N: Q, 1. 2. ... At this time, if the focus of the beam 41, which is the cutting light, matches the part of the transparent thin film 26a of the focusing sample 26 (that is, the object to be focused on), then the reflected light is detected. The detection light entering the detection objective lens 27 passes through the transparent thin film 26
It becomes dark due to the influence of interference at a. This is transparent thin film 2
This is because, on the surface of 6a, the incident and reflected optical path lengths become equal and cancel each other out due to the phase difference. For example, if the optical path length in the focusing sample 26 is l, the path length β is approximately equal, and the reflected light becomes dark when there is interference. In other words, the focusing sample 26 with a film thickness of d was installed to create such an interference effect. On the other hand, when the focus does not match, the angle of the incident light varies, so the relationship is related to the optical path length β, and in the short portion @, the influence of interference is small compared to the focal position, and the amount of detected light increases. Therefore, the in-focus position can be found by detecting the point where the amount of detected light is minimum.

本実施例では検出光量がディテクタ29によって検知さ
れ、その検知結果に基づきCP U31でその最小点が
判別される。このとき、該最小点が合焦位置(フォーカ
ス位置)であり、これは第4図のような特性で示される
。そして、CP U31により反射光の光量を監視しな
がらフォーカスコントローラ32の出力に基づいて検知
用対物レンズ27を光軸方向1oに動かし光量の最小点
を見つけると、これが合焦位置となる。しかも、この動
作は自動的に行われるため、極めて容易に焦点調整を実
現できる。このようにして良好なピント調整を自動的に
行った後は、フォーカス用試料26に代えて被検査対象
となるICの微細パターンを試料として試料台25上に
置き、先願例と同様に光切断型のパターン検査が行われ
る。
In this embodiment, the amount of detected light is detected by the detector 29, and the minimum point is determined by the CPU 31 based on the detection result. At this time, the minimum point is the in-focus position, and this is shown by the characteristics shown in FIG. Then, while monitoring the amount of reflected light by the CPU 31, the detection objective lens 27 is moved in the optical axis direction 1o based on the output of the focus controller 32, and when the minimum point of the light amount is found, this becomes the in-focus position. Moreover, since this operation is performed automatically, focus adjustment can be achieved extremely easily. After automatically performing good focus adjustment in this way, place the fine pattern of the IC to be inspected on the sample stage 25 instead of the focus sample 26, and use the light as in the previous application. A cutting pattern inspection is performed.

なお、オートフォーカスに際しては照明用対物レンズ2
4を光軸方向1iに動かしてもよい。
In addition, when autofocusing, the illumination objective lens 2
4 may be moved in the optical axis direction 1i.

また、本発明の適用は上記実施例のようなスリット状の
光ビームに限らず、例えば従来例として挙げたスポット
状の光ビームに対しても適用できる。要は、複数の対物
レンズを用いて試料表面に結像させるような場合であれ
ばよく、また、特に、焦点深度が1μm程度のように極
めて小さい場合に本発明の効果が顕著なものとなる。
Furthermore, the present invention is applicable not only to the slit-shaped light beam as in the above-mentioned embodiments, but also to spot-shaped light beams, such as those cited as conventional examples. In short, it is sufficient if a plurality of objective lenses are used to form an image on the sample surface, and the effects of the present invention are particularly noticeable when the depth of focus is extremely small, such as about 1 μm. .

さらに、本発明をICパターンの自動検査に適用すると
、検査のより一層の自動化とともに、高速化を達成する
ことができる。
Furthermore, when the present invention is applied to automatic inspection of IC patterns, it is possible to achieve further automation and speed up of inspection.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、焦点深度が非常に浅いような場合であ
っても、対物レンズの光軸方向の焦点を容易に合わせる
ことができる。
According to the present invention, even when the depth of focus is very shallow, it is possible to easily focus the objective lens in the optical axis direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は本発明に係る焦点調整方法を適用したパタ
ーン検査装置の一実施例を示す図であり、第1図はその
焦点検出系を示す構成図、第2図はその入射の光ビーム
の様子を示す図、第3図はその反射光の光路を示す図、 第4図はその検出光量とフォーカス位置との関係を示す
図、 第5〜8図は先願に係゛るパターン検査装置を示す図で
あり、 第5図はその構成図、 第6図はその対象パターンを含む要部拡大図、第7図は
フォーカスの調整方法を示す図、第8図はそのフォーカ
スに関する光路を説明する図である。 20・・・・・・レーザ、 21・・・・・・光ビーム、 22・・・・・・ガルバノミラ− 23・・・・・・スリット、 24・・・・・・照明用対物レンズ、 25・・・・・・試料台、 26・・・・・・フォーカス用試料、 26a・・・・・・透明薄膜、 26b・・・・・・反射物体、 27・・・・・・検知用対物レンズ、 28・・・・・・結像レンズ、 29・・・・・・ディテクタ、 30・・・・・・A/D変換器、 31・・・・・・cpu。 32・・・・・・フォーカスコントローラ、41・・・
・・・ビーム、 42・・・・・・ジャストフォーカス、43・・・・・
・フォーカス面、 44.45・・・・・・反射光。 一実施例の入射の光ビームの様子を示す図第2図 一実施例の反射光の光路を示す図 第3図 フォーカス位置 光軸方向距離 一実施例の検出光量とフォーカス位置との関係を示す図
第4図 先願例の構成図 先願例のフォーカスの調整方法を示す図第7図 先願例の対象パターンを含む要部拡大図先願例のフォー
カスに関する光路を説明する図第8図
1 to 4 are diagrams showing an embodiment of a pattern inspection device to which the focus adjustment method according to the present invention is applied, FIG. 1 is a configuration diagram showing its focus detection system, and FIG. 2 is a diagram showing the incident light. Figure 3 is a diagram showing the state of the beam, Figure 3 is a diagram showing the optical path of the reflected light, Figure 4 is a diagram showing the relationship between the amount of detected light and the focus position, and Figures 5 to 8 are patterns related to the earlier application. FIG. 5 is a diagram showing the inspection device; FIG. 5 is a configuration diagram thereof; FIG. 6 is an enlarged view of the main part including the target pattern; FIG. 7 is a diagram showing a focus adjustment method; and FIG. 8 is an optical path related to the focus. FIG. 20...Laser, 21...Light beam, 22...Galvano mirror 23...Slit, 24...Illumination objective lens, 25 ...Sample stand, 26...Specimen for focusing, 26a...Transparent thin film, 26b...Reflecting object, 27...Objective for detection Lens, 28... Imaging lens, 29... Detector, 30... A/D converter, 31... CPU. 32...Focus controller, 41...
...beam, 42...just focus, 43...
・Focus plane, 44.45...Reflected light. FIG. 2 shows the optical path of reflected light in one embodiment. FIG. 3 shows the relationship between the detected light amount and the focus position in one embodiment. Focus position distance in the optical axis direction. Figure 4: Configuration diagram of the earlier application Figure 7: An enlarged view of the main part including the target pattern of the earlier application Figure 8: Explanation of the optical path regarding the focus of the earlier application

Claims (1)

【特許請求の範囲】 微細パターンを有する試料に対して照明用対物レンズを
介して線状の光ビームを照射し、該光ビームによる微細
パターンの像を検知側対物レンズを介して検知するとと
もに、 試料に対する各対物レンズの焦点を調整するに際して、 試料の位置、照明用対物レンズの光軸方向、検知側対物
レンズの光軸方向のうち少なくとも1つ以上を変える焦
点調整方法において、 前記試料の位置に、該試料に代えて所定の厚さの透明膜
を有する焦点検出用試料を置き、焦点用検出試料に対し
て照射された光ビームの反射光の干渉に基づき前記照明
用対物レンズあるいは検知側対物レンズのうち少なくと
も1つ以上をその光軸方向に移動させて試料に対する焦
点を調整するようにしたことを特徴とする焦点調整方法
[Scope of Claims] A linear light beam is irradiated onto a sample having a fine pattern through an illumination objective lens, and an image of the fine pattern caused by the light beam is detected through a detection side objective lens. In a focus adjustment method that changes at least one of the position of the sample, the optical axis direction of the illumination objective lens, and the optical axis direction of the detection side objective lens when adjusting the focus of each objective lens with respect to the sample, the position of the sample A focus detection sample having a transparent film of a predetermined thickness is placed in place of the sample, and the illumination objective lens or the detection side is 1. A focus adjustment method, characterized in that the focus on a sample is adjusted by moving at least one of the objective lenses in the direction of its optical axis.
JP31253188A 1988-12-09 1988-12-09 Focusing method Pending JPH02157608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31253188A JPH02157608A (en) 1988-12-09 1988-12-09 Focusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31253188A JPH02157608A (en) 1988-12-09 1988-12-09 Focusing method

Publications (1)

Publication Number Publication Date
JPH02157608A true JPH02157608A (en) 1990-06-18

Family

ID=18030347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31253188A Pending JPH02157608A (en) 1988-12-09 1988-12-09 Focusing method

Country Status (1)

Country Link
JP (1) JPH02157608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007961A (en) * 2010-06-24 2012-01-12 Panasonic Corp Shape measuring apparatus and shape measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007961A (en) * 2010-06-24 2012-01-12 Panasonic Corp Shape measuring apparatus and shape measuring method

Similar Documents

Publication Publication Date Title
CN107683400B (en) Method and device for measuring height on semiconductor wafer
US5889593A (en) Optical system and method for angle-dependent reflection or transmission measurement
US4656358A (en) Laser-based wafer measuring system
JP3258385B2 (en) Optical board inspection system
CN102818528B (en) Apparatus and method for inspecting an object with increased depth of field
US20080278790A1 (en) Apparatus with enhanced resolution for measuring structures on a substrate for semiconductor manufacture and use of apertures in a measuring apparatus
JP2003287407A (en) Dual beam symmetric height system and method
CN106772923B (en) Automatic focusing method and system based on inclined slit
Ishihara et al. High-speed surface measurement using a non-scanning multiple-beam confocal microscope
US6853446B1 (en) Variable angle illumination wafer inspection system
US7767982B2 (en) Optical auto focusing system and method for electron beam inspection tool
US7660696B1 (en) Apparatus for auto focusing a workpiece using two or more focus parameters
JPH10172898A (en) Observation apparatus position sensor and exposure apparatus with the position sensor
JPS61111402A (en) Position detector
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
US20020171028A1 (en) Focus error correction method and apparatus
WO2003060589A1 (en) Auto focussing device and method
JP2002511575A (en) Method and coordinate measuring instrument for point-scan contour determination of material surfaces by the principle of auto-focusing
JPH02157608A (en) Focusing method
US10761398B2 (en) Imaging ellipsometer system utilizing a tunable acoustic gradient lens
WO2020194491A1 (en) Defect inspection device
JPH0762604B2 (en) Alignment device
JP3141470B2 (en) Three-dimensional shape detection method and apparatus
EP1204860A1 (en) Variable angle illumination wafer inspection system
JPH04142410A (en) Shape recognizing device