WO2020194491A1 - Defect inspection device - Google Patents

Defect inspection device Download PDF

Info

Publication number
WO2020194491A1
WO2020194491A1 PCT/JP2019/012746 JP2019012746W WO2020194491A1 WO 2020194491 A1 WO2020194491 A1 WO 2020194491A1 JP 2019012746 W JP2019012746 W JP 2019012746W WO 2020194491 A1 WO2020194491 A1 WO 2020194491A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
detector
sample
light receiving
Prior art date
Application number
PCT/JP2019/012746
Other languages
French (fr)
Japanese (ja)
Inventor
誠 保坂
雄太 浦野
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2019/012746 priority Critical patent/WO2020194491A1/en
Publication of WO2020194491A1 publication Critical patent/WO2020194491A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention relates to a defect inspection device that inspects foreign substances and defects on a sample.
  • semiconductor wafers, semiconductor devices, liquid crystal display elements, and printed circuit boards use a defect inspection device that detects the occurrence of abnormalities in order to inspect foreign substances and defects on the substrate and take countermeasures.
  • This type of defect inspection device requires an autofocus system that appropriately controls the focus position of the substrate.
  • the inspection device including the autofocus system include the device described in Patent Document 1.
  • an inspection device for detecting defects existing in a sample placed on a stage a light source device that generates a light beam and an inspection beam used for defect detection from a light beam emitted from the light source device.
  • a beam forming means that is spatially separated from the inspection beam and forms one or more focus detection beams used for focus detection, and an objective lens that projects the inspection beam and the focus detection beam toward the sample.
  • an imaging means that receives the inspection beam emitted from the sample and outputs an image signal
  • a focus detection system that receives the focus detection beam emitted from the sample, and an output signal output from the focus detection system. It has a signal processing device that outputs a focus control signal that controls the relative distance between the sample and the objective lens, and the inspection beam and the focus detection beam illuminate different spatially separated parts on the sample.
  • NA numerical aperture
  • wavelength
  • the depth of focus is generally proportional to ⁇ / NA 2
  • the focus tolerance becomes stricter as the sensitivity and resolution of the device increase, and the focus position of the sample to be measured must be controlled with high accuracy. ..
  • the optical characteristics generally change minutely depending on the environment such as temperature and humidity, in various inspection / measurement devices with a shallow depth of focus and high sensitivity or high resolution, the sample may change even if the environment changes minutely. The shift of the focus position may not be tolerated.
  • a focusing error signal is acquired by differential signals between photodetectors whose focus positions are shifted back and forth from each other, and the focus position of a sample is controlled based on this focusing error signal.
  • the device of Patent Document 1 is a device for bright-field observation, that is, a device having an optical system for irradiating illumination light from a direction perpendicular to the surface of the substrate to be inspected, and an inspection to irradiate the substrate to be inspected from a light source.
  • a polarization beam splitter is used to split the beam, the two focus detection beams, and the corresponding three reflected beams from the substrate under inspection toward the detector.
  • the inspection / observation device is a device for dark field observation, that is, a device having an optical system that irradiates the surface of the substrate to be inspected with illumination light from diagonally above, the detected light is scattered light and is polarized. Is not uniquely determined. For this reason, the reflected light cannot be split by the polarizing beam splitter, or the light utilization efficiency is significantly reduced. Further, Patent Document 1 does not describe a solution and a solution for changes in optical characteristics due to environmental changes such as temperature and humidity.
  • the present invention has been made in view of the above problems, and provides a defect inspection apparatus capable of realizing high-precision autofocus required for various inspections / measurements with high sensitivity / high resolution, which is particularly suitable for dark field observation.
  • the purpose is.
  • the defect inspection device is a defect inspection device that inspects the presence or absence of foreign matter or defects on a sample, and is an illumination light emitted from a first light source unit and a first light source unit.
  • An illumination optical system that irradiates the sample with the light, a detection optical system that collects the scattered light generated when the sample is irradiated with the illumination light, and a first detection that detects the scattered light collected by the detection optical system.
  • the autofocus optical system has a device, an autofocus optical system that generates a focusing error signal indicating a displacement of the sample in the focus direction, and a dichromirror, and the autofocus optical system emits servo light having a wavelength different from that of the illumination light.
  • the detection optical system is incident on the first detector, the reflected light is reflected or transmitted through the dichro mirror and is incident on the second detector from the detection optical system, and the focusing error signal is the second detector of the autofocus optical system. It is generated based on the reflected light detected by the detector.
  • the defect inspection device is a defect inspection device that inspects the presence or absence of foreign matter or defects on the sample, and is a stage on which the sample is placed, a light source unit, and a light source unit.
  • the illumination optical system that irradiates the sample with the illumination light emitted from the sample
  • the detection optical system that collects the scattered light from the sample generated when the illumination light is irradiated to the sample, and the scattered light collected by the detection optical system. It has a detector to detect and a signal processing unit to generate a focusing error signal from the detection signal detected by the detector, and the detector has a first light receiving surface and a second direction in which the focus position is shifted in the first direction.
  • the signal processing unit sets the moving speed of the stage to v.
  • the distance between the first light receiving surface and the second light receiving surface in the moving direction of the stage is ⁇ X and the magnification of the detection optical system is M
  • the detection signal and time (t + ⁇ X /) on the second light receiving surface at time t. (Mv)) the focusing error signal is calculated based on the detection signal on the first light receiving surface.
  • FIG. 1 shows a configuration example of the defect inspection device 1000 according to the first embodiment.
  • the defect inspection device 1000 includes a light source unit 101, a TTL illumination optical system 111, an oblique illumination optical system 112, an objective lens 102, an objective pupil optical unit 103, a splitter 104, an imaging lens 105, a detector 106, and a light source for focus adjustment.
  • Unit 121 polarization beam splitter 122, 1/4 wavelength plate 123, dichro mirror 124, focusing error signal acquisition optical component 125, focus adjustment detector 126, signal processing unit 200, overall control unit 301, display unit 302, calculation It has a unit 303, a storage unit 304, a stage drive unit 151, an XYZ- ⁇ stage 152 (hereinafter referred to as “stage 152”), and a pattern chip 191.
  • the illumination light emitted from the light source unit 101 is reflected by the mirror 110, and the optical path is bent in the direction of the mirror 113.
  • the illumination light incident on the mirror 113 is further reflected and incident on the oblique illumination optical system 112.
  • the orthorhombic illumination optical system 112 linearly collects the incident illumination light.
  • the linearly focused illumination light irradiates the inspection target substrate 2 from diagonally above.
  • the mirror 110 can be taken in and out of the optical path of the illumination light emitted from the light source unit 101.
  • the illumination light is incident on the TTL illumination optical system 111.
  • the illumination light incident on the TTL illumination optical system 111 is linearly condensed and incident on the objective pupil optical unit 103, and the optical path is bent in the direction of the objective lens 102.
  • the illumination light that has passed through the objective lens 102 irradiates the inspection target substrate 2 placed on the stage 152 from the normal direction thereof.
  • the polarizer 104 may be arranged between the imaging lens 105 and the detector 106 or immediately before the detector 106.
  • the polarizer 104 has a rotation mechanism and a mechanism for retracting off the optical axis.
  • the rotation mechanism allows the polarizer 104 to be set to an arbitrary detection angle. Further, the retracting mechanism can switch between the use and non-use of the polarizer 104.
  • the electric signal output from the detector 106 is input to the signal processing unit 200.
  • the signal processing unit 200 has a computer as a basic configuration. That is, the signal processing unit 200 is composed of an input / output device, a storage device, a control device, an arithmetic device, and the like.
  • the signal processing unit 200 determines the presence or absence of a defect or the like by comparing the electric signal corresponding to the inspection area on the inspection target substrate 2 with the electric signal obtained from another area, and outputs the information of the detected defect. ..
  • the defect feature amount and position information including the signal strength of the defect detected by the signal processing unit 200 are stored in the storage unit 304 via the overall control unit 301 and displayed on the display unit 302.
  • the inspection target substrate 2 is scanned by the stage 152 driven by the stage drive unit 151, and the entire surface is inspected.
  • thermometer 2002 and a barometer 2003 for monitoring temperature and atmospheric pressure are installed in the device internal space 2001 in which the illumination optical system and the detection optical system are installed, and the measured value of the environmental state of the device internal space 2001 is measured by the overall control unit 301. Is always output to.
  • the autofocus system for controlling the inspection target substrate 2 or the detector 106 at a desired position will be described.
  • the S-polarized light emitted from the focus adjustment light source unit 121 is reflected by the polarization beam splitter 122, adjusted to circular polarization by the 1/4 wave plate 123, and reflected by the dichro mirror 124.
  • the dichroic mirror 124 is a special optical material that transmits the wavelength band of light emitted from the light source unit 101 used for inspection and reflects the wavelength band of light emitted from the light source unit 121 for focus adjustment used for focus adjustment. It is a mirror using, and is also called a dichroic mirror.
  • the examination target substrate 2 is irradiated substantially vertically through the imaging lens 105, the polarizer 104, the objective pupil optical unit 103, and the objective lens 102, which are a part of the detection optical system, and the inspection target substrate 2 is reflected.
  • the reflected light from the substrate 2 to be inspected passes through the objective lens 102, the objective pupil optical unit 103, the polarizing element 104, and the imaging lens 105, which are part of the detection optical system, in the opposite direction, and is reflected by the dichroic mirror 124. ..
  • the stage drive unit 151 is controlled through the overall control unit 301, and the Z position of the stage 152 is adjusted in particular to control the inspection target substrate 2 to a desired position.
  • the concavo-convex pattern in the illumination area R I is absent, it is impossible to detect the signal with illumination light in the detection optical system , The illumination optical system and the detection optical system cannot be adjusted based on the signal. Therefore, by measuring a detection signal installed at substantially the same position and the inspection target board 2 samples with a concavo-convex pattern, can be detected by the detection optics diffracted light and scattered light generated from the illumination area R I The illumination optical system and the detection optical system can be adjusted.
  • the structure having this uneven pattern is the pattern chip 191 described later.
  • FIG. 2 shows a more detailed configuration of the illumination optical system and the detection optical system.
  • the light source unit 101 includes a laser light source 1011, an attenuator 1012, an ND filter 1013, a wave plate 1014, and a beam expander 1015.
  • the output of the laser oscillated from the laser light source 1011 is adjusted by the attenuator 1012, the amount of light is adjusted by the ND filter 1013, the polarization state is adjusted by the wave plate 1014, and the beam diameter and shape are adjusted by the beam expander 1015. It is controlled and emitted as illumination light.
  • the optical path of the illumination light emitted from the light source unit 101 is guided to the TTL illumination optical system 111 or the oblique illumination optical system 112 depending on the presence or absence of the mirror 110. That is, when the mirror 110 moved by the drive device (not shown) is installed at a position outside the optical path of the illumination light, the illumination light emitted from the light source unit 101 is the TTL illumination optical system 111 through the mirror unit 1102. Incident in. On the other hand, when the mirror 110 moved by the drive device (not shown) is installed on the optical path of the illumination light, the illumination light emitted from the light source unit 101 is reflected by the mirror 110 and incident on the mirror unit 1101. Further, it is reflected by the mirror unit 1101 and incident on the oblique illumination optical system 112. The illumination light incident on the TTL illumination optical system 111 or the oblique illumination optical system 112 is formed into a long light beam in one direction, and then emitted from the TTL illumination optical system 111 or the oblique illumination optical system 112.
  • the laser light source 1011 is suitable for a short wavelength, high output, high brightness, and high stability, and the third, fourth, or fifth harmonic of the YAG laser (wavelengths are 355, 266, 213, 193, and 183 nm, respectively). ) Is used.
  • the angle and position of the illumination light incident on the oblique illumination optical system 112 or the TTL illumination optical system 111 are controlled by the mirror unit 1101 or 1102, respectively, so that the illumination light is irradiated to a desired position on the inspection target substrate 2. Is adjusted to.
  • the mirror units 1101 and 1102 are each composed of a plurality of planar mirrors, and the angle and position of the illumination light are adjusted by adjusting the angle and position of the planar mirrors.
  • FIG. 3 shows the detection optical system.
  • the detection optical system 170 includes an objective lens 102, a polarizer 104, and an imaging lens 105. After being generated from the substrate 2 to be inspected by the detection optical system 170, the reflected light is detected by forming an image of the reflected light collected by the objective lens 102 on the detector 106. Further, it has an objective pupil optical unit 103 and guides vertical illumination light to the inspection target substrate 2.
  • the reflected light from the detection optical system 170 is incident on the dichroic mirror 124.
  • the dichroic mirror 124 transmits light in the same wavelength band as the light emitted from the light source unit 101, and reflects light in the same wavelength band as the light emitted from the focus adjustment light source unit 121, which will be described later. If the positional relationship between the detector 106 and the focus adjustment light source unit 121 is opposite to the positional relationship in FIG. 1, light in the same wavelength band as the light emitted from the light source unit 101 is reflected for focus adjustment. It is configured to transmit light in the same wavelength band as the light emitted from the light source unit 121.
  • the reflected light transmitted through the dichroic mirror 124 is incident on the mirror 108 which can be inserted and removed from the optical path.
  • the reflected light reflected by the mirror 108 is incident on the two-dimensional detector 109.
  • the two-dimensional detector 109 is provided at a conjugate position with the detector 106, and can detect a two-dimensional image having substantially the same image plane as the detector 106.
  • the mirror 108 is a half mirror or a total reflection mirror, and when the half mirror is used, the signals of the detector 106 and the two-dimensional detector 109 can be simultaneously detected.
  • the detector 106 is held by the stage 107.
  • the detector 106 is a one-dimensional detector such as a CCD linear image sensor or a CMOS linear image sensor.
  • the stage 107 has an X, Y, Z translation mechanism and a two-axis rotation mechanism, whereby the position and orientation (azimuth angle, tilt angle) of the detector are adjusted.
  • This adjustment is that the longitudinal direction of the orientation and the image plane of the image formed by imaging each optical imaging system an illumination area R I described below, the longitudinal direction and the light-receiving surface of the detector 106 matches It is done in.
  • the azimuth is the rotation angle in the plane perpendicular to the optical axis of each detection optical system
  • the tilt angle is the inclination angle with respect to the plane perpendicular to the optical axis.
  • the detection resolution of the detection optical system depends on the numerical aperture NA of the detection optical system and the detection wavelength ⁇ .
  • the detection resolution is 1.22 ⁇ / NA based on the diameter of the Airy disk, and a point having no spatial spread on an object is detected as a point image having a spread of about the detection resolution.
  • High resolution can be achieved with a short wavelength and a high numerical aperture.
  • an objective lens with a deep ultraviolet wavelength and a numerical aperture of about 0.4 is used, a resolution of about 0.8 ⁇ m can be obtained.
  • FIG. 4 shows a side view showing the configurations of the autofocus optical system and the detection optical system.
  • the autofocus optical system will be described in detail.
  • This optical system has an advantage that the optical system is simply configured with a small number of optical components, and the curved surface of the cylindrical lens makes it easy to design characteristics such as the inclination of the focusing error signal described later.
  • the light emitted from the focus adjustment light source unit 121 (hereinafter referred to as "servo light") is focused by the lens 127, and the luminous flux diameter is reduced to the smallest on the beam waist surface in the drawing. After that, it reflects the polarization beam splitter 122, passes through the 1/4 wave plate 123, and reflects the dichroic mirror 124. After that, the substrate 2 to be inspected is irradiated through the imaging lens 105, the polarizer 104, the objective pupil optical unit 103, and the objective lens 102.
  • the light reflected from the substrate 2 to be inspected propagates in the opposite direction, passes through the objective lens 102, the objective pupil optical unit 103, the polarizer 104, and the imaging lens 105, and is reflected again by the dichroic mirror 124. After that, by passing through the 1/4 wave plate 123 again, the polarized light is converted into P-polarized light, transmitted through the polarizing beam splitter 122, and transmitted through the focusing error signal acquisition optical component 125 composed of the cylindrical lens 128 to focus. The light is received by the adjusting detector 126. The focus adjustment detector 126 is placed on the stage 129, and its position is adjusted as necessary.
  • the light receiving surface and the beam waist surface of the detector 106 are in an imaging relationship with the surface of the substrate 2 to be inspected, that is, the light receiving surface and the beam waist surface of the detector 106 are each optically optical. It is regarded as an equivalent conjugate surface.
  • the light receiving surface of the detector 106 and the surface of the inspection target substrate 2 are in an imaging relationship with the light having the wavelength of the emitted light of the light source unit 101, and the beam waist surface and the surface of the inspection target substrate 2 are for focus adjustment.
  • the light having the wavelength of the emitted light (servo light) of the light source unit 121 is in an imaging relationship.
  • the light receiving surface of the focus adjustment detector 126 is positioned on the stage 129 so as to have a perfect circular distribution when the beam waist surface and the inspection target substrate 2 are in an imaging relationship. From now on, the state in which the beam waist surface and the substrate 2 to be inspected are in an imaging relationship will be referred to as focusing.
  • FIG. 5 shows a schematic diagram showing a configuration example of the focus adjustment detector 126. Due to the effect of the cylindrical lens 128, the focus adjustment detector 126 has a profile such as a circle or an ellipse depending on the Z position of the substrate to be inspected and the focus position (Y direction position in FIG. 4) of the focus adjustment detector 126. Light is incident. As described above, it is desirable that the position of the focus adjustment detector 126 is adjusted by the stage 129 to a position having a circular profile on the light receiving surface of the focus adjustment detector 126 in the focused state.
  • the focus adjustment detector 126 has, for example, four light receiving surfaces A, B, C, and D, and the light receiving surfaces A, B, C, and D have substantially the same light receiving amounts at the time of focusing.
  • the long axis or the short axis of the elliptical profile substantially coincides with each other in the ⁇ 45 degree direction in the figure.
  • the stage 129 is adjusted so that the arrangement is in the plane. In FIG.
  • FIG. 6 shows a diagram showing an example of a focusing error signal.
  • the focusing error signal becomes 0 because the light receiving amounts of the light receiving surfaces A, B, C, and D are substantially the same, and when the inspection target substrate 2 is + ⁇ Z defocused, the focusing error signal becomes 0. Since a large amount of light is incident on the light receiving surfaces A and C, the focusing error signal increases according to + ⁇ Z to a positive (+) value, and when the inspection target substrate 2 is defocused by ⁇ Z, the light receiving surface Since a large amount of light is incident on B and D, the focusing error signal becomes a negative (-) value according to - ⁇ Z. Therefore, it is possible to obtain an S-shaped signal as shown in the figure.
  • the direction and magnitude of the shift of the focus (Z azimuth) of the inspection target substrate 2 can be known from the sign of the focusing error signal, so that the overall control unit 301 controls the inspection target substrate so that the focusing error signal becomes 0.
  • Feedback control of the focus position of 2 becomes possible.
  • the focusing characteristics may differ between the detection optical system and the autofocus optical system due to environmental factors such as pressure and temperature, and the focusing characteristics may differ between the detection optical system and the autofocus optical system depending on the wavelength band.
  • the target value (control target in the figure) of the focusing error signal may be offset from 0.
  • the focus position of the substrate 2 to be inspected is controlled by controlling the height Z (position in the focus direction) of the stage 152 based on the value of the focusing error signal, but the imaging lens 105 and the objective It is also possible by controlling the distance to and from the lens 102. Further, it is also possible to adjust the focus position of the detector 106 based on the value of the focusing error signal, but in this case, the focusing error signal does not change even if the focus position of the detector 106 is controlled. It will be controlled by feed forward.
  • FIG. 7 shows a configuration example (plan view) of the pattern chip 191.
  • the pattern chip 191 is installed in the vicinity of the inspection target substrate 2, and the height of the surface thereof becomes substantially equal to the inspection target substrate 2. It is desirable to be installed in such a way.
  • the height Z of the stage 152 is corrected by using the difference in surface height between the two, so that the adjustment using the pattern chip 191 and the inspection target substrate are performed.
  • the height of the detection target pattern can be made substantially the same as that at the time of the inspection of 2.
  • the pattern chip 191 has an uneven pattern that generates diffracted light or scattered light in the pattern region 601 on the surface.
  • the longitudinal direction of the illumination area R I formed into linear and Y-direction, a width direction of the illumination area R I (the direction perpendicular to the longitudinal direction) and the X direction.
  • the pattern region 601 has a plurality of small pattern regions 602a, 602b, 602c, ... Arranged in the Y direction.
  • pattern small region 602 The area sizes of the pattern small areas 602a, 602b, 602c, ... And the patterns formed therein are common to each other.
  • these pattern small regions 602a, 602b, 602c, ... are collectively referred to as "pattern small region 602".
  • the length of the pattern small area 602 in the Y direction is shorter than the length of the illumination area RI in the Y direction (for example, 1/4 or less). Therefore, a plurality of pattern small regions 602 are included in the range of the illumination region RI in the Y direction. For example, four or more pattern small regions 602 are included within the illumination area R I.
  • the pattern small area 602 has a dot single row pattern area 611, a line and space (hereinafter, referred to as “L & S”) pattern area 612, and a dot L & S pattern area 613.
  • the illumination region RI is represented by an ellipse for convenience, but in reality, the intensity distribution of the illumination light is an elliptical Gaussian distribution long in the Y direction, and the intensity relative to the distribution center is 1 / e 2. regions to be more than equivalent to the illumination area R I.
  • the width of the illumination area R I is a condensing width of the Gaussian distribution that is focused in the X direction, a high detection resolution and illumination power densities in the X direction by the illumination area R I is used narrow thin linear illumination light It is possible to realize highly sensitive defect inspection.
  • the width of the illumination region RI in the X direction is 0.5 ⁇ m to 1.5 ⁇ m.
  • the narrower the width the more advantageous it is for increasing the sensitivity, but it is necessary to increase the aperture angle for condensing the illumination, and the depth of focus is narrowed, which makes it difficult to maintain the stability of the inspection. Practically, about 0.8 ⁇ m is suitable.
  • FIG. 8 shows an inspection procedure executed by the defect inspection device 1000. This process is executed by the signal processing unit 200 and the overall control unit 301.
  • the inspection target object (inspection target substrate 2) is put into the apparatus and installed on the stage 152 (step S702).
  • the inspection conditions are set (step S703).
  • the inspection conditions include illumination conditions (eg, illumination angle: oblique / vertical / both oblique and vertical) and detection conditions.
  • the illumination optical system and the detection optical system are adjusted and set (steps S704 to S707, S710).
  • the focal position of the illumination light is positioned on the surface of the inspection target substrate 2 for adjusting the illumination optical system, and the light receiving surface of the detector 106 and the inspection target substrate 2 are used for adjusting the detection optical system. It includes forming an imaging relationship with the surface and aligning the one-dimensional detector constituting the detector 106 with the linear reflected light.
  • the objects of adjustment and setting are the illumination optical system and the detection optical system selected to be used in step S703.
  • the time elapsed since the last adjustment of the target optical system is obtained, and it is determined whether or not the predetermined time in which the state can be maintained after the adjustment is completed has been exceeded (step S704). If the predetermined time has elapsed, the process proceeds to step S710. When the predetermined time has not elapsed, it is determined whether or not the change in the environmental conditions (temperature change, atmospheric pressure change, etc. in the device internal space 2001) since the previous adjustment exceeds the predetermined threshold value (step S705). If the change exceeds the threshold value, the process proceeds to step S710. If it does not exceed, partial adjustment using the pattern chip (step S706) is executed.
  • the position adjustment and the magnification adjustment of the detection optical system and the height adjustment of the stage on which the inspection target substrate 2 is placed are performed.
  • the illumination optical system and the detection optical system are set based on the adjustment parameters saved at the time of the previous adjustment (step S707).
  • the inspection is executed (step S708), the inspection result is saved and displayed (step S709), and the inspection is completed (step S720).
  • step S704 and step S705 if either of them is Yes, the entire optical system using the pattern chip is adjusted and the adjustment parameters are updated.
  • the overall adjustment of the optical system using the pattern chip for example, the position adjustment of the illumination optical system, the focus adjustment, the position adjustment of the power adjustment and the detection optical system, the focus adjustment, the magnification adjustment, and the stage on which the inspection target substrate 2 is placed. Adjust the height.
  • step S704 and step S705 are No, the optical system is set using the adjustment parameters obtained by the adjustment using the pattern chip 191 in the inspection before the previous time.
  • the height of the stage on which the inspection target substrate 2 is placed is constantly controlled so that the focusing error signal becomes the target value by the above-mentioned autofocus adjustment method.
  • the target value of the focusing error signal is the amount of reflected light from the pattern chip received by, for example, the detector 106 in the partial adjustment using the pattern chip shown in step S706 or the total adjustment using the pattern chip shown in S710. It is considered that the focusing error signal when the value reaches a substantially maximum value is a value to be controlled, and the focusing error signal value at this time is updated as the target value of the focusing error signal.
  • the adjustment using the pattern chip 191 is performed and the state is sufficiently adjusted. You can inspect at.
  • the overall adjustment using the pattern chip 191 is omitted, so that it is possible to avoid taking time for adjustment more than necessary.
  • the inspection throughput can be increased.
  • FIG. 9 shows a side view showing different configurations of the autofocus optical system and the detection optical system.
  • the servo light emitted from the focus adjustment light source unit 121 is converted into substantially parallel light by the collimated lens 130, and is focused only on one side by the cylindrical lens 131, so that the luminous flux diameter on the one side is minimized on the beam waist surface in the drawing. It is squeezed. Therefore, the beam waist surface shows a linear profile, and it is possible to have substantially the same shape as the linear illumination often used in inspection.
  • the optical path passes through the same optical path as the optical path described with reference to FIG. 4, and passes through the polarizing beam splitter 122.
  • a cylindrical lens 128 is arranged at a position separated by a focal length from the image plane of the surface of the substrate 2 to be inspected in the focused state, and is converted into an electric signal by the focus adjustment detector 126.
  • the light incident on the focus adjustment detector 126 can have a circular shape on the light receiving surface in the focused state and an elliptical shape in the defocused state. Since the collimating lens 130 adjusts the luminous flux diameter on the focus adjusting detector 126, the position of the collimating lens 130 may be adjusted so as to be in a substantially divergent or substantially converged state after transmission.
  • the linear illumination is performed by adjusting the focus with light in substantially the same region as the linear illumination used for the inspection.
  • FIG. 10 shows a side view showing still another configuration of the autofocus optical system and the detection optical system.
  • the focus adjusting light source unit 121 has a plurality of emission units 121a, 121b, and 121c. It passes through the lens array 135 corresponding to each emitted light (servo light), and becomes three narrowed points on the beam waist surface. Subsequent optical paths pass through the same optical paths as those described in FIG. 4, pass through the polarizing beam splitter 122, pass through the cylindrical lens array 132 corresponding to each emitted light, and are converted into an electric signal by the focus adjustment detector 126. Be done.
  • the focus adjustment detector 126 also has light receiving units 126a, 126b, and 126c corresponding to the emitted light, and has three sets of four detection surfaces (see FIG. 5).
  • This optical configuration is a multi-point illumination of the configuration shown in FIG.
  • Focusing error signals are generated for the number of multiple points.
  • a synthesized focusing error signal is generated by simply averaging or weighting and adding them, and is used for control.
  • the inspection target is on average a good focus position for each area of the linear illumination.
  • the focus of the board can be adjusted.
  • by weighting and synthesizing the focusing error signals of each of the multiple points for example, focus adjustment that emphasizes the vicinity of the center of linear illumination, focus adjustment that emphasizes inspection of the upper or lower portion, and the like can be realized.
  • the optical system can be miniaturized by using a small optical component such as a microlens.
  • FIG. 11 shows a side view showing still another configuration of the autofocus optical system and the detection optical system.
  • the focusing error signal acquisition optical component 125 is composed of the knife edge 133.
  • the side surface of the knife edge 133 is arranged on the image forming surface of the surface of the substrate 2 to be inspected in the focused state, the tip of the knife edge 133 does not block the luminous flux in the focused state, and the knife edge 133 is in the defocused state. Arrange so that the tip blocks a part of the luminous flux.
  • the light after passing through the focusing error signal acquisition optical component 125 is converted into an electric signal by the focus adjustment detector 126.
  • the focus adjustment detector 126 has, for example, two light receiving surfaces.
  • FIG. 12A shows an example (schematic diagram) of the luminous flux on the focus adjustment detector 126 during focusing and defocusing.
  • the same amount of light is incident on the two light receiving surfaces A and B of the focus adjustment detector 126 without the tip of the knife edge 133 blocking the luminous flux.
  • the light beam portion that is shielded from light changes depending on the direction of deviation of the focus position.
  • a relatively large amount of light is incident on the surface B.
  • FIG. 12B shows a configuration example of the focus adjustment detector 126 in this modified example.
  • the focus adjustment detector 126 has, for example, two light receiving surfaces A and B, and is arranged so that substantially the same amount of light is incident on the light receiving surfaces A and B during focusing, and the light receiving surfaces during defocusing. Arrange so that a large amount of light is incident only on A or the light receiving surface B.
  • the focusing error signal can be generated by, for example, AB, and an S-shaped signal as shown in FIG. 6 can be obtained.
  • FIG. 13 shows a schematic view showing an embodiment of the defect inspection apparatus according to the second embodiment.
  • the optical system for autofocus is almost completely shared with the detection optical system. Since the light source for autofocus is not separately provided, autofocus is applied using the reflected light including scattering from the inspection target substrate 2 as in the inspection.
  • the configuration of the detector 106 is different from that of the first embodiment, and the signal processing unit 200 generates a focusing error signal based on the signal from the detector 106.
  • FIG. 14 shows a schematic diagram showing an example of a focusing error signal acquisition method by differentiating the detection signal.
  • the above figure is a schematic diagram showing the relationship between the output of the detector (for example, the sum of the light amounts of the one-dimensional detector) and the defocus amount of the inspection target substrate 2.
  • the output of the detector for example, the sum of the light amounts of the one-dimensional detector
  • the defocus amount of the inspection target substrate 2 is generally assumed.
  • the goal is to control the substrate 2 to be inspected to the in-focus position where the output is maximized.
  • a signal obtained by differentiating the upper figure as shown in the lower figure is obtained, the value becomes zero at the time of focusing, and an S-shaped signal whose value changes to ⁇ according to the defocus amount can be obtained. It can be used as a focusing error signal. That is, when the output of a normal detector is I ( ⁇ Z), if a signal I ( ⁇ Z + d) defocused in the + direction and a signal I ( ⁇ Z ⁇ d) defocused in the-direction are obtained, a focusing error is obtained.
  • the signal can be generated from ⁇ I ( ⁇ Z + d) ⁇ I ( ⁇ Z ⁇ d) ⁇ / (2d).
  • a method of acquiring the signal I ( ⁇ Z + d) defocused in the + direction and the signal I ( ⁇ Z ⁇ d) defocused in the ⁇ direction will be described.
  • FIG. 15 shows a configuration example (schematic diagram) of a detector corresponding to the acquisition of a focusing error signal.
  • the detector 106 has a light receiving surface 106a for detecting reflected light and light receiving surfaces 106b, 106c, 106d, 106e for using autofocus.
  • the light receiving surfaces 106b and 106d are displaced in the ⁇ direction
  • the light receiving surfaces 106c and 106e are displaced in the + direction.
  • the focus position of the light receiving surface 106a is on the paper surface
  • the focus position of the light receiving surface 106b (106d) and the focus position of the light receiving surface 106c (106e) are located above and below the paper surface, respectively.
  • the acquisition signals at the time t of the light receiving surfaces 106b, 106c, 106d, and 106e are set to S1 (t), S2 (t), S3 (t), and S4 (t), respectively, and between the light receiving surface 106b and the light receiving surface 106c and Let ⁇ X be the distance between the light receiving surface 106e and the light receiving surface 106d, and v be the moving speed of the substrate 2 to be inspected in the X direction.
  • the focusing error signal at the upper part of the detector 106 is generated at S2 (t) -S1 (t + ⁇ X / v), and the focusing error signal at the lower part of the detector 106 is generated at S4 (t + ⁇ X / v) -S3 (t).
  • the difference between S2 and S1 and the difference between S3 and S4 are not considered between signals at the same time, but the time difference is taken into consideration by calculating the difference using the reflected light from the same pattern (defect). This is to reduce the error due to the difference in the amount of light depending on the pattern (defect).
  • the reflected light from the inspection target substrate 2 depends on the moving direction of the inspection target substrate 2. In this example, it is assumed that the light reflected from the inspection target substrate 2 reaches the sensor on the left side in order from the sensor on the right side in the figure, and the magnification of the detection optical system is 1. Discussed as double.
  • the focusing error signal at the upper part of the detector 106 is generated by S2 (t) -S1 (t + ⁇ X / (Mv)), and the focusing error signal at the lower part of the detector 106 is S4 (t + ⁇ X). / (Mv))-S3 (t) will be generated.
  • ⁇ defocus occurs between the sensors in the vertical direction, that is, between S1 (light receiving surface 106b) and S4 (light receiving surface 106e) or between S2 (light receiving surface 106c) and S3 (light receiving surface 106d). Since it is attached, it is possible to obtain a focusing error signal by taking the difference. However, when the moving direction of the substrate 2 to be inspected is only in the left-right direction, it is not possible to obtain a difference by using the reflected light from the same pattern (defect).
  • the focusing error signal may be generated from the difference between the upper and lower sensor outputs at the same time, and the time average of the focusing error signal may be taken. ..
  • the air conversion distance can be changed by changing the thickness of the cover layer such as the cover glass arranged in front of each light receiving surface. It is possible to realize the defocus of. That is, with respect to the thickness of the cover glass arranged in front of the light receiving surface 106a, a thin cover glass is arranged in front of the light receiving surface 106b and the light receiving surface 106d, and a thick cover glass is arranged in front of the light receiving surface 106c and the light receiving surface 106e, or a wedge shape. It is possible to realize the same effect by arranging the cover glass 1500 of the above in front of the light receiving surface 106b and the light receiving surface 106c and the light receiving surface 106e and the light receiving surface 106d.
  • the optical system required for normal inspection can be realized only by arranging the light receiving surface in the detector 106 and defocusing, so that there is an advantage that the optical system can be simplified.
  • FIG. 16 shows a side view showing different configurations of the autofocus optical system and the detection optical system.
  • the detector 106-1 is arranged to defocus + d with respect to the focal plane
  • the detector 106-2 is arranged to defocus ⁇ d with respect to the focal surface
  • the reflected light transmitted through the half mirror 134 is a detector.
  • the light reflected from the half mirror 134 is incident on the detector 106-2 at 106-1.
  • a ⁇ defocus signal can be obtained.
  • the focusing error signal can be generated from the difference between the outputs of the detector 106-1 and the detector 106-2 at the same time.
  • the signal for defect inspection is calculated by the sum of the detector 106-1 and the detector 106-2.
  • the obtained signal is always a defocused signal, it is necessary to design the value of d within the allowable defocus amount range.
  • FIG. 17A shows a side view showing still another configuration of the autofocus optical system and the detection optical system.
  • the detector 106 is tilted with respect to the focal plane. At this time, since the focus is defocused on the left and right light receiving surfaces on the drawing in opposite directions, it is possible to generate a focusing error signal by taking the difference between the signals on the left and right light receiving surfaces.
  • FIG. 17B shows a configuration example (schematic diagram) of a detector corresponding to the acquisition of a focusing error signal.
  • the detector 106 has, for example, the light receiving surfaces of S1, S2, and S3.
  • S1 is defocused in the minus direction
  • S2 is in focus
  • S3 is defocused in the + direction. Focusing error when the acquisition signals at time t are S1 (t), S2 (t), and S3 (t), the distance between S1 and S3 is ⁇ X, and the moving speed of the inspection target substrate 2 in the left-right direction is v.
  • the signal is generated in S3 (t) -S1 (t + ⁇ X / v).
  • the reflected light from the inspection target substrate 2 depends on the moving direction of the inspection target substrate 2.
  • the magnification of the detection optical system is 1. Discussed as double.
  • the magnification of the detection optical system is M times, the focusing error signal is generated in S3 (t) ⁇ S1 (t + ⁇ X / (Mv)).
  • the defect inspection signal is generated from S2.
  • the embodiment of the present invention has been described above.
  • the present invention is not limited to the above-described examples and modifications, and includes various modifications.
  • the above-described embodiment describes the present invention in an easy-to-understand manner, and is not necessarily limited to the one having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are interconnected.
  • the illustrated defect inspection device is a defect inspection device having two illumination optical systems, a TTL illumination optical system and an oblique illumination optical system, but for a defect inspection apparatus having only one of the illumination optical systems. Is also applicable, and is particularly effective for defect inspection devices having an oblique illumination optical system.
  • the autofocus technique in the present invention is not limited to the defect inspection apparatus, and the presence or absence of a sample pattern and the stage operation direction such as the XY stage or the rotation stage. Regardless of this, it can be applied to various inspection devices, measuring devices, measuring devices, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Provided is a defect inspection device having an autofocus optical system suitable for dark-field observation. This defect inspection device comprises a detection optical system 170 for converging scattered light from a sample, a first detector 106 for detecting the scattered light converged by the detection optical system, an autofocusing optical system for generating a focusing error signal indicating focusing-direction positional deviation of the sample, and a dichroic mirror 124. The autofocusing optical system comprises a second light source unit 121 for emitting servo light having a different wavelength than illumination light and a second detector 126 for directing the servo light onto the sample and detecting reflected light converged by the detection optical system. The scattered light is transmitted or reflected by a dichroic mirror and strikes the first detector. The reflected light is reflected or transmitted by the dichroic mirror and strikes the second detector. The focusing error signal is generated on the basis of the reflected light detected by the second detector of the autofocusing optical system.

Description

欠陥検査装置Defect inspection equipment
 本発明は、試料上の異物や欠陥を検査する欠陥検査装置に関する。 The present invention relates to a defect inspection device that inspects foreign substances and defects on a sample.
 例えば半導体ウェハ、半導体デバイス、液晶表示素子及びプリント基板は、基板上の異物や欠陥を検査して対策を施すべく、異常の発生状況を検出する欠陥検査装置が使用される。 For example, semiconductor wafers, semiconductor devices, liquid crystal display elements, and printed circuit boards use a defect inspection device that detects the occurrence of abnormalities in order to inspect foreign substances and defects on the substrate and take countermeasures.
 この種の欠陥検査装置では、基板のフォーカス位置を適切に制御するオートフォーカス系が必要である。オートフォーカス系を含めた検査装置には、例えば特許文献1に記載の装置がある。この文献には、「ステージ上に配置した試料に存在する欠陥を検出する検査装置であって、光ビームを発生する光源装置と、光源装置から出射した光ビームから、欠陥検出に用いられる検査ビームと、検査ビームから空間的に分離され、焦点検出に用いられる1本又はそれ以上の焦点検出ビームとを形成するビーム形成手段と、前記検査ビーム及び焦点検出ビームを試料に向けて投射する対物レンズと、試料から出射した検査ビームを受光して画像信号を出力する撮像手段と、試料から出射した焦点検出ビームを受光する焦点検出系と、前記焦点検出系から出力される出力信号を用いて、試料と対物レンズとの間の相対距離を制御するフォーカス制御信号を出力する信号処理装置とを有し、前記検査ビームと焦点検出ビームは、試料上において、空間的に離間した異なる部位をそれぞれ照明することを特徴とする検査装置」が開示されている。 This type of defect inspection device requires an autofocus system that appropriately controls the focus position of the substrate. Examples of the inspection device including the autofocus system include the device described in Patent Document 1. In this document, "an inspection device for detecting defects existing in a sample placed on a stage, a light source device that generates a light beam and an inspection beam used for defect detection from a light beam emitted from the light source device. A beam forming means that is spatially separated from the inspection beam and forms one or more focus detection beams used for focus detection, and an objective lens that projects the inspection beam and the focus detection beam toward the sample. Using an imaging means that receives the inspection beam emitted from the sample and outputs an image signal, a focus detection system that receives the focus detection beam emitted from the sample, and an output signal output from the focus detection system. It has a signal processing device that outputs a focus control signal that controls the relative distance between the sample and the objective lens, and the inspection beam and the focus detection beam illuminate different spatially separated parts on the sample. An inspection device characterized by performing the above is disclosed.
特開2016-24042号公報Japanese Unexamined Patent Publication No. 2016-24042
 欠陥検査装置を含む各種検査/計測装置においては、検査感度や計測分解能を向上する為に、光学系の開口数(NA:Numerical Aperture)を上げる、あるいは光源の波長(λ)を短くする必要があるが、焦点深度は一般にλ/NAに比例する為、装置の高感度化や高分解能化に伴い、フォーカス耐性が厳しくなり、測定対象試料のフォーカス位置を高精度に制御しなくてはならない。また、一般に光学特性は温度や湿度等の環境に依存して微小に変化するため、焦点深度が浅い高感度或いは高分解能な各種検査/計測装置においては、微小な環境変化に依っても試料のフォーカス位置のずれが許容出来ない場合がある。 In various inspection / measurement devices including defect inspection devices, it is necessary to increase the numerical aperture (NA: Numerical Aperture) of the optical system or shorten the wavelength (λ) of the light source in order to improve the inspection sensitivity and measurement resolution. However, since the depth of focus is generally proportional to λ / NA 2 , the focus tolerance becomes stricter as the sensitivity and resolution of the device increase, and the focus position of the sample to be measured must be controlled with high accuracy. .. In addition, since the optical characteristics generally change minutely depending on the environment such as temperature and humidity, in various inspection / measurement devices with a shallow depth of focus and high sensitivity or high resolution, the sample may change even if the environment changes minutely. The shift of the focus position may not be tolerated.
 特許文献1では、フォーカス位置を互いに前後にずらした光検出器間の信号の差動によりフォーカシング誤差信号を取得し、本フォーカシング誤差信号を基に試料のフォーカス位置を制御する。ここで、特許文献1の装置は明視野観察用の装置、すなわち照明光を検査対象基板表面に対して垂直な方向から照射させる光学系を有する装置であり、光源から検査対象基板に照射する検査ビームと2本の焦点検出ビームと、検査対象基板からの検出器に向かう対応する3本の反射ビームとを分離するために、偏光ビームスプリッターが用いられている。しかしながら、検査/観察装置が暗視野観察用の装置、すなわち照明光を検査対象基板表面に対して斜め上から照射させる光学系を有する装置であっては、検出する光は散乱光であり、偏光が一意に定まらない。このため、偏光ビームスプリッターにより反射光を分離できない、あるいは光利用効率が大幅に減少してしまう。さらに、特許文献1には温度や湿度等の環境変化による光学特性の変化についての解決手段及び解決方法についての記載は無い。 In Patent Document 1, a focusing error signal is acquired by differential signals between photodetectors whose focus positions are shifted back and forth from each other, and the focus position of a sample is controlled based on this focusing error signal. Here, the device of Patent Document 1 is a device for bright-field observation, that is, a device having an optical system for irradiating illumination light from a direction perpendicular to the surface of the substrate to be inspected, and an inspection to irradiate the substrate to be inspected from a light source. A polarization beam splitter is used to split the beam, the two focus detection beams, and the corresponding three reflected beams from the substrate under inspection toward the detector. However, if the inspection / observation device is a device for dark field observation, that is, a device having an optical system that irradiates the surface of the substrate to be inspected with illumination light from diagonally above, the detected light is scattered light and is polarized. Is not uniquely determined. For this reason, the reflected light cannot be split by the polarizing beam splitter, or the light utilization efficiency is significantly reduced. Further, Patent Document 1 does not describe a solution and a solution for changes in optical characteristics due to environmental changes such as temperature and humidity.
 本発明は、上記課題を鑑みてなされたものであり、特に暗視野観察に適した、高感度/高分解能な各種検査/計測に必要な高精度オートフォーカスを実現可能な欠陥検査装置を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a defect inspection apparatus capable of realizing high-precision autofocus required for various inspections / measurements with high sensitivity / high resolution, which is particularly suitable for dark field observation. The purpose is.
 本発明の一実施の形態である欠陥検査装置は、試料上の異物あるいは欠陥の有無を検査する欠陥検査装置であって、第1の光源部と、第1の光源部より出射された照明光を試料に照射する照明光学系と、照明光を試料に照射した際に生じる試料からの散乱光を集光する検出光学系と、検出光学系により集光した散乱光を検出する第1の検出器と、試料のフォーカス方向の位置ずれを示すフォーカシング誤差信号を生成するオートフォーカス光学系と、ダイクロミラーとを有し、オートフォーカス光学系は、照明光とは異なる波長のサーボ光を出射する第2の光源部と、サーボ光を試料に照射した際に生じる反射光を検出光学系により集光した後、検出する第2の検出器とを備え、散乱光はダイクロミラーを透過または反射して検出光学系から第1の検出器に入射され、反射光はダイクロミラーを反射または透過して検出光学系から第2の検出器に入射され、フォーカシング誤差信号は、オートフォーカス光学系の第2の検出器で検出した反射光に基づき生成される。 The defect inspection device according to the embodiment of the present invention is a defect inspection device that inspects the presence or absence of foreign matter or defects on a sample, and is an illumination light emitted from a first light source unit and a first light source unit. An illumination optical system that irradiates the sample with the light, a detection optical system that collects the scattered light generated when the sample is irradiated with the illumination light, and a first detection that detects the scattered light collected by the detection optical system. The autofocus optical system has a device, an autofocus optical system that generates a focusing error signal indicating a displacement of the sample in the focus direction, and a dichromirror, and the autofocus optical system emits servo light having a wavelength different from that of the illumination light. It is equipped with a light source unit (2) and a second detector that detects reflected light generated when the sample is irradiated with servo light by the detection optical system, and then the scattered light is transmitted or reflected through the dichro mirror. The detection optical system is incident on the first detector, the reflected light is reflected or transmitted through the dichro mirror and is incident on the second detector from the detection optical system, and the focusing error signal is the second detector of the autofocus optical system. It is generated based on the reflected light detected by the detector.
 また、本発明の別の一実施の形態である欠陥検査装置は、試料上の異物あるいは欠陥の有無を検査する欠陥検査装置であって、試料を載置するステージと、光源部と、光源部より出射された照明光を試料に照射する照明光学系と、照明光を試料に照射した際に生じる試料からの散乱光を集光する検出光学系と、検出光学系により集光した散乱光を検出する検出器と、検出器で検出した検出信号からフォーカシング誤差信号を生成する信号処理部とを有し、検出器は、フォーカス位置が第1方向にずれた第1の受光面と第2方向にずれた第2の受光面とを有し、ステージの移動につれて、散乱光は第1の受光面に先立って第2の受光面に入射され、信号処理部は、ステージの移動速度をv、第1の受光面と第2の受光面とのステージの移動方向の距離をΔX、検出光学系の倍率をMとするとき、時刻tにおける第2の受光面での検出信号及び時刻(t+ΔX/(Mv))における第1の受光面での検出信号に基づきフォーカシング誤差信号を算出する。 Further, the defect inspection device according to another embodiment of the present invention is a defect inspection device that inspects the presence or absence of foreign matter or defects on the sample, and is a stage on which the sample is placed, a light source unit, and a light source unit. The illumination optical system that irradiates the sample with the illumination light emitted from the sample, the detection optical system that collects the scattered light from the sample generated when the illumination light is irradiated to the sample, and the scattered light collected by the detection optical system. It has a detector to detect and a signal processing unit to generate a focusing error signal from the detection signal detected by the detector, and the detector has a first light receiving surface and a second direction in which the focus position is shifted in the first direction. It has a second light receiving surface shifted to, and as the stage moves, scattered light is incident on the second light receiving surface prior to the first light receiving surface, and the signal processing unit sets the moving speed of the stage to v. When the distance between the first light receiving surface and the second light receiving surface in the moving direction of the stage is ΔX and the magnification of the detection optical system is M, the detection signal and time (t + ΔX /) on the second light receiving surface at time t. (Mv)), the focusing error signal is calculated based on the detection signal on the first light receiving surface.
 高精度なオートフォーカスを実現可能な欠陥検査装置を提供する。 Provide a defect inspection device that can realize highly accurate autofocus.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and new features will become apparent from the description and accompanying drawings herein.
欠陥検査装置の構成例を示す概略図である。It is the schematic which shows the structural example of the defect inspection apparatus. 照明光学系と検出光学系の構成を示す側面図である。It is a side view which shows the structure of the illumination optical system and the detection optical system. 検出光学系の構成を示す側面図である。It is a side view which shows the structure of the detection optical system. オートフォーカス光学系と検出光学系の構成を示す側面図である。It is a side view which shows the structure of the autofocus optical system and the detection optical system. フォーカス調整用検出器の構成例を示す概略図である。It is the schematic which shows the structural example of the detector for focus adjustment. フォーカシング誤差信号の例を示す図である。It is a figure which shows the example of a focusing error signal. パターンチップの構成例を示す平面図である。It is a top view which shows the structural example of a pattern chip. 欠陥検査装置における検査フローを示すフローチャートである。It is a flowchart which shows the inspection flow in a defect inspection apparatus. オートフォーカス光学系と検出光学系の構成を示す側面図である。It is a side view which shows the structure of the autofocus optical system and the detection optical system. オートフォーカス光学系と検出光学系の構成を示す側面図である。It is a side view which shows the structure of the autofocus optical system and the detection optical system. オートフォーカス光学系と検出光学系の構成を示す側面図である。It is a side view which shows the structure of the autofocus optical system and the detection optical system. 合焦時とデフォーカス時におけるフォーカス調整用検出器上の光束の例を示す模式図である。It is a schematic diagram which shows the example of the luminous flux on the focus adjustment detector at the time of focusing and defocusing. フォーカス調整用検出器の構成例を示す概略図である。It is the schematic which shows the structural example of the detector for focus adjustment. 欠陥検査装置の構成例を示す概略図である。It is the schematic which shows the structural example of the defect inspection apparatus. 検出信号の微分によるフォーカシング誤差信号取得方法の例を示す模式図である。It is a schematic diagram which shows the example of the focusing error signal acquisition method by the differentiation of a detection signal. フォーカシング誤差信号取得に対応した検出器の構成例を示す概略図である。It is the schematic which shows the structural example of the detector corresponding to the focusing error signal acquisition. オートフォーカス光学系と検出光学系の構成を示す側面図である。It is a side view which shows the structure of the autofocus optical system and the detection optical system. オートフォーカス光学系と検出光学系の構成を示す側面図である。It is a side view which shows the structure of the autofocus optical system and the detection optical system. フォーカシング誤差信号取得に対応した検出器の構成例を示す概略図である。It is the schematic which shows the structural example of the detector corresponding to the focusing error signal acquisition.
 以下、図面に基づいて本発明の実施の形態を説明する。なお、本発明は以下に記述する実施例に限定されるものではなく、その技術思想の範囲において種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the examples described below, and various modifications can be made within the scope of the technical idea.
 図1に、実施例1に係る欠陥検査装置1000の構成例を示す。欠陥検査装置1000は、光源部101、TTL照明光学系111、斜方照明光学系112、対物レンズ102、対物瞳光学部103、偏光子104、結像レンズ105、検出器106、フォーカス調整用光源部121、偏光ビームスプリッター122、1/4波長板123、ダイクロミラー124、フォーカシング誤差信号取得用光学部品125、フォーカス調整用検出器126、信号処理部200、全体制御部301、表示部302、演算部303、記憶部304、ステージ駆動部151、X-Y-Z-θステージ152(以下「ステージ152」という。)、パターンチップ191を有している。 FIG. 1 shows a configuration example of the defect inspection device 1000 according to the first embodiment. The defect inspection device 1000 includes a light source unit 101, a TTL illumination optical system 111, an oblique illumination optical system 112, an objective lens 102, an objective pupil optical unit 103, a splitter 104, an imaging lens 105, a detector 106, and a light source for focus adjustment. Unit 121, polarization beam splitter 122, 1/4 wavelength plate 123, dichro mirror 124, focusing error signal acquisition optical component 125, focus adjustment detector 126, signal processing unit 200, overall control unit 301, display unit 302, calculation It has a unit 303, a storage unit 304, a stage drive unit 151, an XYZ-θ stage 152 (hereinafter referred to as “stage 152”), and a pattern chip 191.
 光源部101から発射された照明光はミラー110で反射され、その光路がミラー113の方向に折り曲げられる。ミラー113に入射した照明光は更に反射され、斜方照明光学系112に入射される。斜方照明光学系112は、入射した照明光を線状に集光する。線状に集光された照明光は、検査対象基板2をその斜め上方から照射する。ここで、ミラー110は光源部101から発射される照明光の光路に対して出し入れ可能である。ミラー110が照明光の光路から外れた位置に移動している場合、照明光は、TTL照明光学系111に入射する。TTL照明光学系111に入射した照明光は線状に集光されて対物瞳光学部103に入射し、その光路が対物レンズ102の方向に折り曲げられる。対物レンズ102を通過した照明光は、ステージ152に載置された検査対象基板2をその法線方向から照射する。 The illumination light emitted from the light source unit 101 is reflected by the mirror 110, and the optical path is bent in the direction of the mirror 113. The illumination light incident on the mirror 113 is further reflected and incident on the oblique illumination optical system 112. The orthorhombic illumination optical system 112 linearly collects the incident illumination light. The linearly focused illumination light irradiates the inspection target substrate 2 from diagonally above. Here, the mirror 110 can be taken in and out of the optical path of the illumination light emitted from the light source unit 101. When the mirror 110 is moved out of the optical path of the illumination light, the illumination light is incident on the TTL illumination optical system 111. The illumination light incident on the TTL illumination optical system 111 is linearly condensed and incident on the objective pupil optical unit 103, and the optical path is bent in the direction of the objective lens 102. The illumination light that has passed through the objective lens 102 irradiates the inspection target substrate 2 placed on the stage 152 from the normal direction thereof.
 斜方照明光学系112を通過した斜方照明光、又は、TTL照明光学系111を通過した垂直照明光が検査対象基板2を照射することにより生じた正反射光、回折光、散乱光(以下、これらを総称して「反射光」という。)は、対物レンズ102に入射して集光された後、対物瞳光学部103、偏光子104、結像レンズ105を順に介して、検出器106の検出面上に結像され、電気信号に変換される。なお、偏光子104は、結像レンズ105と検出器106との間であっても、検出器106の直前に配置してもよい。また、偏光子104は、回転機構と光軸外に退避する機構とを有している。回転機構により、偏光子104を任意の検光角度に設定することができる。また、退避する機構により、偏光子104の使用と不使用を切り替えることができる。 Orthogonal illumination light, diffracted light, and scattered light generated by irradiating the substrate 2 to be inspected with oblique illumination light that has passed through the oblique illumination optical system 112 or vertical illumination light that has passed through the TTL illumination optical system 111 (hereinafter, , These are collectively referred to as “reflected light”), and after being incident on the objective lens 102 and condensed, the detector 106 is passed through the objective pupil optical unit 103, the polarizer 104, and the imaging lens 105 in this order. It is imaged on the detection surface of the light and converted into an electric signal. The polarizer 104 may be arranged between the imaging lens 105 and the detector 106 or immediately before the detector 106. Further, the polarizer 104 has a rotation mechanism and a mechanism for retracting off the optical axis. The rotation mechanism allows the polarizer 104 to be set to an arbitrary detection angle. Further, the retracting mechanism can switch between the use and non-use of the polarizer 104.
 検出器106から出力された電気信号は信号処理部200に入力される。信号処理部200はコンピュータを基本構成とする。すなわち、信号処理部200は、入出力装置、記憶装置、制御装置、演算装置などで構成される。信号処理部200は、検査対象基板2上の検査領域に対応する電気信号と他の領域から得られた電気信号との比較により、欠陥の有無等を判別し、検出した欠陥の情報を出力する。信号処理部200で検出された欠陥の信号強度を含む欠陥の特徴量と位置情報とは、全体制御部301を介して記憶部304に記憶されると共に、表示部302に表示される。検査対象基板2は、ステージ駆動部151によって駆動されるステージ152によって走査され、全面が検査される。 The electric signal output from the detector 106 is input to the signal processing unit 200. The signal processing unit 200 has a computer as a basic configuration. That is, the signal processing unit 200 is composed of an input / output device, a storage device, a control device, an arithmetic device, and the like. The signal processing unit 200 determines the presence or absence of a defect or the like by comparing the electric signal corresponding to the inspection area on the inspection target substrate 2 with the electric signal obtained from another area, and outputs the information of the detected defect. .. The defect feature amount and position information including the signal strength of the defect detected by the signal processing unit 200 are stored in the storage unit 304 via the overall control unit 301 and displayed on the display unit 302. The inspection target substrate 2 is scanned by the stage 152 driven by the stage drive unit 151, and the entire surface is inspected.
 照明光学系、検出光学系が設置された装置内空間2001には、温度や気圧をモニタする温度計2002と気圧計2003が設置され、装置内空間2001の環境状態の計測値が全体制御部301に常時出力される。 A thermometer 2002 and a barometer 2003 for monitoring temperature and atmospheric pressure are installed in the device internal space 2001 in which the illumination optical system and the detection optical system are installed, and the measured value of the environmental state of the device internal space 2001 is measured by the overall control unit 301. Is always output to.
 検査対象基板2、あるいは検出器106を所望の位置に制御する為のオートフォーカス系について述べる。フォーカス調整用光源部121を出射したS偏光の光は、偏光ビームスプリッター122を反射し、1/4波長板123で円偏光に調整され、ダイクロミラー124を反射する。ダイクロミラー124は、検査に用いる光源部101から出射される光の波長帯は透過し、フォーカス調整に用いるフォーカス調整用光源部121から出射される光の波長帯は反射するような特殊な光学素材を用いたミラーであり、ダイクロイックミラーとも称される。その後、検出光学系の一部の部品である結像レンズ105、偏光子104、対物瞳光学部103、対物レンズ102を通して検査対象基板2に略垂直に照射され、検査対象基板2を反射する。検査対象基板2からの反射光は、逆方向に検出光学系の一部の部品である対物レンズ102、対物瞳光学部103、偏光子104、結像レンズ105を通り、ダイクロミラー124を反射する。さらに、1/4波長板123を通りP偏光に変化し、偏光ビームスプリッター122を透過し、フォーカシング誤差信号取得用光学部品125を通り、フォーカス調整用検出器126で電気信号に変換される。その後、信号処理部200でフォーカス誤差信号が生成され、全体制御部301を通して、ステージ駆動部151を制御し、ステージ152の特にZ位置を調整することで、検査対象基板2を所望の位置に制御する。なお、光学効率を高める為、光源部101の出射光とフォーカス調整用光源部121の出射光の波長は、ダイクロミラー124の所望の透過/反射特性を満足する範囲で近い帯域とすることが望ましい。 The autofocus system for controlling the inspection target substrate 2 or the detector 106 at a desired position will be described. The S-polarized light emitted from the focus adjustment light source unit 121 is reflected by the polarization beam splitter 122, adjusted to circular polarization by the 1/4 wave plate 123, and reflected by the dichro mirror 124. The dichroic mirror 124 is a special optical material that transmits the wavelength band of light emitted from the light source unit 101 used for inspection and reflects the wavelength band of light emitted from the light source unit 121 for focus adjustment used for focus adjustment. It is a mirror using, and is also called a dichroic mirror. After that, the examination target substrate 2 is irradiated substantially vertically through the imaging lens 105, the polarizer 104, the objective pupil optical unit 103, and the objective lens 102, which are a part of the detection optical system, and the inspection target substrate 2 is reflected. The reflected light from the substrate 2 to be inspected passes through the objective lens 102, the objective pupil optical unit 103, the polarizing element 104, and the imaging lens 105, which are part of the detection optical system, in the opposite direction, and is reflected by the dichroic mirror 124. .. Further, it passes through the 1/4 wave plate 123, changes to P-polarized light, passes through the polarization beam splitter 122, passes through the focusing error signal acquisition optical component 125, and is converted into an electric signal by the focus adjustment detector 126. After that, a focus error signal is generated by the signal processing unit 200, the stage drive unit 151 is controlled through the overall control unit 301, and the Z position of the stage 152 is adjusted in particular to control the inspection target substrate 2 to a desired position. To do. In order to improve the optical efficiency, it is desirable that the wavelengths of the emitted light of the light source unit 101 and the emitted light of the light source unit 121 for focus adjustment be close to each other within a range satisfying the desired transmission / reflection characteristics of the dichroic mirror 124. ..
 また、斜方照明光学系112から照明光を検査対象基板2に照射する場合、照明領域Rの中に凹凸パターンが存在しないと、検出光学系において照明光による信号を検出することができず、その信号に基づいて照明光学系及び検出光学系の調整を行うことができない。そこで、凹凸パターンを備える試料を検査対象基板2と実質的に同じ位置に設置してその検出信号を計測すれば、照明領域Rから発生する回折光及び散乱光を検出光学系によって検出することができ、照明光学系及び検出光学系を調整することができる。この凹凸パターンを有する構造体が後述するパターンチップ191である。 Also, when irradiating the illumination light to the inspection target board 2 from oblique illumination optical system 112, the concavo-convex pattern in the illumination area R I is absent, it is impossible to detect the signal with illumination light in the detection optical system , The illumination optical system and the detection optical system cannot be adjusted based on the signal. Therefore, by measuring a detection signal installed at substantially the same position and the inspection target board 2 samples with a concavo-convex pattern, can be detected by the detection optics diffracted light and scattered light generated from the illumination area R I The illumination optical system and the detection optical system can be adjusted. The structure having this uneven pattern is the pattern chip 191 described later.
 図2に、照明光学系と検出光学系のより詳しい構成を示す。光源部101は、レーザ光源1011、アッテネータ1012、NDフィルタ1013、波長板1014、ビームエキスパンダ1015を有している。レーザ光源1011から発振出力されたレーザは、アッテネータ1012で出力が調整され、NDフィルタ1013で光量が調整され、波長板1014で偏光状態が調整され、ビームエキスパンダ1015でビーム径及び形状が調整及び制御され、照明光として発射される。 FIG. 2 shows a more detailed configuration of the illumination optical system and the detection optical system. The light source unit 101 includes a laser light source 1011, an attenuator 1012, an ND filter 1013, a wave plate 1014, and a beam expander 1015. The output of the laser oscillated from the laser light source 1011 is adjusted by the attenuator 1012, the amount of light is adjusted by the ND filter 1013, the polarization state is adjusted by the wave plate 1014, and the beam diameter and shape are adjusted by the beam expander 1015. It is controlled and emitted as illumination light.
 光源部101から発射された照明光の光路は、ミラー110の有無により、TTL照明光学系111又は斜方照明光学系112に導かれる。すなわち、不図示の駆動装置により移動されたミラー110が、照明光の光路から外れた位置に設置されている場合、光源部101から発射された照明光は、ミラーユニット1102を通じてTTL照明光学系111に入射する。一方、不図示の駆動装置により移動されたミラー110が、照明光の光路上に設置されている場合、光源部101から発射された照明光は、ミラー110で反射されてミラーユニット1101に入射し、更にミラーユニット1101で反射されて斜方照明光学系112に入射する。TTL照明光学系111又は斜方照明光学系112に入射した照明光は、それぞれ一方向に長い光束に成形された後、TTL照明光学系111又は斜方照明光学系112から出射される。 The optical path of the illumination light emitted from the light source unit 101 is guided to the TTL illumination optical system 111 or the oblique illumination optical system 112 depending on the presence or absence of the mirror 110. That is, when the mirror 110 moved by the drive device (not shown) is installed at a position outside the optical path of the illumination light, the illumination light emitted from the light source unit 101 is the TTL illumination optical system 111 through the mirror unit 1102. Incident in. On the other hand, when the mirror 110 moved by the drive device (not shown) is installed on the optical path of the illumination light, the illumination light emitted from the light source unit 101 is reflected by the mirror 110 and incident on the mirror unit 1101. Further, it is reflected by the mirror unit 1101 and incident on the oblique illumination optical system 112. The illumination light incident on the TTL illumination optical system 111 or the oblique illumination optical system 112 is formed into a long light beam in one direction, and then emitted from the TTL illumination optical system 111 or the oblique illumination optical system 112.
 レーザ光源1011は、短波長、高出力、高輝度、高安定のものが適しており、YAGレーザの第3、第4、あるいは第5高調波(それぞれ波長が355、266、213、193、183nm)を利用したものなどが用いられる。斜方照明光学系112又はTTL照明光学系111に入射する照明光の角度と位置は、それぞれミラーユニット1101又は1102によって制御され、検査対象基板2上で所望の位置に照明光が照射されるように調整される。ミラーユニット1101及び1102は、それぞれ複数の平面ミラーで構成され、その平面ミラーの角度と位置の調整によって照明光の角度と位置が調整される。 The laser light source 1011 is suitable for a short wavelength, high output, high brightness, and high stability, and the third, fourth, or fifth harmonic of the YAG laser (wavelengths are 355, 266, 213, 193, and 183 nm, respectively). ) Is used. The angle and position of the illumination light incident on the oblique illumination optical system 112 or the TTL illumination optical system 111 are controlled by the mirror unit 1101 or 1102, respectively, so that the illumination light is irradiated to a desired position on the inspection target substrate 2. Is adjusted to. The mirror units 1101 and 1102 are each composed of a plurality of planar mirrors, and the angle and position of the illumination light are adjusted by adjusting the angle and position of the planar mirrors.
 図3に、検出光学系を示す。検出光学系170は、対物レンズ102、偏光子104、結像レンズ105を有している。検出光学系170により、検査対象基板2から発生された後、対物レンズ102で集光された反射光による像を、検出器106に結像することにより反射光を検出する。また、対物瞳光学部103を有し、垂直照明光を検査対象基板2に導く。 FIG. 3 shows the detection optical system. The detection optical system 170 includes an objective lens 102, a polarizer 104, and an imaging lens 105. After being generated from the substrate 2 to be inspected by the detection optical system 170, the reflected light is detected by forming an image of the reflected light collected by the objective lens 102 on the detector 106. Further, it has an objective pupil optical unit 103 and guides vertical illumination light to the inspection target substrate 2.
 検出光学系170からの反射光は、ダイクロミラー124に入射される。ダイクロミラー124は光源部101からの出射光と同波長帯域の光を透過し、後述するフォーカス調整用光源部121からの出射光と同波長帯域の光を反射する。なお、検出器106、フォーカス調整用光源部121との位置関係が図1における位置関係と逆になっていれば、光源部101からの出射光と同波長帯域の光を反射し、フォーカス調整用光源部121からの出射光と同波長帯域の光を透過するように構成する。 The reflected light from the detection optical system 170 is incident on the dichroic mirror 124. The dichroic mirror 124 transmits light in the same wavelength band as the light emitted from the light source unit 101, and reflects light in the same wavelength band as the light emitted from the focus adjustment light source unit 121, which will be described later. If the positional relationship between the detector 106 and the focus adjustment light source unit 121 is opposite to the positional relationship in FIG. 1, light in the same wavelength band as the light emitted from the light source unit 101 is reflected for focus adjustment. It is configured to transmit light in the same wavelength band as the light emitted from the light source unit 121.
 ダイクロミラー124を透過した反射光は、光路に対して抜き差し可能なミラー108に入射される。ミラー108により反射された反射光は二次元検出器109に入射される。二次元検出器109は検出器106と共役位置に設けられており、検出器106と実質的に同一の像面の二次元像を検出することができる。ミラー108はハーフミラー又は全反射ミラーであり、ハーフミラーを用いた場合は検出器106と二次元検出器109の信号の同時検出が可能である。 The reflected light transmitted through the dichroic mirror 124 is incident on the mirror 108 which can be inserted and removed from the optical path. The reflected light reflected by the mirror 108 is incident on the two-dimensional detector 109. The two-dimensional detector 109 is provided at a conjugate position with the detector 106, and can detect a two-dimensional image having substantially the same image plane as the detector 106. The mirror 108 is a half mirror or a total reflection mirror, and when the half mirror is used, the signals of the detector 106 and the two-dimensional detector 109 can be simultaneously detected.
 検出器106は、ステージ107により保持されている。検出器106は、CCDリニアイメージセンサ、CMOSリニアイメージセンサ等の一次元検出器である。ステージ107はX、Y、Zの並進機構と2軸の回転機構とを有し、これらにより検出器の位置及び姿勢(方位角、あおり角)を調整する。この調整は、後述する照明領域Rをそれぞれの検出光学系が結像して形成する像の長手方向の方位及び像面と、検出器106の長手方向の方位及び受光面とが一致するように行われる。方位角は各検出光学系の光軸に垂直な面内の回転角であり、あおり角は同光軸に垂直な面に対する傾斜角である。 The detector 106 is held by the stage 107. The detector 106 is a one-dimensional detector such as a CCD linear image sensor or a CMOS linear image sensor. The stage 107 has an X, Y, Z translation mechanism and a two-axis rotation mechanism, whereby the position and orientation (azimuth angle, tilt angle) of the detector are adjusted. As this adjustment is that the longitudinal direction of the orientation and the image plane of the image formed by imaging each optical imaging system an illumination area R I described below, the longitudinal direction and the light-receiving surface of the detector 106 matches It is done in. The azimuth is the rotation angle in the plane perpendicular to the optical axis of each detection optical system, and the tilt angle is the inclination angle with respect to the plane perpendicular to the optical axis.
 検出光学系の検出分解能は、検出光学系の開口数NAと検出波長λに依存する。検出分解能はエアリーディスク直径基準では1.22λ/NAであり、物体上で空間的な広がりを持たない点が検出分解能程度の広がりを持った点像として検出される。短波長、高開口数により高分解能が実現できる。深紫外波長で開口数0.4程度の対物レンズを用いた場合、0.8μm程度の分解能が得られる。 The detection resolution of the detection optical system depends on the numerical aperture NA of the detection optical system and the detection wavelength λ. The detection resolution is 1.22λ / NA based on the diameter of the Airy disk, and a point having no spatial spread on an object is detected as a point image having a spread of about the detection resolution. High resolution can be achieved with a short wavelength and a high numerical aperture. When an objective lens with a deep ultraviolet wavelength and a numerical aperture of about 0.4 is used, a resolution of about 0.8 μm can be obtained.
 図4に、オートフォーカス光学系と検出光学系の構成を示す側面図を示す。オートフォーカス光学系について詳細に説明する。本光学系は、少ない光学部品で光学系をシンプルに構成し、シリンドリカルレンズの曲面等により、後述するフォーカシング誤差信号の傾き等の特性を設計し易いメリットがある。 FIG. 4 shows a side view showing the configurations of the autofocus optical system and the detection optical system. The autofocus optical system will be described in detail. This optical system has an advantage that the optical system is simply configured with a small number of optical components, and the curved surface of the cylindrical lens makes it easy to design characteristics such as the inclination of the focusing error signal described later.
 フォーカス調整用光源部121を出射した光(以下、「サーボ光」という。)はレンズ127で集光され、図中のビームウェスト面で光束径が最も小さく絞られる。その後、偏光ビームスプリッター122を反射し、1/4波長板123を通り、ダイクロミラー124を反射する。その後、結像レンズ105、偏光子104、対物瞳光学部103、対物レンズ102を通り、検査対象基板2に照射される。検査対象基板2を反射した光は逆方向に伝搬し、対物レンズ102、対物瞳光学部103、偏光子104、結像レンズ105を通り、ダイクロミラー124を再度反射する。その後、1/4波長板123を再度通ることで、偏光がP偏光に変換され、偏光ビームスプリッター122を透過し、シリンドリカルレンズ128で構成されるフォーカシング誤差信号取得用光学部品125を透過してフォーカス調整用検出器126にて受光される。フォーカス調整用検出器126はステージ129に乗せられ、必要に応じてその位置が調整される。なお、理想的には検出器106の受光面とビームウェスト面とはそれぞれ検査対象基板2の表面と結像関係にあることが望ましく、すなわち検出器106の受光面とビームウェスト面とはそれぞれ光学的に等価な共役面と見做される。このとき、検出器106の受光面と検査対象基板2の表面は光源部101の出射光の波長の光で結像関係にあり、ビームウェスト面と検査対象基板2の表面とは、フォーカス調整用光源部121の出射光(サーボ光)の波長の光で結像関係にある。また、フォーカス調整用検出器126の受光面は、ビームウェスト面と検査対象基板2とが結像関係にある際に、真円の分布となる位置にステージ129で位置調整されることが望ましい。今後、ビームウェスト面と検査対象基板2とが結像関係にある状態を合焦と呼ぶことにする。 The light emitted from the focus adjustment light source unit 121 (hereinafter referred to as "servo light") is focused by the lens 127, and the luminous flux diameter is reduced to the smallest on the beam waist surface in the drawing. After that, it reflects the polarization beam splitter 122, passes through the 1/4 wave plate 123, and reflects the dichroic mirror 124. After that, the substrate 2 to be inspected is irradiated through the imaging lens 105, the polarizer 104, the objective pupil optical unit 103, and the objective lens 102. The light reflected from the substrate 2 to be inspected propagates in the opposite direction, passes through the objective lens 102, the objective pupil optical unit 103, the polarizer 104, and the imaging lens 105, and is reflected again by the dichroic mirror 124. After that, by passing through the 1/4 wave plate 123 again, the polarized light is converted into P-polarized light, transmitted through the polarizing beam splitter 122, and transmitted through the focusing error signal acquisition optical component 125 composed of the cylindrical lens 128 to focus. The light is received by the adjusting detector 126. The focus adjustment detector 126 is placed on the stage 129, and its position is adjusted as necessary. Ideally, the light receiving surface and the beam waist surface of the detector 106 are in an imaging relationship with the surface of the substrate 2 to be inspected, that is, the light receiving surface and the beam waist surface of the detector 106 are each optically optical. It is regarded as an equivalent conjugate surface. At this time, the light receiving surface of the detector 106 and the surface of the inspection target substrate 2 are in an imaging relationship with the light having the wavelength of the emitted light of the light source unit 101, and the beam waist surface and the surface of the inspection target substrate 2 are for focus adjustment. The light having the wavelength of the emitted light (servo light) of the light source unit 121 is in an imaging relationship. Further, it is desirable that the light receiving surface of the focus adjustment detector 126 is positioned on the stage 129 so as to have a perfect circular distribution when the beam waist surface and the inspection target substrate 2 are in an imaging relationship. From now on, the state in which the beam waist surface and the substrate 2 to be inspected are in an imaging relationship will be referred to as focusing.
 図5に、フォーカス調整用検出器126の構成例を示す概略図を示す。フォーカス調整用検出器126には、シリンドリカルレンズ128の効果により、検査対象基板のZ位置やフォーカス調整用検出器126のフォーカス位置(図4のY方向位置)に応じて円形や楕円形等のプロファイルの光が入射する。前述の通り、合焦状態においてはフォーカス調整用検出器126の受光面上で円形プロファイルとなる位置にフォーカス調整用検出器126の位置がステージ129で調整されていることが望ましい。 FIG. 5 shows a schematic diagram showing a configuration example of the focus adjustment detector 126. Due to the effect of the cylindrical lens 128, the focus adjustment detector 126 has a profile such as a circle or an ellipse depending on the Z position of the substrate to be inspected and the focus position (Y direction position in FIG. 4) of the focus adjustment detector 126. Light is incident. As described above, it is desirable that the position of the focus adjustment detector 126 is adjusted by the stage 129 to a position having a circular profile on the light receiving surface of the focus adjustment detector 126 in the focused state.
 フォーカス調整用検出器126は、例えばA、B、C、Dの4つの受光面を有しており、合焦時には受光面A、B、C、Dそれぞれの受光量が略一致するような面内位置になり、また、合焦状態から検査対象基板2がZ方向にずれたことに相当するデフォーカス時には、図中の±45度方向に楕円プロファイルの長軸或いは短軸が略一致するような面内配置になるよう、ステージ129で調整される。図5においては、検査対象基板2が-ΔZデフォーカスした際に受光面B、Dに多くの光量が入射し、検査対象基板2が+ΔZデフォーカスした際に受光面A、Cに多くの光量が入射するように示されている。このとき、フォーカシング誤差信号は(A+C)-(B+D)で計算される。 The focus adjustment detector 126 has, for example, four light receiving surfaces A, B, C, and D, and the light receiving surfaces A, B, C, and D have substantially the same light receiving amounts at the time of focusing. At the time of defocusing, which corresponds to the deviation of the inspection target substrate 2 in the Z direction from the in-focus state, the long axis or the short axis of the elliptical profile substantially coincides with each other in the ± 45 degree direction in the figure. The stage 129 is adjusted so that the arrangement is in the plane. In FIG. 5, a large amount of light is incident on the light receiving surfaces B and D when the inspection target substrate 2 is defocused by −ΔZ, and a large amount of light is applied to the light receiving surfaces A and C when the inspection target substrate 2 is defocused by + ΔZ. Is shown to be incident. At this time, the focusing error signal is calculated by (A + C)-(B + D).
 図6に、フォーカシング誤差信号の例を示す図を示す。前述の通り、合焦時においては、受光面A、B、C、Dの受光量が略一致しているためフォーカシング誤差信号は0となり、検査対象基板2が+ΔZデフォーカスしている場合には、受光面A、Cに多くの光量が入射するためフォーカシング誤差信号は正(+)の値に+ΔZに応じて大きくなり、検査対象基板2が-ΔZデフォーカスしている場合には、受光面B、Dに多くの光量が入射するためフォーカシング誤差信号は負(-)の値に-ΔZに応じて小さくなる。ゆえに、図示したようなS字型の信号を得ることが可能である。これにより、フォーカシング誤差信号の符号で検査対象基板2のフォーカス(Z方位)のずれの方向とずれの大きさが分かるため、フォーカシング誤差信号が0となるように、全体制御部301は検査対象基板2のフォーカス位置をフィードバック制御することが可能となる。なお、気圧や温度等の環境要因により検出光学系とオートフォーカス光学系で集光特性に違いが生じたり、波長帯域により検出光学系とオートフォーカス光学系で集光特性に違いが生じたりするため、フィードバック制御にあたっては、フォーカシング誤差信号の目標値(図中の制御目標)を0からオフセットさせて対応すればよい。 FIG. 6 shows a diagram showing an example of a focusing error signal. As described above, at the time of focusing, the focusing error signal becomes 0 because the light receiving amounts of the light receiving surfaces A, B, C, and D are substantially the same, and when the inspection target substrate 2 is + ΔZ defocused, the focusing error signal becomes 0. Since a large amount of light is incident on the light receiving surfaces A and C, the focusing error signal increases according to + ΔZ to a positive (+) value, and when the inspection target substrate 2 is defocused by −ΔZ, the light receiving surface Since a large amount of light is incident on B and D, the focusing error signal becomes a negative (-) value according to -ΔZ. Therefore, it is possible to obtain an S-shaped signal as shown in the figure. As a result, the direction and magnitude of the shift of the focus (Z azimuth) of the inspection target substrate 2 can be known from the sign of the focusing error signal, so that the overall control unit 301 controls the inspection target substrate so that the focusing error signal becomes 0. Feedback control of the focus position of 2 becomes possible. Note that the focusing characteristics may differ between the detection optical system and the autofocus optical system due to environmental factors such as pressure and temperature, and the focusing characteristics may differ between the detection optical system and the autofocus optical system depending on the wavelength band. In the feedback control, the target value (control target in the figure) of the focusing error signal may be offset from 0.
 なお、検査対象基板2のフォーカス位置の制御は、フォーカシング誤差信号の値を基にステージ152の高さZ(フォーカス方向の位置)を制御することを想定しているが、結像レンズ105と対物レンズ102との間の距離を制御することによっても可能である。また、さらにフォーカシング誤差信号の値を基に検出器106のフォーカス位置を調整することも可能であるが、この場合は、検出器106のフォーカス位置を制御してもフォーカシング誤差信号は変化しないため、フィードフォワードで制御することになる。 It is assumed that the focus position of the substrate 2 to be inspected is controlled by controlling the height Z (position in the focus direction) of the stage 152 based on the value of the focusing error signal, but the imaging lens 105 and the objective It is also possible by controlling the distance to and from the lens 102. Further, it is also possible to adjust the focus position of the detector 106 based on the value of the focusing error signal, but in this case, the focusing error signal does not change even if the focus position of the detector 106 is controlled. It will be controlled by feed forward.
 図7に、パターンチップ191の構成例(平面図)を示す。パターンチップ191が有する凹凸パターンを用いて照明光学系と検出光学系を調整することにより、検査対象基板2のパターンによらず、照明光学系と検出光学系の調整を同じ条件で行うことができ、光学系を長期間安定した状態に保つことができる。 FIG. 7 shows a configuration example (plan view) of the pattern chip 191. By adjusting the illumination optical system and the detection optical system using the uneven pattern of the pattern chip 191, the illumination optical system and the detection optical system can be adjusted under the same conditions regardless of the pattern of the substrate 2 to be inspected. , The optical system can be kept stable for a long period of time.
 検査対象基板2の検査時と近い条件で光学系を調整するためには、パターンチップ191は検査対象基板2の近傍に設置し、その表面の高さが検査対象基板2と実質的に等しくなるように設置されるのが望ましい。検査対象基板2とパターンチップ191の表面高さが異なる場合、両者の表面高さの差を用いてステージ152の高さZを補正することにより、パターンチップ191を用いた調整時と検査対象基板2の検査時との検出対象パターンの高さを実質的に等しくすることができる。 In order to adjust the optical system under conditions similar to those at the time of inspection of the inspection target substrate 2, the pattern chip 191 is installed in the vicinity of the inspection target substrate 2, and the height of the surface thereof becomes substantially equal to the inspection target substrate 2. It is desirable to be installed in such a way. When the surface heights of the inspection target substrate 2 and the pattern chip 191 are different, the height Z of the stage 152 is corrected by using the difference in surface height between the two, so that the adjustment using the pattern chip 191 and the inspection target substrate are performed. The height of the detection target pattern can be made substantially the same as that at the time of the inspection of 2.
 パターンチップ191は、表面のパターン領域601内に、回折光や散乱光を発生する凹凸パターンを有する。図7においては、線状に成形された照明領域Rの長手方向をY方向とし、照明領域Rの幅方向(長手方向に直交する方向)をX方向とする。パターン領域601には、Y方向に並ぶ複数のパターン小領域602a、602b、602c、…を有する。 The pattern chip 191 has an uneven pattern that generates diffracted light or scattered light in the pattern region 601 on the surface. In Figure 7, the longitudinal direction of the illumination area R I formed into linear and Y-direction, a width direction of the illumination area R I (the direction perpendicular to the longitudinal direction) and the X direction. The pattern region 601 has a plurality of small pattern regions 602a, 602b, 602c, ... Arranged in the Y direction.
 パターン小領域602a、602b、602c、…の領域サイズおよびその内部に形成されるパターンは互いに共通である。以下、これらのパターン小領域602a、602b、602c、…をまとめて「パターン小領域602」という。パターン小領域602のY方向の長さは、照明領域RのY方向の長さより短くされる(例えば1/4以下)。従って、照明領域RのY方向の範囲内には、複数のパターン小領域602が含まれる。例えば、4個以上のパターン小領域602が照明領域Rの内部に含まれる。これにより、照明領域RのY方向の複数箇所(4箇所以上)において、共通のパターンを用い、照明光学系及び検出光学系の調整を実施できる。このため、照明領域R内のY方向の位置(すなわち、検出視野内の位置)による調整状態のばらつきを抑えて感度のばらつきを抑制することができる。例えば、パターン小領域602は、ドット一列パターン領域611、ラインアンドスペース(以下、「L&S」という。)パターン領域612、ドットL&Sパターン領域613を有している。 The area sizes of the pattern small areas 602a, 602b, 602c, ... And the patterns formed therein are common to each other. Hereinafter, these pattern small regions 602a, 602b, 602c, ... Are collectively referred to as "pattern small region 602". The length of the pattern small area 602 in the Y direction is shorter than the length of the illumination area RI in the Y direction (for example, 1/4 or less). Therefore, a plurality of pattern small regions 602 are included in the range of the illumination region RI in the Y direction. For example, four or more pattern small regions 602 are included within the illumination area R I. Thus, at a plurality of positions in the Y direction of the illumination area R I (or four positions), using a common pattern, it can be performed to adjust the illumination optical system and the detection optical system. Therefore, the position in the Y direction in the illumination area R I (i.e., the position within the detection field) by suppressing variation in the adjustment state due it is possible to suppress variation in sensitivity. For example, the pattern small area 602 has a dot single row pattern area 611, a line and space (hereinafter, referred to as “L & S”) pattern area 612, and a dot L & S pattern area 613.
 図7において、照明領域Rは便宜的に楕円形で表しているが、実際は、照明光の強度分布がY方向に長い楕円状のガウス分布であり、分布中心に対する相対強度が1/e以上となる領域が照明領域Rに相当する。照明領域Rの幅は、X方向に集光したガウス分布の集光幅であり、照明領域Rが狭く細い線状の照明光を用いることでX方向の検出分解能及び照明パワー密度を高くすることができ、高感度の欠陥検査を実現できる。照明領域RのX方向の幅は0.5μmから1.5μmが用いられる。幅を細くするほど高感度化には有利であるが、照明を集光する開口角を大きくとる必要があり、焦点深度が狭まるため、検査の安定性を保つことが難しくなる。実用的には0.8μm程度が適当である。 In FIG. 7, the illumination region RI is represented by an ellipse for convenience, but in reality, the intensity distribution of the illumination light is an elliptical Gaussian distribution long in the Y direction, and the intensity relative to the distribution center is 1 / e 2. regions to be more than equivalent to the illumination area R I. The width of the illumination area R I is a condensing width of the Gaussian distribution that is focused in the X direction, a high detection resolution and illumination power densities in the X direction by the illumination area R I is used narrow thin linear illumination light It is possible to realize highly sensitive defect inspection. The width of the illumination region RI in the X direction is 0.5 μm to 1.5 μm. The narrower the width, the more advantageous it is for increasing the sensitivity, but it is necessary to increase the aperture angle for condensing the illumination, and the depth of focus is narrowed, which makes it difficult to maintain the stability of the inspection. Practically, about 0.8 μm is suitable.
 図8に、欠陥検査装置1000において実行される検査手順を示す。この処理は、信号処理部200及び全体制御部301が実行する。まず、検査対象物(検査対象基板2)を装置に投入し、ステージ152に設置する(ステップS702)。次に、検査条件を設定する(ステップS703)。検査条件には、照明条件(例として照明角度:斜方/垂直/斜方と垂直両方)、および、検出条件が含まれる。次に、照明光学系、検出光学系の調整及び設定が行われる(ステップS704~S707、S710)。具体的には、照明光学系の調整には、照明光の焦点位置を検査対象基板2の表面に位置させること、検出光学系の調整には、検出器106の受光面と検査対象基板2の表面とを結像関係とすること、検出器106を構成する一次元検出器と線状の反射光とを位置合わせすることを含む。 FIG. 8 shows an inspection procedure executed by the defect inspection device 1000. This process is executed by the signal processing unit 200 and the overall control unit 301. First, the inspection target object (inspection target substrate 2) is put into the apparatus and installed on the stage 152 (step S702). Next, the inspection conditions are set (step S703). The inspection conditions include illumination conditions (eg, illumination angle: oblique / vertical / both oblique and vertical) and detection conditions. Next, the illumination optical system and the detection optical system are adjusted and set (steps S704 to S707, S710). Specifically, the focal position of the illumination light is positioned on the surface of the inspection target substrate 2 for adjusting the illumination optical system, and the light receiving surface of the detector 106 and the inspection target substrate 2 are used for adjusting the detection optical system. It includes forming an imaging relationship with the surface and aligning the one-dimensional detector constituting the detector 106 with the linear reflected light.
 調整及び設定の対象は、ステップS703で使用することを選択した照明光学系及び検出光学系である。まず、対象の光学系を前回調整してから経過した時間を求め、調整完了後に状態を維持可能な所定の時間を超えているかどうかを判定する(ステップS704)。所定時間を経過している場合はステップS710に移る。所定時間を経過していない場合、前回調整時以降の環境条件の変化(装置内空間2001の温度変化、気圧変化など)が所定のしきい値を超えているかどうかを判定する(ステップS705)。変化がしきい値を超えている場合はステップS710に移る。超えていない場合は、パターンチップを用いた部分調整(ステップS706)が実行される。パターンチップを用いた部分調整では、例えば検出光学系の位置調整や倍率調整、検査対象基板2を乗せたステージの高さ調整を行う。次に、前回調整時に保存された調整パラメータに基づき照明光学系、検出光学系を設定する(ステップS707)。その後、検査が実行され(ステップS708)、検査結果が保存、表示され(ステップS709)、検査が終了する(ステップS720)。 The objects of adjustment and setting are the illumination optical system and the detection optical system selected to be used in step S703. First, the time elapsed since the last adjustment of the target optical system is obtained, and it is determined whether or not the predetermined time in which the state can be maintained after the adjustment is completed has been exceeded (step S704). If the predetermined time has elapsed, the process proceeds to step S710. When the predetermined time has not elapsed, it is determined whether or not the change in the environmental conditions (temperature change, atmospheric pressure change, etc. in the device internal space 2001) since the previous adjustment exceeds the predetermined threshold value (step S705). If the change exceeds the threshold value, the process proceeds to step S710. If it does not exceed, partial adjustment using the pattern chip (step S706) is executed. In the partial adjustment using the pattern chip, for example, the position adjustment and the magnification adjustment of the detection optical system and the height adjustment of the stage on which the inspection target substrate 2 is placed are performed. Next, the illumination optical system and the detection optical system are set based on the adjustment parameters saved at the time of the previous adjustment (step S707). After that, the inspection is executed (step S708), the inspection result is saved and displayed (step S709), and the inspection is completed (step S720).
 ステップS704及びステップS705の判定において、いずれかがYesの場合、パターンチップを用いた光学系の全体調整が行われ、調整パラメータが更新される。パターンチップを用いた光学系の全体調整では、例えば、照明光学系の位置調整、フォーカス調整、パワー調整や検出光学系の位置調整、フォーカス調整、倍率調整、及び検査対象基板2を乗せたステージの高さ調整を行う。ステップS704及びステップS705がいずれもNoの場合、前回以前の検査の際にパターンチップ191を用いた調整で得られた調整パラメータを用いて光学系が設定される。 In the determination of step S704 and step S705, if either of them is Yes, the entire optical system using the pattern chip is adjusted and the adjustment parameters are updated. In the overall adjustment of the optical system using the pattern chip, for example, the position adjustment of the illumination optical system, the focus adjustment, the position adjustment of the power adjustment and the detection optical system, the focus adjustment, the magnification adjustment, and the stage on which the inspection target substrate 2 is placed. Adjust the height. When both step S704 and step S705 are No, the optical system is set using the adjustment parameters obtained by the adjustment using the pattern chip 191 in the inspection before the previous time.
 検査過程(ステップS708)の終始で、前述のオートフォーカス調整手法により、検査対象基板2を乗せたステージの高さはフォーカシング誤差信号が目標値となるように常時制御される。フォーカシング誤差信号の目標値は、ステップS706に示したパターンチップを用いた部分調整、またはS710に示したパターンチップを用いた全体調整において、例えば検出器106で受光されたパターンチップからの反射光量が略最大値となったときのフォーカシング誤差信号が制御すべき値であると考え、このときのフォーカシング誤差信号値をフォーカシング誤差信号の目標値として更新する。 From beginning to end of the inspection process (step S708), the height of the stage on which the inspection target substrate 2 is placed is constantly controlled so that the focusing error signal becomes the target value by the above-mentioned autofocus adjustment method. The target value of the focusing error signal is the amount of reflected light from the pattern chip received by, for example, the detector 106 in the partial adjustment using the pattern chip shown in step S706 or the total adjustment using the pattern chip shown in S710. It is considered that the focusing error signal when the value reaches a substantially maximum value is a value to be controlled, and the focusing error signal value at this time is updated as the target value of the focusing error signal.
 以上の方法により、時間の経過や環境条件の変化により調整状態がずれて本来の検査性能が得られなくおそれがある場合にはパターンチップ191を用いた調整が行われ、十分に調整された状態で検査を行うことができる。また、前回の調整時からの調整状態のずれが問題にならないほど小さいと期待される場合にはパターンチップ191を用いた全体調整が省略されるため、必要以上の調整に時間をかけることを回避し、検査のスループットを高めることができる。 According to the above method, if there is a risk that the adjustment state may shift due to the passage of time or changes in environmental conditions and the original inspection performance may not be obtained, the adjustment using the pattern chip 191 is performed and the state is sufficiently adjusted. You can inspect at. In addition, if it is expected that the deviation of the adjustment state from the previous adjustment is small enough not to be a problem, the overall adjustment using the pattern chip 191 is omitted, so that it is possible to avoid taking time for adjustment more than necessary. However, the inspection throughput can be increased.
 図9に、オートフォーカス光学系と検出光学系の別の構成を示す側面図を示す。フォーカス調整用光源部121から出射したサーボ光は、コリメートレンズ130で略平行光に変換され、シリンドリカルレンズ131により一方位のみ集光され、図中のビームウェスト面で一方位の光束径が最小に絞られる。ゆえに、ビームウェスト面では線状のプロファイルを示しており、検査で良く用いられる線状照明と略同形状とすることが可能である。その後、光路は図4で説明した光路と同様の光路を通り、偏光ビームスプリッター122を透過する。合焦状態における検査対象基板2の表面の結像面から焦点距離だけ離れた位置にシリンドリカルレンズ128が配置され、フォーカス調整用検出器126で電気信号に変換する。 FIG. 9 shows a side view showing different configurations of the autofocus optical system and the detection optical system. The servo light emitted from the focus adjustment light source unit 121 is converted into substantially parallel light by the collimated lens 130, and is focused only on one side by the cylindrical lens 131, so that the luminous flux diameter on the one side is minimized on the beam waist surface in the drawing. It is squeezed. Therefore, the beam waist surface shows a linear profile, and it is possible to have substantially the same shape as the linear illumination often used in inspection. After that, the optical path passes through the same optical path as the optical path described with reference to FIG. 4, and passes through the polarizing beam splitter 122. A cylindrical lens 128 is arranged at a position separated by a focal length from the image plane of the surface of the substrate 2 to be inspected in the focused state, and is converted into an electric signal by the focus adjustment detector 126.
 図4のオートフォーカス光学系と同様に、フォーカス調整用検出器126に入射する光は、合焦状態では受光面上で円形状となり、デフォーカス時には楕円形状とすることが可能である。なお、コリメートレンズ130は、フォーカス調整用検出器126上での光束径を調整するため、透過後に略発散や略収束状態となるように位置を調整しても良い。 Similar to the autofocus optical system of FIG. 4, the light incident on the focus adjustment detector 126 can have a circular shape on the light receiving surface in the focused state and an elliptical shape in the defocused state. Since the collimating lens 130 adjusts the luminous flux diameter on the focus adjusting detector 126, the position of the collimating lens 130 may be adjusted so as to be in a substantially divergent or substantially converged state after transmission.
 本変形例では、検査対象基板2上で線状プロファイルとなるサーボ光を用いてフォーカス調整を行うため、検査に用いる線状照明と略同領域の光でフォーカス調整を行うことで、線状照明の各エリアにとって平均的に良いフォーカス位置に検査対象基板をフォーカス調整出来るというメリットがある。 In this modification, since the focus is adjusted using the servo light that forms a linear profile on the substrate 2 to be inspected, the linear illumination is performed by adjusting the focus with light in substantially the same region as the linear illumination used for the inspection. There is an advantage that the inspection target substrate can be focused and adjusted to an averagely good focus position for each area.
 図10に、オートフォーカス光学系と検出光学系のさらに別の構成を示す側面図を示す。フォーカス調整用光源部121は、複数の出射部121a、121b、121cを有する。それぞれの出射光(サーボ光)に対応したレンズアレイ135を通り、ビームウェスト面では3つの絞り込まれた点となる。その後の光路は図4で説明した光路と同様の光路を通り、偏光ビームスプリッター122を透過し、それぞれの出射光に対応したシリンドリカルレンズアレイ132を通り、フォーカス調整用検出器126で電気信号に変換される。フォーカス調整用検出器126もそれぞれの出射光に対応する受光部126a、126b、126cを有し、4検出面(図5参照)が3セットある構成となる。 FIG. 10 shows a side view showing still another configuration of the autofocus optical system and the detection optical system. The focus adjusting light source unit 121 has a plurality of emission units 121a, 121b, and 121c. It passes through the lens array 135 corresponding to each emitted light (servo light), and becomes three narrowed points on the beam waist surface. Subsequent optical paths pass through the same optical paths as those described in FIG. 4, pass through the polarizing beam splitter 122, pass through the cylindrical lens array 132 corresponding to each emitted light, and are converted into an electric signal by the focus adjustment detector 126. Be done. The focus adjustment detector 126 also has light receiving units 126a, 126b, and 126c corresponding to the emitted light, and has three sets of four detection surfaces (see FIG. 5).
 本光学構成は、図4の構成を多点照明化したものである。多点の数だけフォーカシング誤差信号が生成されるが、例えば単純に平均化したり、重み付けして足し合わせたりすることで、合成したフォーカシング誤差信号を生成して、制御に用いる。 This optical configuration is a multi-point illumination of the configuration shown in FIG. Focusing error signals are generated for the number of multiple points. For example, a synthesized focusing error signal is generated by simply averaging or weighting and adding them, and is used for control.
 本変形例では、多点のフォーカシング誤差信号が得られるため、多点スポットを線状照明領域内のいくつかの点とすることで線状照明の各エリアにとって平均的に良いフォーカス位置に検査対象基板をフォーカス調整出来るというメリットがある。また、多点のそれぞれのフォーカシング誤差信号を重み付けして合成することで、例えば線状照明の中央付近を重視したフォーカス調整や、上部或いは下部の検査を重視したフォーカス調整等も実現可能である。また、マイクロレンズ等の小型光学部品を用いることで光学系を小型化できるというメリットがある。 In this modification, since a multi-point focusing error signal can be obtained, by setting the multi-point spots as several points in the linear illumination area, the inspection target is on average a good focus position for each area of the linear illumination. There is an advantage that the focus of the board can be adjusted. Further, by weighting and synthesizing the focusing error signals of each of the multiple points, for example, focus adjustment that emphasizes the vicinity of the center of linear illumination, focus adjustment that emphasizes inspection of the upper or lower portion, and the like can be realized. Further, there is an advantage that the optical system can be miniaturized by using a small optical component such as a microlens.
 図11に、オートフォーカス光学系と検出光学系のさらに別の構成を示す側面図を示す。図4の光学系との違いは、フォーカシング誤差信号取得用光学部品125がナイフエッジ133で構成される点である。合焦状態における検査対象基板2の表面の結像面上にナイフエッジ133の側面が配置されるとともに、合焦状態ではナイフエッジ133の先端が光束を遮らず、デフォーカス状態ではナイフエッジ133の先端が光束の一部を遮るように配置する。フォーカシング誤差信号取得用光学部品125を通過後の光は、フォーカス調整用検出器126で電気信号に変換する。フォーカス調整用検出器126は例えば2つの受光面を有する。 FIG. 11 shows a side view showing still another configuration of the autofocus optical system and the detection optical system. The difference from the optical system of FIG. 4 is that the focusing error signal acquisition optical component 125 is composed of the knife edge 133. The side surface of the knife edge 133 is arranged on the image forming surface of the surface of the substrate 2 to be inspected in the focused state, the tip of the knife edge 133 does not block the luminous flux in the focused state, and the knife edge 133 is in the defocused state. Arrange so that the tip blocks a part of the luminous flux. The light after passing through the focusing error signal acquisition optical component 125 is converted into an electric signal by the focus adjustment detector 126. The focus adjustment detector 126 has, for example, two light receiving surfaces.
 図12Aに、合焦時とデフォーカス時におけるフォーカス調整用検出器126上の光束の例(模式図)を示す。合焦時においては、左図に示すように、ナイフエッジ133の先端が光束を遮らずに、フォーカス調整用検出器126の2つの受光面A、Bに同光量が入射する。合焦状態から検査対象基板2がデフォーカスした場合には、そのフォーカス位置のずれ方向によって遮光される光束部が変わり、結果として、中央図または右図に示すように、受光面A、あるいは受光面Bに相対的に多くの光量が入射する。 FIG. 12A shows an example (schematic diagram) of the luminous flux on the focus adjustment detector 126 during focusing and defocusing. At the time of focusing, as shown in the left figure, the same amount of light is incident on the two light receiving surfaces A and B of the focus adjustment detector 126 without the tip of the knife edge 133 blocking the luminous flux. When the substrate 2 to be inspected is defocused from the focused state, the light beam portion that is shielded from light changes depending on the direction of deviation of the focus position. A relatively large amount of light is incident on the surface B.
 図12Bに、本変形例におけるフォーカス調整用検出器126の構成例を示す。フォーカス調整用検出器126は例えば2つの受光面A、Bを有し、合焦時においては、受光面A、Bに略同光量が入射するように配置し、デフォーカス時においては、受光面Aまたは受光面Bのみに多くの光量が入射するように配置する。フォーカシング誤差信号は例えばA-Bで生成することができ、図6に示すようなS字型の信号を得ることが可能である。 FIG. 12B shows a configuration example of the focus adjustment detector 126 in this modified example. The focus adjustment detector 126 has, for example, two light receiving surfaces A and B, and is arranged so that substantially the same amount of light is incident on the light receiving surfaces A and B during focusing, and the light receiving surfaces during defocusing. Arrange so that a large amount of light is incident only on A or the light receiving surface B. The focusing error signal can be generated by, for example, AB, and an S-shaped signal as shown in FIG. 6 can be obtained.
 本変形例によれば、図4に示した光学構成と同様に光学部品が少ない点に加えて、フォーカス調整用検出器126の受光面も2つで良く、オートフォーカス光学系をシンプルに出来るというメリットがある。 According to this modification, in addition to the fact that there are few optical components as in the optical configuration shown in FIG. 4, two light receiving surfaces of the focus adjustment detector 126 are sufficient, and the autofocus optical system can be simplified. There are merits.
 図13に、実施例2に係る欠陥検査装置の実施例を示す概略図を示す。なお、以下の説明において実施例1と内容が共通する部分については説明を省略する。実施例1との違いは、オートフォーカス用の光学系が検出光学系とほぼ完全に共通化されている点である。オートフォーカス用の光源が別途設けられていないため、検査と同様に検査対象基板2からの散乱を含む反射光を用いてオートフォーカスをかける。後述するように、検出器106の構成が実施例1とは異なり、検出器106からの信号を基に信号処理部200でフォーカシング誤差信号を生成する。 FIG. 13 shows a schematic view showing an embodiment of the defect inspection apparatus according to the second embodiment. In the following description, the description of the parts having the same contents as those of the first embodiment will be omitted. The difference from the first embodiment is that the optical system for autofocus is almost completely shared with the detection optical system. Since the light source for autofocus is not separately provided, autofocus is applied using the reflected light including scattering from the inspection target substrate 2 as in the inspection. As will be described later, the configuration of the detector 106 is different from that of the first embodiment, and the signal processing unit 200 generates a focusing error signal based on the signal from the detector 106.
 図14に、検出信号の微分によるフォーカシング誤差信号取得方法の例を示す模式図を示す。上図は検出器の出力(例えば、一次元検出器の光量の和)と検査対象基板2のデフォーカス量との関係を示す模式図である。合焦の場合は、出力が最大となり、デフォーカスするにつれて出力が低下する2次関数と似た特性の出力が一般的には想定される。検査対象基板2を出力が最大となる合焦の位置に制御することが目標となる。このとき、下図に示すような上図を微分した信号が得られれば、合焦時に値がゼロとなり、さらにデフォーカス量に応じて値が±に変化するS字的な信号が得られるため、フォーカシング誤差信号として利用できる。すなわち、通常の検出器での出力をI(ΔZ)とした場合、+方向にデフォーカスした信号I(ΔZ+d)と-方向にデフォーカスした信号I(ΔZ-d)が得られれば、フォーカシング誤差信号を{I(ΔZ+d)-I(ΔZ-d)}/(2d)から生成することが出来る。以下、+方向にデフォーカスした信号I(ΔZ+d)と-方向にデフォーカスした信号I(ΔZ-d)を取得する方法について説明する。 FIG. 14 shows a schematic diagram showing an example of a focusing error signal acquisition method by differentiating the detection signal. The above figure is a schematic diagram showing the relationship between the output of the detector (for example, the sum of the light amounts of the one-dimensional detector) and the defocus amount of the inspection target substrate 2. In the case of focusing, an output with characteristics similar to a quadratic function, in which the output is maximized and the output decreases as it is defocused, is generally assumed. The goal is to control the substrate 2 to be inspected to the in-focus position where the output is maximized. At this time, if a signal obtained by differentiating the upper figure as shown in the lower figure is obtained, the value becomes zero at the time of focusing, and an S-shaped signal whose value changes to ± according to the defocus amount can be obtained. It can be used as a focusing error signal. That is, when the output of a normal detector is I (ΔZ), if a signal I (ΔZ + d) defocused in the + direction and a signal I (ΔZ−d) defocused in the-direction are obtained, a focusing error is obtained. The signal can be generated from {I (ΔZ + d) −I (ΔZ−d)} / (2d). Hereinafter, a method of acquiring the signal I (ΔZ + d) defocused in the + direction and the signal I (ΔZ−d) defocused in the − direction will be described.
 図15に、フォーカシング誤差信号取得に対応する検出器の構成例(概略図)を示す。検出器106は、反射光検出用の受光面106aと、オートフォーカス利用用の受光面106b、106c、106d、106eを有する。受光面106aのフォーカス位置を基準にして、例えば受光面106bと106dは-方向にフォーカス位置をずらし、受光面106cと106eは+方向にフォーカス位置をずらす構成とする。すなわち、受光面106aのフォーカス位置が紙面にあるとすると、受光面106b(106d)のフォーカス位置と受光面106c(106e)のフォーカス位置はそれぞれ紙面の上下に位置する。ここで、受光面106b、106c、106d、106eの時刻tの取得信号をそれぞれS1(t)、S2(t)、S3(t)、S4(t)とし、受光面106bと受光面106c間及び受光面106eと受光面106d間の距離をΔX、検査対象基板2のX方向の移動速度をvとする。図中で検出器106上部のフォーカシング誤差信号はS2(t)-S1(t+ΔX/v)で生成され、検出器106下部のフォーカシング誤差信号はS4(t+ΔX/v)-S3(t)で生成される。 FIG. 15 shows a configuration example (schematic diagram) of a detector corresponding to the acquisition of a focusing error signal. The detector 106 has a light receiving surface 106a for detecting reflected light and light receiving surfaces 106b, 106c, 106d, 106e for using autofocus. With reference to the focus position of the light receiving surface 106a, for example, the light receiving surfaces 106b and 106d are displaced in the − direction, and the light receiving surfaces 106c and 106e are displaced in the + direction. That is, assuming that the focus position of the light receiving surface 106a is on the paper surface, the focus position of the light receiving surface 106b (106d) and the focus position of the light receiving surface 106c (106e) are located above and below the paper surface, respectively. Here, the acquisition signals at the time t of the light receiving surfaces 106b, 106c, 106d, and 106e are set to S1 (t), S2 (t), S3 (t), and S4 (t), respectively, and between the light receiving surface 106b and the light receiving surface 106c and Let ΔX be the distance between the light receiving surface 106e and the light receiving surface 106d, and v be the moving speed of the substrate 2 to be inspected in the X direction. In the figure, the focusing error signal at the upper part of the detector 106 is generated at S2 (t) -S1 (t + ΔX / v), and the focusing error signal at the lower part of the detector 106 is generated at S4 (t + ΔX / v) -S3 (t). To.
 ここで、S2とS1の差分やS3とS4の差分を同一時刻の信号間では無く、時間差を考慮しているのは、同一パターン(欠陥)からの反射光を用いて差分を計算することで、パターン(欠陥)依存の光量差による誤差を低減するためである。なお、検査対象基板2からの反射光は検査対象基板2の移動方向に依存し、この例では、図中の右側のセンサから左側のセンサに順次届くと想定し、検出光学系の倍率は1倍として議論している。検出光学系の倍率がM倍の場合は、検出器106上部のフォーカシング誤差信号はS2(t)-S1(t+ΔX/(Mv))で生成され、検出器106下部のフォーカシング誤差信号はS4(t+ΔX/(Mv))-S3(t)で生成されることになる。 Here, the difference between S2 and S1 and the difference between S3 and S4 are not considered between signals at the same time, but the time difference is taken into consideration by calculating the difference using the reflected light from the same pattern (defect). This is to reduce the error due to the difference in the amount of light depending on the pattern (defect). The reflected light from the inspection target substrate 2 depends on the moving direction of the inspection target substrate 2. In this example, it is assumed that the light reflected from the inspection target substrate 2 reaches the sensor on the left side in order from the sensor on the right side in the figure, and the magnification of the detection optical system is 1. Discussed as double. When the magnification of the detection optical system is M times, the focusing error signal at the upper part of the detector 106 is generated by S2 (t) -S1 (t + ΔX / (Mv)), and the focusing error signal at the lower part of the detector 106 is S4 (t + ΔX). / (Mv))-S3 (t) will be generated.
 図15の検出器106では、上下方向のセンサ間、即ちS1(受光面106b)とS4(受光面106e)間或いはS2(受光面106c)とS3(受光面106d)間でも±のデフォーカスが付いているため、差分をとることでフォーカシング誤差信号を取得可能である。しかしながら、検査対象基板2の移動方向が左右方向のみの場合には、同一パターン(欠陥)からの反射光を用いて差分を取ることが出来ない。ただし、検査対象基板2上の欠陥がランダムに配置されていると仮定できる場合には、同一時刻での上下のセンサ出力の差分からフォーカシング誤差信号を生成し、フォーカシング誤差信号の時間平均をとってもよい。 In the detector 106 of FIG. 15, ± defocus occurs between the sensors in the vertical direction, that is, between S1 (light receiving surface 106b) and S4 (light receiving surface 106e) or between S2 (light receiving surface 106c) and S3 (light receiving surface 106d). Since it is attached, it is possible to obtain a focusing error signal by taking the difference. However, when the moving direction of the substrate 2 to be inspected is only in the left-right direction, it is not possible to obtain a difference by using the reflected light from the same pattern (defect). However, if it can be assumed that the defects on the substrate 2 to be inspected are randomly arranged, the focusing error signal may be generated from the difference between the upper and lower sensor outputs at the same time, and the time average of the focusing error signal may be taken. ..
 なお、各受光面の位置をフォーカス方向(紙面に垂直方向)に同一としても、各受光面の前に配置するカバーガラス等のカバー層の厚みを変えることで、空気換算距離が変わるので、±のデフォーカスを実現することが可能である。すなわち受光面106aの前に配置するカバーガラスの厚みに対して、受光面106bと受光面106d前は薄いカバーガラスを、受光面106cと受光面106e前は厚いカバーガラスを配置する、或いはウェッジ状のカバーガラス1500を受光面106bと受光面106c及び受光面106eと受光面106d前に配置して同様の効果を実現することが可能である。 Even if the position of each light receiving surface is the same in the focus direction (direction perpendicular to the paper surface), the air conversion distance can be changed by changing the thickness of the cover layer such as the cover glass arranged in front of each light receiving surface. It is possible to realize the defocus of. That is, with respect to the thickness of the cover glass arranged in front of the light receiving surface 106a, a thin cover glass is arranged in front of the light receiving surface 106b and the light receiving surface 106d, and a thick cover glass is arranged in front of the light receiving surface 106c and the light receiving surface 106e, or a wedge shape. It is possible to realize the same effect by arranging the cover glass 1500 of the above in front of the light receiving surface 106b and the light receiving surface 106c and the light receiving surface 106e and the light receiving surface 106d.
 本実施例では、通常の検査に必要な光学系に対して検出器106内の受光面配置とデフォーカスのみで実現できるため、光学系が簡素化できるメリットがある。 In this embodiment, the optical system required for normal inspection can be realized only by arranging the light receiving surface in the detector 106 and defocusing, so that there is an advantage that the optical system can be simplified.
 図16に、オートフォーカス光学系と検出光学系の別の構成を示す側面図を示す。検出器106-1は合焦面に対して+dデフォーカスする配置とし、検出器106-2は合焦面に対して-dデフォーカスする配置とし、ハーフミラー134を透過した反射光が検出器106-1に、ハーフミラー134を反射した反射光が検出器106-2に入射されるよう構成している。これにより、±のデフォーカス信号を得ることが出来る。フォーカシング誤差信号は、同一時刻の検出器106-1と検出器106-2の出力の差分から生成可能である。なお、欠陥検査用の信号は検出器106-1と検出器106-2の和で計算する。ここで、得られる信号は常にデフォーカスした信号となるため、dの値は許容されるデフォーカス量の範囲内で設計する必要がある。 FIG. 16 shows a side view showing different configurations of the autofocus optical system and the detection optical system. The detector 106-1 is arranged to defocus + d with respect to the focal plane, and the detector 106-2 is arranged to defocus −d with respect to the focal surface, and the reflected light transmitted through the half mirror 134 is a detector. The light reflected from the half mirror 134 is incident on the detector 106-2 at 106-1. As a result, a ± defocus signal can be obtained. The focusing error signal can be generated from the difference between the outputs of the detector 106-1 and the detector 106-2 at the same time. The signal for defect inspection is calculated by the sum of the detector 106-1 and the detector 106-2. Here, since the obtained signal is always a defocused signal, it is necessary to design the value of d within the allowable defocus amount range.
 本変形例では、同一時間の信号間で処理が可能である為、信号処理が簡易であるというメリットがある。 In this modified example, since processing can be performed between signals at the same time, there is an advantage that signal processing is simple.
 図17Aに、オートフォーカス光学系と検出光学系のさらに別の構成を示す側面図を示す。検出器106は合焦面に対してチルトさせて配置する。このとき、図面上の左右の受光面でフォーカスが互いに逆方向にデフォーカスするため、左右の受光面の信号間の差分を取ることでフォーカシング誤差信号を生成可能である。 FIG. 17A shows a side view showing still another configuration of the autofocus optical system and the detection optical system. The detector 106 is tilted with respect to the focal plane. At this time, since the focus is defocused on the left and right light receiving surfaces on the drawing in opposite directions, it is possible to generate a focusing error signal by taking the difference between the signals on the left and right light receiving surfaces.
 図17Bに、フォーカシング誤差信号取得に対応した検出器の構成例(概略図)を示す。検出器106は例えばS1、S2、S3の受光面を有している。S1は-方向にデフォーカス、S2は合焦、S3は+方向にデフォーカスとしている。時刻tの取得信号をそれぞれS1(t)、S2(t)、S3(t)とし、S1とS3間の距離をΔX、検査対象基板2の左右方向の移動速度をvとするとき、フォーカシング誤差信号はS3(t)-S1(t+ΔX/v)で生成される。なお、検査対象基板2からの反射光は検査対象基板2の移動方向に依存し、この例では、図中の右側のセンサから左側のセンサに順次届くと想定し、検出光学系の倍率は1倍として議論している。検出光学系の倍率がM倍の場合は、フォーカシング誤差信号はS3(t)-S1(t+ΔX/(Mv))で生成される。欠陥検査用の信号は、S2から生成される。 FIG. 17B shows a configuration example (schematic diagram) of a detector corresponding to the acquisition of a focusing error signal. The detector 106 has, for example, the light receiving surfaces of S1, S2, and S3. S1 is defocused in the minus direction, S2 is in focus, and S3 is defocused in the + direction. Focusing error when the acquisition signals at time t are S1 (t), S2 (t), and S3 (t), the distance between S1 and S3 is ΔX, and the moving speed of the inspection target substrate 2 in the left-right direction is v. The signal is generated in S3 (t) -S1 (t + ΔX / v). The reflected light from the inspection target substrate 2 depends on the moving direction of the inspection target substrate 2. In this example, it is assumed that the light reflected from the inspection target substrate 2 reaches the sensor on the left side in order from the sensor on the right side in the figure, and the magnification of the detection optical system is 1. Discussed as double. When the magnification of the detection optical system is M times, the focusing error signal is generated in S3 (t) −S1 (t + ΔX / (Mv)). The defect inspection signal is generated from S2.
 本変形例では、欠陥検査用の受光面とオートフォーカス用の受光面とを兼用しているため、光学系が最も簡素化できるメリットがある。 In this modified example, since the light receiving surface for defect inspection and the light receiving surface for autofocus are used together, there is an advantage that the optical system can be simplified most.
 以上、本発明の実施の態様について説明した。本発明は、上述した実施例、変形例に限定されるものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The embodiment of the present invention has been described above. The present invention is not limited to the above-described examples and modifications, and includes various modifications. The above-described embodiment describes the present invention in an easy-to-understand manner, and is not necessarily limited to the one having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。例えば、例示した欠陥検査装置は、TTL照明光学系、斜方照明光学系の2つの照明光学系を有する欠陥検査装置であるが、いずれか一方の照明光学系のみを有する欠陥検査装置に対しても適用でき、特に斜方照明光学系を有する欠陥検査装置に有効である。 In addition, the control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are interconnected. For example, the illustrated defect inspection device is a defect inspection device having two illumination optical systems, a TTL illumination optical system and an oblique illumination optical system, but for a defect inspection apparatus having only one of the illumination optical systems. Is also applicable, and is particularly effective for defect inspection devices having an oblique illumination optical system.
 また、一例として欠陥検査装置に関する図面を用いて説明したが、本発明におけるオートフォーカス技術は、欠陥検査装置に限定されるものではなく、試料のパターン有無や、XYステージ又は回転ステージといったステージ動作方向に関わらず、様々な検査装置、計測装置、測定装置等に応用が可能である。 Further, although the description has been given using the drawings relating to the defect inspection apparatus as an example, the autofocus technique in the present invention is not limited to the defect inspection apparatus, and the presence or absence of a sample pattern and the stage operation direction such as the XY stage or the rotation stage. Regardless of this, it can be applied to various inspection devices, measuring devices, measuring devices, and the like.
2…検査対象基板、101…光源部、102…対物レンズ、103…対物瞳光学部、104…偏光子、105…結像レンズ、106…検出器、107,129…ステージ、108,110,113…ミラー、109…二次元検出器、111…TTL照明光学系、112…斜方照明光学系、121…フォーカス調整用光源部、122…偏光ビームスプリッター、123…1/4波長板、124…ダイクロミラー、125…フォーカシング誤差信号取得用光学部品、126…フォーカス調整用検出器、127…レンズ、128,131…シリンドリカルレンズ、130…コリメートレンズ、132…シリンドリカルレンズアレイ、133…ナイフエッジ、134…ハーフミラー、135…レンズアレイ、151…ステージ駆動部、152…X-Y-Z-θステージ、170…検出光学系、191…パターンチップ、200…信号処理部、301…全体制御部、302…表示部、303…演算部、304…記憶部、601…パターン領域、602…パターン小領域、611…ドット一列パターン領域、612…ラインアンドスペースパターン領域、613…ドットパターン領域、1000…欠陥検査装置、2001…装置内空間、2002…温度計、2003…気圧計。 2 ... Inspection target substrate, 101 ... Light source unit, 102 ... Objective lens, 103 ... Objective pupil optical unit, 104 ... Polarizer, 105 ... Imaging lens, 106 ... Detector, 107,129 ... Stage, 108,110,113 ... Mirror, 109 ... Two-dimensional detector, 111 ... TTL illumination optical system, 112 ... Diagonal illumination optical system, 121 ... Focus adjustment light source unit, 122 ... Polarized beam splitter, 123 ... 1/4 wavelength plate, 124 ... Dycro Mirror, 125 ... Optical component for focusing error signal acquisition, 126 ... Focus adjustment detector, 127 ... Lens, 128, 131 ... Cylindrical lens, 130 ... Collimating lens, 132 ... Cylindrical lens array 133 ... Knife edge, 134 ... Half Mirror, 135 ... Lens array, 151 ... Stage drive unit, 152 ... XYZ-θ stage, 170 ... Detection optical system, 191 ... Pattern chip, 200 ... Signal processing unit, 301 ... Overall control unit, 302 ... Display Unit, 303 ... Calculation unit, 304 ... Storage unit, 601 ... Pattern area, 602 ... Pattern small area, 611 ... Dot single row pattern area, 612 ... Line and space pattern area, 613 ... Dot pattern area, 1000 ... Defect inspection device, 2001 ... Equipment space, 2002 ... Thermometer, 2003 ... Barometer.

Claims (15)

  1.  試料上の異物あるいは欠陥の有無を検査する欠陥検査装置であって、
     第1の光源部と、
     前記第1の光源部より出射された照明光を前記試料に照射する照明光学系と、
     前記照明光を前記試料に照射した際に生じる前記試料からの散乱光を集光する検出光学系と、
     前記検出光学系により集光した前記散乱光を検出する第1の検出器と、
     前記試料のフォーカス方向の位置ずれを示すフォーカシング誤差信号を生成するオートフォーカス光学系と、
     ダイクロミラーとを有し、
     前記オートフォーカス光学系は、前記照明光とは異なる波長のサーボ光を出射する第2の光源部と、前記サーボ光を前記試料に照射した際に生じる反射光を前記検出光学系により集光した後、検出する第2の検出器とを備え、
     前記散乱光は前記ダイクロミラーを透過または反射して前記検出光学系から前記第1の検出器に入射され、前記反射光は前記ダイクロミラーを反射または透過して前記検出光学系から前記第2の検出器に入射され、
     前記フォーカシング誤差信号は、前記オートフォーカス光学系の前記第2の検出器で検出した前記反射光に基づき生成される欠陥検査装置。
    A defect inspection device that inspects the sample for foreign matter or defects.
    The first light source and
    An illumination optical system that irradiates the sample with illumination light emitted from the first light source unit.
    A detection optical system that collects scattered light from the sample generated when the sample is irradiated with the illumination light.
    A first detector that detects the scattered light collected by the detection optical system, and
    An autofocus optical system that generates a focusing error signal indicating a displacement of the sample in the focus direction,
    Has a dichroic mirror
    In the autofocus optical system, a second light source unit that emits servo light having a wavelength different from that of the illumination light and reflected light generated when the sample is irradiated with the servo light are collected by the detection optical system. It is equipped with a second detector to detect later,
    The scattered light is transmitted or reflected through the dichroic mirror and is incident on the first detector from the detection optical system, and the reflected light is reflected or transmitted through the dichroic mirror and is transmitted from the detection optical system to the second detector. Entered into the detector,
    The focusing error signal is a defect inspection device generated based on the reflected light detected by the second detector of the autofocus optical system.
  2.  請求項1において、
     前記照明光学系は、前記照明光を前記試料の斜め上方から照射する斜方照明光学系である欠陥検査装置。
    In claim 1,
    The illumination optical system is a defect inspection device that is an oblique illumination optical system that irradiates the illumination light from diagonally above the sample.
  3.  請求項1において、
     前記試料が載置されるステージと、
     前記フォーカシング誤差信号が入力される制御部とを有し、
     前記制御部は、前記フォーカシング誤差信号が所定の目標値となるように前記ステージのフォーカス方向の位置を制御する欠陥検査装置。
    In claim 1,
    The stage on which the sample is placed and
    It has a control unit to which the focusing error signal is input.
    The control unit is a defect inspection device that controls the position of the stage in the focus direction so that the focusing error signal becomes a predetermined target value.
  4.  請求項3において、
     前記制御部は、環境あるいは前記照明光と前記サーボ光との波長帯域の違いによる前記検出光学系と前記オートフォーカス光学系との集光特性の違いに基づき、前記所定の目標値をオフセットさせる欠陥検査装置。
    In claim 3,
    The control unit has a defect of offsetting the predetermined target value based on the difference in the focusing characteristics between the detection optical system and the autofocus optical system due to the difference in the wavelength band between the illumination light and the servo light. Inspection equipment.
  5.  請求項3において、
     前記制御部は、前記照明光学系または前記検出光学系の調整時において前記第1の検出器で検出される前記散乱光の光量が最大光量となったときの前記フォーカシング誤差信号の値を前記所定の目標値とする欠陥検査装置。
    In claim 3,
    The control unit determines the value of the focusing error signal when the amount of scattered light detected by the first detector at the time of adjusting the illumination optical system or the detection optical system reaches the maximum light amount. Defect inspection device to be the target value of.
  6.  請求項1において、
     前記オートフォーカス光学系において、前記試料の表面と前記サーボ光のビームウェスト面とが前記検出光学系を介して前記サーボ光の波長の光で結像関係となっているときに、前記試料の表面と前記第1の検出器の受光面とが前記検出光学系を介して前記照明光の波長の光で結像関係になるように調整される欠陥検査装置。
    In claim 1,
    In the autofocus optical system, when the surface of the sample and the beam waist surface of the servo light are in an imaging relationship with light of the wavelength of the servo light via the detection optical system, the surface of the sample. A defect inspection device in which the light receiving surface of the first detector and the light receiving surface of the first detector are adjusted to form an imaging relationship with light having a wavelength of the illumination light via the detection optical system.
  7.  請求項1において、
     前記オートフォーカス光学系は、第1のシリンドリカルレンズを備え、
     前記第2の検出器は2×2の4つの受光面を有し、
     前記第2の検出器は、前記第1のシリンドリカルレンズを通過した前記反射光が円形状である場合には前記4つの受光面のそれぞれに略等しい光量が入射し、前記第1のシリンドリカルレンズを通過した前記反射光が楕円形状である場合には前記楕円の長軸或いは短軸が前記4つの受光面の45度方位に略一致するよう入射するように、配置される欠陥検査装置。
    In claim 1,
    The autofocus optical system includes a first cylindrical lens.
    The second detector has four 2x2 light receiving surfaces.
    In the second detector, when the reflected light passing through the first cylindrical lens has a circular shape, substantially equal amounts of light are incident on each of the four light receiving surfaces, and the first cylindrical lens is used. A defect inspection device arranged so that when the reflected light that has passed through has an elliptical shape, the major axis or the minor axis of the ellipse is incident so as to substantially coincide with the 45-degree orientation of the four light receiving surfaces.
  8.  請求項7において、
     前記オートフォーカス光学系は第2のシリンドリカルレンズを備え、前記第2の光源部からの前記サーボ光を前記第2のシリンドリカルレンズを通過させることにより、前記サーボ光を線状として前記試料に照射する欠陥検査装置。
    In claim 7,
    The autofocus optical system includes a second cylindrical lens, and the servo light from the second light source unit is passed through the second cylindrical lens to linearly irradiate the sample with the servo light. Defect inspection equipment.
  9.  請求項7において、
     前記第2の光源部は複数の出射部を有し、
     前記オートフォーカス光学系は、前記複数の出射部から出射される複数の前記サーボ光を前記試料に照射し、前記検出光学系により集光した複数の前記反射光が入射されるシリンドリカルレンズアレイを備え、
     前記シリンドリカルレンズアレイを通過した複数の前記反射光のそれぞれが、複数の前記第2の検出器に入射される欠陥検査装置。
    In claim 7,
    The second light source unit has a plurality of emission units and has a plurality of emission units.
    The autofocus optical system includes a cylindrical lens array in which the sample is irradiated with a plurality of the servo lights emitted from the plurality of emitting units, and the plurality of reflected lights collected by the detection optical system are incident. ,
    A defect inspection device in which each of the plurality of reflected lights that have passed through the cylindrical lens array is incident on the plurality of the second detectors.
  10.  請求項1において、
     前記オートフォーカス光学系は、前記試料の表面と前記サーボ光のビームウェスト面とが前記検出光学系を介して前記サーボ光の波長の光で結像関係となっているときに、前記反射光を遮らず、前記試料の表面と前記サーボ光のビームウェスト面とが前記検出光学系を介して前記サーボ光の波長の光で結像関係となっていないときに、前記反射光の一部を遮るように配置されたナイフエッジを備え、
     前記第2の検出器は2つの受光面を有し、前記第2の検出器は、前記ナイフエッジが前記反射光を遮らない場合には、前記反射光が前記2つの受光面のそれぞれに略等しい光量で入射し、前記ナイフエッジが前記反射光の一部を遮る場合には、前記試料のフォーカス位置のずれた方向に応じて前記2つの受光面の一方に相対的に大きな光量が入射するように配置される欠陥検査装置。
    In claim 1,
    The autofocus optical system emits the reflected light when the surface of the sample and the beam waist surface of the servo light are in an imaging relationship with light having a wavelength of the servo light via the detection optical system. Without blocking, a part of the reflected light is blocked when the surface of the sample and the beam waist surface of the servo light are not in an imaging relationship with the light having the wavelength of the servo light via the detection optical system. With knife edges arranged so that
    The second detector has two light receiving surfaces, and the second detector omits the reflected light on each of the two light receiving surfaces when the knife edge does not block the reflected light. When the same amount of light is incident and the knife edge blocks a part of the reflected light, a relatively large amount of light is incident on one of the two light receiving surfaces according to the direction in which the focus position of the sample is deviated. Defect inspection equipment arranged so that.
  11.  試料上の異物あるいは欠陥の有無を検査する欠陥検査装置であって、
     前記試料を載置するステージと、
     光源部と、
     前記光源部より出射された照明光を前記試料に照射する照明光学系と、
     前記照明光を前記試料に照射した際に生じる前記試料からの散乱光を集光する検出光学系と、
     前記検出光学系により集光した前記散乱光を検出する検出器と、
     前記検出器で検出した検出信号からフォーカシング誤差信号を生成する信号処理部とを有し、
     前記検出器は、フォーカス位置が第1方向にずれた第1の受光面と第2方向にずれた第2の受光面とを有し、前記ステージの移動につれて、前記散乱光は前記第1の受光面に先立って前記第2の受光面に入射され、
     前記信号処理部は、前記ステージの移動速度をv、前記第1の受光面と前記第2の受光面との前記ステージの移動方向の距離をΔX、前記検出光学系の倍率をMとするとき、時刻tにおける前記第2の受光面での検出信号及び時刻(t+ΔX/(Mv))における前記第1の受光面での検出信号に基づき前記フォーカシング誤差信号を算出する欠陥検査装置。
    A defect inspection device that inspects the sample for foreign matter or defects.
    The stage on which the sample is placed and
    Light source and
    An illumination optical system that irradiates the sample with illumination light emitted from the light source unit, and
    A detection optical system that collects scattered light from the sample generated when the sample is irradiated with the illumination light.
    A detector that detects the scattered light collected by the detection optical system and
    It has a signal processing unit that generates a focusing error signal from the detection signal detected by the detector.
    The detector has a first light receiving surface whose focus position is deviated in the first direction and a second light receiving surface whose focus position is deviated in the second direction, and as the stage moves, the scattered light becomes the first light receiving surface. It is incident on the second light receiving surface prior to the light receiving surface,
    When the signal processing unit sets the moving speed of the stage to v, the distance between the first light receiving surface and the second light receiving surface in the moving direction of the stage is ΔX, and the magnification of the detection optical system is M. , A defect inspection device that calculates the focusing error signal based on the detection signal on the second light receiving surface at time t and the detection signal on the first light receiving surface at time (t + ΔX / (Mv)).
  12.  請求項11において、
     受光面の前に配置するカバー層の厚みを変えることにより、前記第1の受光面及び前記第2の受光面のフォーカス位置をずらす欠陥検査装置。
    11.
    A defect inspection device that shifts the focus positions of the first light receiving surface and the second light receiving surface by changing the thickness of the cover layer arranged in front of the light receiving surface.
  13.  請求項11において、
     前記検出器の前記第1の受光面及び前記第2の受光面の形成された面を合焦面に対してチルトさせることにより、前記第1の受光面及び前記第2の受光面のフォーカス位置をずらす欠陥検査装置。
    11.
    By tilting the surface on which the first light receiving surface and the second light receiving surface of the detector are formed with respect to the focal plane, the focus positions of the first light receiving surface and the second light receiving surface are Defect inspection device that shifts.
  14.  請求項11において、
     前記フォーカシング誤差信号が入力される制御部を有し、
     前記制御部は、前記フォーカシング誤差信号が所定の目標値となるように前記ステージのフォーカス方向の位置を制御する欠陥検査装置。
    11.
    It has a control unit to which the focusing error signal is input.
    The control unit is a defect inspection device that controls the position of the stage in the focus direction so that the focusing error signal becomes a predetermined target value.
  15.  試料上の異物あるいは欠陥の有無を検査する欠陥検査装置であって、
     前記試料を載置するステージと、
     光源部と、
     前記光源部より出射された照明光を前記試料に照射する照明光学系と、
     前記照明光を前記試料に照射した際に生じる前記試料からの散乱光を集光する検出光学系と、
     ハーフミラーと、
     前記検出光学系により集光した前記散乱光を検出する複数の検出器と、
     前記複数の検出器で検出した検出信号からフォーカシング誤差信号を生成する信号処理部とを有し、
     前記複数の検出器は、前記ハーフミラーを透過した前記散乱光を検出する第1の検出器と、前記ハーフミラーを反射した前記散乱光を検出する第2の検出器とを有し、前記第1の検出器のフォーカス位置は合焦面に対して第1の方向にずれており、前記第2の検出器のフォーカス位置は合焦面に対して第2の方向にずれているように配置され、
     前記信号処理部は、前記第1の検出器の検出信号と前記第2の検出器の検出信号との差分に基づき前記フォーカシング誤差信号を算出する欠陥検査装置。
    A defect inspection device that inspects the sample for foreign matter or defects.
    The stage on which the sample is placed and
    Light source and
    An illumination optical system that irradiates the sample with illumination light emitted from the light source unit, and
    A detection optical system that collects scattered light from the sample generated when the sample is irradiated with the illumination light.
    With a half mirror
    A plurality of detectors that detect the scattered light collected by the detection optical system, and
    It has a signal processing unit that generates a focusing error signal from the detection signals detected by the plurality of detectors.
    The plurality of detectors include a first detector that detects the scattered light that has passed through the half mirror and a second detector that detects the scattered light that has reflected the half mirror. The focus position of the detector 1 is displaced in the first direction with respect to the focal plane, and the focus position of the second detector is arranged so as to be offset in the second direction with respect to the focal surface. Being done
    The signal processing unit is a defect inspection device that calculates the focusing error signal based on the difference between the detection signal of the first detector and the detection signal of the second detector.
PCT/JP2019/012746 2019-03-26 2019-03-26 Defect inspection device WO2020194491A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012746 WO2020194491A1 (en) 2019-03-26 2019-03-26 Defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012746 WO2020194491A1 (en) 2019-03-26 2019-03-26 Defect inspection device

Publications (1)

Publication Number Publication Date
WO2020194491A1 true WO2020194491A1 (en) 2020-10-01

Family

ID=72609356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012746 WO2020194491A1 (en) 2019-03-26 2019-03-26 Defect inspection device

Country Status (1)

Country Link
WO (1) WO2020194491A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113305A (en) * 1990-09-03 1992-04-14 Brother Ind Ltd Focusing device
JPH08178623A (en) * 1994-12-22 1996-07-12 Olympus Optical Co Ltd Optical measuring device
JPH10142489A (en) * 1996-11-15 1998-05-29 Toray Ind Inc Method and device for focus detection
JPH11237344A (en) * 1998-02-19 1999-08-31 Hitachi Ltd Method and apparatus for inspection of defect
US20050089208A1 (en) * 2003-07-22 2005-04-28 Rui-Tao Dong System and method for generating digital images of a microscope slide
JP2007051902A (en) * 2005-08-17 2007-03-01 Hitachi High-Technologies Corp Mapping projection type electron beam inspection device, and method therefor
JP2014174052A (en) * 2013-03-11 2014-09-22 Hitachi High-Technologies Corp Defect inspection method and device using the same
JP2015523587A (en) * 2012-05-02 2015-08-13 ライカ バイオシステムズ イメージング インコーポレイテッド Real-time focusing in line scan imaging
JP2018503244A (en) * 2014-12-02 2018-02-01 ケーエルエー−テンカー コーポレイション Detection enhanced inspection system and technology
JP2018519524A (en) * 2015-06-29 2018-07-19 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring height on a semiconductor wafer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113305A (en) * 1990-09-03 1992-04-14 Brother Ind Ltd Focusing device
JPH08178623A (en) * 1994-12-22 1996-07-12 Olympus Optical Co Ltd Optical measuring device
JPH10142489A (en) * 1996-11-15 1998-05-29 Toray Ind Inc Method and device for focus detection
JPH11237344A (en) * 1998-02-19 1999-08-31 Hitachi Ltd Method and apparatus for inspection of defect
US20050089208A1 (en) * 2003-07-22 2005-04-28 Rui-Tao Dong System and method for generating digital images of a microscope slide
JP2007051902A (en) * 2005-08-17 2007-03-01 Hitachi High-Technologies Corp Mapping projection type electron beam inspection device, and method therefor
JP2015523587A (en) * 2012-05-02 2015-08-13 ライカ バイオシステムズ イメージング インコーポレイテッド Real-time focusing in line scan imaging
JP2014174052A (en) * 2013-03-11 2014-09-22 Hitachi High-Technologies Corp Defect inspection method and device using the same
JP2018503244A (en) * 2014-12-02 2018-02-01 ケーエルエー−テンカー コーポレイション Detection enhanced inspection system and technology
JP2018519524A (en) * 2015-06-29 2018-07-19 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring height on a semiconductor wafer

Similar Documents

Publication Publication Date Title
JP6882209B2 (en) Methods and equipment for measuring height on semiconductor wafers
US6428171B1 (en) Height measuring apparatus
US7123345B2 (en) Automatic focusing apparatus
US7495779B2 (en) Level detection apparatus
JP2014174052A (en) Defect inspection method and device using the same
KR20090108525A (en) Automatic focus control unit, electronic device and automatic focus control method
CN113330299A (en) Imaging reflectometer
JP5498044B2 (en) Automatic focusing mechanism and optical image acquisition device
TWI699842B (en) Method of improving lateral resolution for height sensor using differential detection technology for semiconductor inspection and metrology
JP4810053B2 (en) Multiple beam inspection apparatus and method
US8456641B1 (en) Optical system
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
WO2020255282A1 (en) Defect inspection device and defect inspection device calibration method
JP3688185B2 (en) Focus detection device and autofocus microscope
WO2020194491A1 (en) Defect inspection device
KR102220759B1 (en) Defect inspection device and pattern chip
US20220327725A1 (en) Image based metrology of surface deformations
WO2003060589A1 (en) Auto focussing device and method
WO2017149689A1 (en) Defect inspection device, pattern chip, and defect inspection method
JPH0762604B2 (en) Alignment device
TW202009081A (en) Laser processing apparatus
CN115388765B (en) Automatic focusing device for ellipsometry system
JP2949179B2 (en) Non-contact type shape measuring device and shape measuring method
KR102160025B1 (en) Charged particle beam device and optical inspection device
JP2005274550A (en) Laser length measuring machine, and original optical disk exposure device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP