JPH1151616A - Defect inspecting instrument - Google Patents

Defect inspecting instrument

Info

Publication number
JPH1151616A
JPH1151616A JP20576697A JP20576697A JPH1151616A JP H1151616 A JPH1151616 A JP H1151616A JP 20576697 A JP20576697 A JP 20576697A JP 20576697 A JP20576697 A JP 20576697A JP H1151616 A JPH1151616 A JP H1151616A
Authority
JP
Japan
Prior art keywords
defect
light
detected
substrate
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20576697A
Other languages
Japanese (ja)
Inventor
Mitsuko Imatake
美津子 今武
Shunichi Matsumoto
俊一 松本
Yukio Kenbo
行雄 見坊
Hiroaki Shishido
弘明 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20576697A priority Critical patent/JPH1151616A/en
Publication of JPH1151616A publication Critical patent/JPH1151616A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve an easier measurement of the dimension of a fine defect with a simple structure by estimating the dimension of the defect based on the quantity of light detected from scattered light generated from irradiation by an optical system and lighting systems which irradiate the defect on a substrate with light from a plurality of directions. SOLUTION: Power of light sources 13, 14 and 15 is turned on to open a shutter 16 by a signal of a signal processing circuit 26. Scattered light by the light source 13 is detected by a linear sensor 24. When a detect exists, the level of a signal and the intensity of light inputted increase. The shutter 16 is closed and a shutter 18 is opened to irradiate a substrate 7 with a laser light from the light source 14 and the scattered light is detected. The same is with the light source 15. The scattered light is detected by opening or closing a shutter 18. The characteristic of the scattered light is that the projection surface of the defect and the quantity of light detected is in a proportional relationship. Light condensed by an imaging lens 23 of a detection optical system 5 is detected by a linear sensor 24 of a signal processing system 6. The light detected is sent to an A/D converter 25 and the signal processing circuit 26 measures the size of the defect in the order of submicron on the substrate 7, based on the quantity of light detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜基板上の欠陥
を検出する欠陥検査装置に係わり、特にサブミクロンオ
ーダの微細な欠陥を、簡単な構成で容易に検出するのに
好適な、欠陥検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection apparatus for detecting a defect on a thin film substrate, and more particularly to a defect inspection method suitable for easily detecting a submicron-order minute defect with a simple structure. Related to the device.

【0002】[0002]

【従来の技術】薄膜基板上の欠陥の大きさを検出する装
置として特開昭63-6924号公報に記載されている従来技
術では、検出光量の出力信号レベルから欠陥のサイズを
判定している。
2. Description of the Related Art As a device for detecting the size of a defect on a thin film substrate, a prior art described in Japanese Patent Application Laid-Open No. 63-6924 discloses a method of judging the size of a defect from an output signal level of a detected light amount. .

【0003】[0003]

【発明が解決しようとしている課題】前記従来技術の特
開昭63-69244号公報においては、欠陥に対する入射光の
方向性を考慮していない。そのため一方向からの検出光
量で欠陥の寸法を正確に演算することはできなかった。
また欠陥の寸法、形状を検出光量から演算する特許は見
あたらない。
In the above-mentioned prior art JP-A-63-69244, the directivity of incident light with respect to a defect is not taken into consideration. Therefore, it was not possible to accurately calculate the size of the defect based on the amount of light detected from one direction.
Further, there is no patent that calculates the size and shape of a defect from the detected light amount.

【0004】本発明は、上記従来技術の問題点に対し、
薄板基板上のサブミクロンオーダの微細な欠陥の寸法
を、簡単な構成で容易に測定することができる欠陥検査
装置を提供することを目的としている。
[0004] The present invention solves the above-mentioned problems of the prior art.
It is an object of the present invention to provide a defect inspection apparatus capable of easily measuring the size of a fine defect on the order of submicron on a thin substrate with a simple configuration.

【0005】[0005]

【課題を解決するための手段】上記目的は、薄膜基板上
の欠陥に対し複数から光を照射する光学系と各照明系の
照射により発生する散乱光、および回折光からの検出光
量により、欠陥の寸法を予測する手段により解決する。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical system for irradiating light on a defect on a thin film substrate from a plurality of light sources, a scattered light generated by irradiation of each illumination system, and a detected light amount from diffracted light. Is solved by means for predicting the size of

【0006】[0006]

【発明の実施の形態】以下、本発明の一実施例の構成を
第1図を参照して説明する。図1は本発明の欠陥検査装
置である。本装置は検査ステージ部1で基板7を固定手
段8により上面に固定してX方向に移動可能なXステージ
9と、Yステージ10を介して基板7をY方向へ移動させ
るYステージ10と、同じく基板7をX方向へ移動させるX
ステージ駆動系11と、基板7をY方向へ移動させるYステ
ージ駆動系12から構成されている。各ステージは基板7
の検査中、常に必要な精度で焦点合わせ可能に制御され
るようになっている。ステージ駆動系11、12はエアーマ
イクロメータを用いるものでも、或いはレーザ干渉法で
位置を検出するものでもよい。なおX、Yは図に示す方向
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of one embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a defect inspection apparatus according to the present invention. The present apparatus includes an X stage 9 that can move the substrate 7 in the X direction by fixing the substrate 7 to the upper surface by the inspection stage unit 1 by the fixing means 8, and a Y stage 10 that moves the substrate 7 in the Y direction via the Y stage 10. X to move the substrate 7 in the X direction
It comprises a stage drive system 11 and a Y stage drive system 12 for moving the substrate 7 in the Y direction. Each stage is a substrate 7
During the inspection, the focus is always controlled to the required accuracy. The stage drive systems 11 and 12 may use an air micrometer or may detect the position by a laser interferometer. Note that X and Y are directions shown in the figure.

【0007】2は第一の照明系、3は第二の照明系、4
は第三の照明系で、各照明系は独立しており、かつ同一
の構成要素からなっている。13、14、15はレーザ光源で
各レーザ光源の波長は同一波長とし、例えば800[nm]
とする。3つの光源の照明角度は同じとする。またレー
ザ光源13、14、15はシャッター16、17、18により時間間
隔をおいて基板7に照射される。19、20、21は集光レン
ズで、レーザ光源13、14、15より射出された光束をそれ
ぞれ集光して基板7に照射する。この場合3つの光源の
設置位置はXY平面上で同一直線上に設置しないように注
意する。各照明系のXY平面上でなす角度は120度に限定
することはない。
2 is a first illumination system, 3 is a second illumination system, 4
Is a third illumination system, each illumination system being independent and composed of the same components. 13, 14, and 15 are laser light sources, and each laser light source has the same wavelength, for example, 800 [nm].
And The illumination angles of the three light sources are the same. The laser light sources 13, 14, and 15 are irradiated on the substrate 7 at time intervals by shutters 16, 17, and 18. Reference numerals 19, 20, and 21 denote condensing lenses, which converge light beams emitted from the laser light sources 13, 14, and 15 and irradiate the substrate 7 with the light beams. In this case, care should be taken not to install the three light sources on the same straight line on the XY plane. The angle of each illumination system on the XY plane is not limited to 120 degrees.

【0008】5は検出光学系で、検出光学系5は基板7
に対向する対物レンズ22の結像位置付近に設けられる結
像レンズ23からなっている。6は信号処理系で前記結像
レンズ23で集光した光をリニアセンサ24で検出する。ま
た検出した光をA/Dコンバータ25へ送り、信号処理回路2
6により検出光量から欠陥大きさを測定する。
Reference numeral 5 denotes a detection optical system.
And an image forming lens 23 provided near the image forming position of the objective lens 22 facing the image forming apparatus. Reference numeral 6 denotes a signal processing system which detects the light condensed by the imaging lens 23 with a linear sensor 24. The detected light is sent to the A / D converter 25, and the signal processing circuit 2
The defect size is measured from the detected light quantity by 6.

【0009】最初に図1で、欠陥に対し3方向からレー
ザを照射し、それぞれの検出光量から欠陥寸法、形状を
演算する方法を説明する。最初に光源13、14、15の電源
を入れ、シャッター16を信号処理回路26の信号で開け
る。シャッター17、18、は閉めたままである。リニアセ
ンサ24で光源13による散乱光を検出する。この場合欠陥
が存在すると入力する信号レベル、および光強度が大き
くなる。リニアセンサ24で光源13による散乱光を検出
後、シャッター16を閉める。次にシャッター17を開け光
源14からレーザを基板7に照射し、光源13と同様に基板
からの散乱光を検出する。その後、信号処理回路26の信
号でシャッター17を閉める。光源15の散乱光についても
同様にシャッター18を開閉して、散乱光を検出する。散
乱光の特性として、欠陥の投影面積(照明光の光軸に対
して垂直な面へ投影される物体の面積)と検出光量は図
2で示すような比例関係にある。図2において、X軸は
欠陥の投影面積、Y軸は検出光量である。同一材質であ
っても入射する光の波長により屈折率が異なるため、投
影面積と検出光量の対応のグラフは異なる。また照明角
度によっても投影面積と検出光量の対応のグラフは異な
る。すなわち欠陥の材質はその欠陥の分布や、従来デー
タとの照合、あるいはプロセスの状況等で特定できる。
もちろん特定できない場合もある。
First, a method for irradiating a laser to a defect from three directions and calculating the defect size and shape from the detected light amounts will be described with reference to FIG. First, the light sources 13, 14, and 15 are turned on, and the shutter 16 is opened by a signal from the signal processing circuit. Shutters 17, 18 remain closed. The scattered light from the light source 13 is detected by the linear sensor 24. In this case, if a defect exists, the input signal level and light intensity increase. After detecting the scattered light from the light source 13 with the linear sensor 24, the shutter 16 is closed. Next, the shutter 17 is opened, and the substrate 7 is irradiated with a laser from the light source 14 to detect scattered light from the substrate in the same manner as the light source 13. Thereafter, the shutter 17 is closed by the signal of the signal processing circuit 26. For the scattered light of the light source 15, the shutter 18 is similarly opened and closed to detect the scattered light. As a characteristic of the scattered light, the projected area of the defect (the area of the object projected on a plane perpendicular to the optical axis of the illumination light) and the detected light amount are in a proportional relationship as shown in FIG. In FIG. 2, the X-axis is the projection area of the defect, and the Y-axis is the detected light amount. Even if the materials are the same, the refractive index differs depending on the wavelength of the incident light, so that the graph corresponding to the projected area and the detected light amount is different. Also, the graph of the correspondence between the projected area and the detected light amount differs depending on the illumination angle. That is, the material of the defect can be specified by the distribution of the defect, comparison with the conventional data, or the state of the process.
Of course, there are cases where it cannot be specified.

【0010】欠陥の材質が明らかな場合、図2で示すよ
うに欠陥の投影面積と検出光量の対応が明確である。そ
こで光源13、14、15からの検出光量により、各照明方向
での投影面積が演算可能である。また投影面積のサイズ
により、欠陥のX、Y、Z方向の寸法が演算可能である。
When the material of the defect is clear, the correspondence between the projected area of the defect and the detected light amount is clear as shown in FIG. Therefore, the projected area in each illumination direction can be calculated based on the detected light amounts from the light sources 13, 14, and 15. Further, the dimensions of the defect in the X, Y, and Z directions can be calculated based on the size of the projection area.

【0011】欠陥の材質が不明である場合、検出光量と
投影面積の対応は不明である。しかし各照射方向による
検出光量の比から、欠陥の投影面積の比率が演算でき
る。これにより欠陥の形状が明らかになる。
When the material of the defect is unknown, the correspondence between the detected light amount and the projected area is unknown. However, the ratio of the projected area of the defect can be calculated from the ratio of the detected light amount in each irradiation direction. This reveals the shape of the defect.

【0012】図3で欠陥の投影面積から形状を予測する
方法を説明する。図3の如く、直交3方向の投影面積か
ら、例えば照明3方向の投影面積の比率が4、6、1の
場合(a)〜(c)の欠陥形状が予測される。要は細長い
異物が特定される。仮に照明方向が欠陥の構成面に対し
て直交していれば、簡単に検出光量により特徴量が抽出
されるのは明らかである。
Referring to FIG. 3, a method of estimating a shape from a projected area of a defect will be described. As shown in FIG. 3, the defect shapes in (a) to (c) are predicted from the projection areas in the three orthogonal directions, for example, when the ratio of the projection areas in the three illumination directions is 4, 6, 1. In short, an elongated foreign object is specified. If the illumination direction is orthogonal to the component plane of the defect, it is clear that the feature amount is easily extracted by the detected light amount.

【0013】次に図4で欠陥を上方からモニタで観察し
その後、欠陥に対し2方向からレーザを照射しそれぞれ
の照明方向の検出光量から、欠陥寸法を測定する方法を
説明する。最初に図4の構成を説明する。図4は本発明
の欠陥検査装置である。本装置は検査ステージ部1で基
板7を固定手段8により上面に固定してX方向に移動可
能なXステージ9と、基板7をY方向へ移動させるYステ
ージ10と、同じく基板7をX方向へ移動させるXステージ
駆動系11と、基板7をY方向へ移動させるYステージ駆動
系12から構成されている。各ステージは基板7の検査
中、常に必要な精度で焦点合わせ可能に制御されるよう
になっている。
Next, a method of observing a defect from above with a monitor and then irradiating the defect with laser from two directions and measuring the defect size from the detected light quantity in each illumination direction will be described with reference to FIG. First, the configuration of FIG. 4 will be described. FIG. 4 shows a defect inspection apparatus according to the present invention. The apparatus includes an X stage 9 that can move the substrate 7 in the X direction by fixing the substrate 7 to the upper surface by the fixing means 8 by the inspection stage unit 1, a Y stage 10 that moves the substrate 7 in the Y direction, and An X stage drive system 11 moves the substrate 7 in the Y direction, and a Y stage drive system 12 moves the substrate 7 in the Y direction. During the inspection of the substrate 7, each stage is controlled so that it can always be focused with necessary accuracy.

【0014】ステージ駆動系11、12はエアーマイクロメ
ータを用いるものでも. 或いはレーザ干渉法で位置を検
出するものでもよい。なおX、Yは図に示す方向である。
The stage drive systems 11 and 12 may use an air micrometer or may detect the position by a laser interferometer. Note that X and Y are directions shown in the figure.

【0015】2は第一の照明系、3は第二の照明系で、
各照明系は独立しており、かつ同一の構成要素からなっ
ている。13、14はレーザ光源で各レーザ光源の波長は同
一波長とし、例えば800[nm]とする。2つの光源の照
明角度は同じとする。またレーザ光源13、14から照明光
はシャッター16、17により時間間隔をおいて基板7に照
射される。19、20は集光レンズでレーザ光源13、14より
射出された光束を、それぞれ集光して基板7に照射す
る。この場合2つの光源の設置位置はXY平面上で同一直
線上に設置しないように注意する。各照明系のXY平面上
でなす角度は90度に限定することはない。
2 is a first illumination system, 3 is a second illumination system,
Each illumination system is independent and consists of the same components. Laser light sources 13 and 14 have the same wavelength, for example, 800 nm. The illumination angles of the two light sources are the same. The illumination light from the laser light sources 13 and 14 is applied to the substrate 7 at time intervals by shutters 16 and 17. Reference numerals 19 and 20 denote condensing lenses, which converge light beams emitted from the laser light sources 13 and 14, respectively, and irradiate the substrate 7 with the light beams. In this case, care must be taken not to install the two light sources on the same straight line on the XY plane. The angle of each illumination system on the XY plane is not limited to 90 degrees.

【0016】5は検出光学系で、検出光学系5は基板7
に対向する対物レンズ22の結像位置付近に設けられる結
像レンズ23からなっている。6は信号処理系で前記結像
レンズ23で集光した光をリニアセンサ24で検出する。ま
た検出した光をA/Dコンバータ25へ送り、信号処理回路2
6により、検出光量から欠陥大きさを測定する。27は観
察系である。対物レンズ28で欠陥を観察し、カメラ29か
らの画像信号を画像処理装置33で画像処理する。基板の
観察、位置決めはモニタ31で行う。また基板7を照明す
るため、照明光30、ミラー32を設ける。取り込んだ欠陥
の画像はカメラ29からモニタ31で観察する。
Reference numeral 5 denotes a detection optical system.
And an image forming lens 23 provided near the image forming position of the objective lens 22 facing the image forming apparatus. Reference numeral 6 denotes a signal processing system which detects the light condensed by the imaging lens 23 with a linear sensor 24. The detected light is sent to the A / D converter 25, and the signal processing circuit 2
According to 6, the defect size is measured from the detected light amount. 27 is an observation system. The defect is observed with the objective lens 28, and the image signal from the camera 29 is image-processed by the image processing device 33. Observation and positioning of the substrate are performed by the monitor 31. In order to illuminate the substrate 7, an illumination light 30 and a mirror 32 are provided. The captured image of the defect is observed from the camera 29 on the monitor 31.

【0017】次に図4で、欠陥をモニタ31で観察後、欠
陥へ2方向から照明し散乱光を検出することで欠陥の寸
法を測定する方法を説明する。最初にXステージ9、Yス
テージ10を移動させて自動焦点機構(図示せず)によ
り、基板7表面にピントを合わせる。その後、テレビカ
メラ29、モニタ31で観察しながら欠陥にピントを合わせ
る。テレビカメラ29で取り込んだ撮像信号により画像処
理装置33でXY平面上の寸法を検出する。
Next, a method for measuring the size of a defect by illuminating the defect from two directions and detecting scattered light after observing the defect on the monitor 31 will be described with reference to FIG. First, the X stage 9 and the Y stage 10 are moved to focus on the surface of the substrate 7 by an automatic focusing mechanism (not shown). After that, the defect is focused while observing with the television camera 29 and the monitor 31. The dimensions on the XY plane are detected by the image processing device 33 based on the imaging signal captured by the television camera 29.

【0018】次に光源13、14の電源を入れ、シャッター
16を開けて欠陥にレーザを照射する。リニアセンサ24よ
り散乱光量を検出後、シャッター16を閉じる。次にシャ
ッター17を開け、同様に欠陥にレーザを照射し散乱光量
を検出後、シャッター17を閉じる。
Next, the light sources 13 and 14 are turned on, and the shutter
Open 16 and irradiate defects with laser. After detecting the amount of scattered light from the linear sensor 24, the shutter 16 is closed. Next, the shutter 17 is opened. Similarly, the defect is irradiated with a laser to detect the amount of scattered light, and then the shutter 17 is closed.

【0019】欠陥の材質が明らかな場合、図2で示した
ような欠陥の投影面積と検出光量の対応が明確である。
よって検出光量から投影面積が演算できる。このとき照
明方向は、1方向でも欠陥の投影面積は演算が可能であ
る。先ほど検出したXY平面上のX 、Y方向の寸法と投影
面積の大きさから、Z方向の寸法を演算する。これによ
り欠陥のX、Y、Z方向の寸法と形状が検出できる。
When the material of the defect is clear, the correspondence between the projected area of the defect and the detected light amount is clear as shown in FIG.
Therefore, the projection area can be calculated from the detected light amount. At this time, the projection area of the defect can be calculated even in one illumination direction. The dimension in the Z direction is calculated from the dimensions in the X and Y directions on the XY plane and the size of the projection area detected earlier. As a result, the size and shape of the defect in the X, Y, and Z directions can be detected.

【0020】欠陥の材質が不明の場合、欠陥の投影面積
と検出光量の対応は不明である。しかし2方向からの検
出光量と、先ほど検出したXY平面上のX 、Y方向の寸法
から、図2で示すような検出光量と投影面積の対応デー
タのグラフの係数と、Z方向の寸法を演算できる。これ
により欠陥のX、Y、Z方向の寸法と形状が検出できる。
If the material of the defect is unknown, the correspondence between the projected area of the defect and the detected light amount is unknown. However, from the detected light amounts from two directions and the dimensions in the X and Y directions on the XY plane detected earlier, the coefficients of the graph of the corresponding data of the detected light amount and the projected area as shown in FIG. 2 and the dimensions in the Z direction are calculated. it can. As a result, the size and shape of the defect in the X, Y, and Z directions can be detected.

【0021】以上の方法で欠陥の特徴量、すなわち寸
法、形状を演算することができる。また散乱光の特性に
より、演算できる欠陥のサイズの範囲は限定されるのは
言うまでもない。
With the above method, the feature amount of a defect, that is, the size and shape can be calculated. Needless to say, the range of defect sizes that can be calculated is limited by the characteristics of scattered light.

【0022】[0022]

【発明の効果】以上本発明の方法及び装置によれば、回
路基板上のサブミクロンオーダーの欠陥の大きさを簡単
に検査可能となり、ひいては製品の歩留まり向上、製造
コストの低減を行うことができる。
As described above, according to the method and apparatus of the present invention, it is possible to easily inspect the size of defects on the order of submicrons on a circuit board, thereby improving the product yield and reducing the manufacturing cost. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の実施例である欠陥検査装置の構成図。FIG. 1 is a configuration diagram of a defect inspection apparatus according to a first embodiment.

【図2】検出光量と欠陥の投影面積の相関データを示す
特性図。
FIG. 2 is a characteristic diagram showing correlation data between a detected light amount and a projection area of a defect.

【図3】欠陥の投影面積と欠陥形状を示す図。FIG. 3 is a diagram showing a projection area and a defect shape of a defect.

【図4】第二の実施例である欠陥検査装置の構成図。FIG. 4 is a configuration diagram of a defect inspection apparatus according to a second embodiment.

【符号の説明】[Explanation of symbols]

1…検査ステージ部、 2…第一の照明系、 3…
第二の照明系、4…第三の照明系、 5…検出光学
系、 6…信号処理系、7…基板、
8…固定手段、 9…Xステージ、10…Yステー
ジ、 11…Xステージ駆動系、 12…Yステージ駆
動系、13…光源、 14…光源、
15…光源、16…シャッター、 17…シャッタ
ー、 18…シャッター、19…集光レンズ、
20…集光レンズ、 21…集光レンズ、22…対物レン
ズ、 23…結像レンズ、 24…リニアセン
サ、25…A/Dコンバータ、 26…信号処理回路、
27…観察系、28…対物レンズ、 29…カメラ、
30…照明、31…モニタ、 32…ミラ
ー、 33…画像処理装置。
1. Inspection stage part 2. First illumination system 3.
2nd illumination system, 4 ... third illumination system, 5 ... detection optical system, 6 ... signal processing system, 7 ... substrate,
8: fixing means, 9: X stage, 10: Y stage, 11: X stage drive system, 12: Y stage drive system, 13: light source, 14: light source,
15 ... Light source, 16 ... Shutter, 17 ... Shutter, 18 ... Shutter, 19 ... Condenser lens,
20: condenser lens, 21: condenser lens, 22: objective lens, 23: imaging lens, 24: linear sensor, 25: A / D converter, 26: signal processing circuit,
27: Observation system, 28: Objective lens, 29: Camera,
30 ... lighting, 31 ... monitor, 32 ... mirror, 33 ... image processing device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宍戸 弘明 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroaki Shishido 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】薄膜基板上の欠陥を検出する欠陥検査装置
において、前記基板を載置して任意に移動可能なステー
ジおよびその駆動制御系からなる検査ステージ部と、薄
膜基板を複数方向から照射する独立した光源を有する照
明系と、各照明系の照射により発生する散乱光、および
回折光を検出器に検出させる検出光学系と、前記検出器
出力から欠陥の特徴量を照明の各方向毎に演算する信号
処理系を備えたことを特徴とする欠陥検査装置。
1. A defect inspection apparatus for detecting a defect on a thin film substrate, an inspection stage comprising a stage on which the substrate can be arbitrarily moved and a drive control system thereof, and irradiating the thin film substrate from a plurality of directions. An illumination system having an independent light source, a detection optical system that causes a detector to detect scattered light and diffracted light generated by irradiation of each illumination system, and a feature amount of a defect from the detector output for each direction of illumination. 1. A defect inspection apparatus, comprising: a signal processing system for performing a calculation.
【請求項2】特許請求の範囲第1項記載の欠陥検査装置
において、基板上欠陥の材質データと、各材質毎の欠陥
の投影面積と検出光量の材質対応データとを比較するこ
とで、欠陥の特徴量を演算する欠陥検査装置。
2. A defect inspection apparatus according to claim 1, wherein the material data of the defect on the substrate is compared with the material correspondence data of the defect projection area and the detected light amount for each material. Defect inspection device that calculates the feature value of
JP20576697A 1997-07-31 1997-07-31 Defect inspecting instrument Pending JPH1151616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20576697A JPH1151616A (en) 1997-07-31 1997-07-31 Defect inspecting instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20576697A JPH1151616A (en) 1997-07-31 1997-07-31 Defect inspecting instrument

Publications (1)

Publication Number Publication Date
JPH1151616A true JPH1151616A (en) 1999-02-26

Family

ID=16512324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20576697A Pending JPH1151616A (en) 1997-07-31 1997-07-31 Defect inspecting instrument

Country Status (1)

Country Link
JP (1) JPH1151616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879342B1 (en) * 2002-05-29 2009-01-19 주식회사 포스코 Through hole detection apparatus of moving works
CN108732184A (en) * 2018-05-22 2018-11-02 丹阳市精通眼镜技术创新服务中心有限公司 A kind of apparatus and method of resin lens leakage film defects detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879342B1 (en) * 2002-05-29 2009-01-19 주식회사 포스코 Through hole detection apparatus of moving works
CN108732184A (en) * 2018-05-22 2018-11-02 丹阳市精通眼镜技术创新服务中心有限公司 A kind of apparatus and method of resin lens leakage film defects detection

Similar Documents

Publication Publication Date Title
JP3258385B2 (en) Optical board inspection system
US9739719B2 (en) Measurement systems having linked field and pupil signal detection
US7453561B2 (en) Method and apparatus for inspecting foreign particle defects
JP5032114B2 (en) Patterned or non-patterned wafer and other specimen inspection systems
US4984894A (en) Method of and apparatus for measuring film thickness
JP5469839B2 (en) Device surface defect inspection apparatus and method
WO1986005587A1 (en) Laser-based wafer measuring system
JPH02114154A (en) Reticle inspection and apparatus therefor
JP2806747B2 (en) Method for measuring reflected light in a microphotometer
JPH0926396A (en) Method and apparatus for inspecting fault of foreign matter or the like
JP2928277B2 (en) Projection exposure method and apparatus
US7660696B1 (en) Apparatus for auto focusing a workpiece using two or more focus parameters
US20080302974A1 (en) Optical auto focusing system and method for electron beam inspection tool
KR20010086079A (en) Method and device for optically monitoring processes for manufacturing microstructured surfaces in the production of semiconductors
JP2009109263A (en) Apparatus and method for inspection
JP3013519B2 (en) Inspection method and inspection device for thin film structure
JPH1151616A (en) Defect inspecting instrument
EP0985977A1 (en) Integrated circuit device fabrication utilizing latent imagery
US7948630B2 (en) Auto focus of a workpiece using two or more focus parameters
JPH01145504A (en) Optically measuring apparatus
JP2002005631A (en) Method and apparatus for measuring characteristics of plate
JP2000193434A (en) Foreign substance inspecting device
JPH0682381A (en) Foreign matter inspection device
JP3020546B2 (en) Foreign matter inspection device
JPS61122648A (en) Defect detector