JPH02157405A - Steam turbine plant - Google Patents

Steam turbine plant

Info

Publication number
JPH02157405A
JPH02157405A JP30896788A JP30896788A JPH02157405A JP H02157405 A JPH02157405 A JP H02157405A JP 30896788 A JP30896788 A JP 30896788A JP 30896788 A JP30896788 A JP 30896788A JP H02157405 A JPH02157405 A JP H02157405A
Authority
JP
Japan
Prior art keywords
water
boiler
turbine
plant
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30896788A
Other languages
Japanese (ja)
Inventor
Takemi Sugiyama
杉山 岳巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30896788A priority Critical patent/JPH02157405A/en
Publication of JPH02157405A publication Critical patent/JPH02157405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To recover a part of the energy, which does not contribute to power generation, as the power by providing a water wheel in parallel with a boiler water supplying line between a feed water pump and a boiler. CONSTITUTION:A water wheel 12 is rotated by high pressure boiler feed water, whose pressure was raised by a boiler feed pump 10, so that the power is generated by a generator 13. The water wheel 12 is provided with variable pitch blades, and the feed water is sent to a boiler 1 with suitable pressure. When the plant enters an ordinary operation, a valve 14 is fully closed and a valve 15 is fully opened, thereby bypassing the water wheel 12. Thus, it becomes possible that, when the plant is started, the water wheel 12 is rotated by the feed water sent from the boiler feed pump 10 and that the electric output obtained by the energy of the water wheel 12 makes up for the power necessary for auxiliary machinery of the plant.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はタービン駆動給水ポンプを有する蒸気タービン
プラントに係り、特に給水ラインに水車発電機を組込み
、起動時における効果的な動力回収を果たすことのでき
る蒸気タービンプラントに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a steam turbine plant having a turbine-driven water supply pump, and in particular incorporates a water turbine generator in the water supply line to provide effective The present invention relates to a steam turbine plant capable of recovering power.

(従来の技術) 従来、タービンプラントを起動する際にはボイラ点火か
らタービン通気(タービンにボイラからの発生蒸気を入
れること)までの間、ボイラの発生蒸気はコンデンサに
すてられていた。これはボイラの発生蒸気の温度がター
ビンロータの旦度より低いまま通気を行なうと、タービ
ンロータに熱応力が発生し、ロータにクラックを生じる
原因となるからである。そのため、ボイラを通して給水
を循環させることによりボイラの発生蒸気がタービン通
気に適する温度となるまで待つこととなる。
(Prior Art) Conventionally, when starting up a turbine plant, the steam generated by the boiler is wasted into a condenser from boiler ignition to turbine ventilation (injection of generated steam from the boiler into the turbine). This is because if ventilation is performed while the temperature of the steam generated by the boiler is lower than the temperature of the turbine rotor, thermal stress will occur in the turbine rotor, causing cracks in the rotor. Therefore, by circulating feed water through the boiler, it is necessary to wait until the steam generated by the boiler reaches a temperature suitable for turbine ventilation.

この状況を従来のプラント構成を示した第2図を参照し
て説明する。ボイラ1において発生した蒸気は高圧ター
ビン2には入らず、高圧バイパスバルブ3を通って再熱
器4へ導かれる。再熱器4を出た蒸気は中圧タービン5
.低圧タービン6にも入らず、低圧バイパスバルブ7を
通ってコンデンサ8へ入る。このときボイラ1の発生蒸
気の一部はボイラ給水ポンプ駆動タービン9(以後BP
PTと呼ぶ)に入り、ボイラ給水ポンプ10(以後BF
Pと呼ぶ)を駆動し、コンデンサ8からの給水を昇圧し
て高圧ヒータ11を通して再びボイラ1へ送る。このよ
うな循環をくり返してボイラ1の発生蒸気の温度がター
ビン通気に適する温度となった後通気が行なわれる。
This situation will be explained with reference to FIG. 2, which shows a conventional plant configuration. Steam generated in the boiler 1 does not enter the high pressure turbine 2 but is guided to the reheater 4 through the high pressure bypass valve 3. The steam leaving the reheater 4 is sent to the intermediate pressure turbine 5.
.. It does not enter the low pressure turbine 6 either, but enters the condenser 8 through the low pressure bypass valve 7. At this time, a part of the steam generated by the boiler 1 is transferred to the boiler feedwater pump drive turbine 9 (hereinafter BP).
PT) and boiler feed water pump 10 (hereinafter referred to as BF).
(referred to as P), the water supplied from the condenser 8 is boosted in pressure and sent to the boiler 1 again through the high-pressure heater 11. After repeating such circulation until the temperature of the steam generated by the boiler 1 reaches a temperature suitable for turbine ventilation, ventilation is performed.

(発明が解決しようとする課題) 上記のように従来の技術ではボイラ点火からタービン通
気までの間、ボイラ1の発生蒸気のもつエネルギはBF
PIOに使われる分を除きコンデンサ8へすてらていた
(Problems to be Solved by the Invention) As described above, in the conventional technology, from boiler ignition to turbine ventilation, the energy of the steam generated in the boiler 1 is BF
All of the capacitors except for those used for PIO were sent to capacitor 8.

本発明の目的はこのような動力の発生に寄与しないエネ
ルギの一部を動力として回収してプラント起動時にプラ
ント補機を運転するのに必要な外部からの電力供給を軽
減するようにした蒸気タービンプラントを提供すること
にある。
The object of the present invention is to provide a steam turbine that recovers a portion of such energy that does not contribute to the generation of power as power, thereby reducing the external power supply required to operate plant auxiliary equipment at the time of plant startup. The goal is to provide plants.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明は、復水器からボイラ
に至る経路にタービンによって駆動される給水ポンプを
有する蒸気タービンプラントにおいて、給水ポンプより
ボイラにかけて給水ラインと並列に水車あるいはポンプ
水車を設けたことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a steam turbine plant having a feed water pump driven by a turbine in a path from a condenser to a boiler, in which a feed water line runs from the feed water pump to the boiler. It is characterized by having a water wheel or a pump water wheel installed in parallel with the water wheel.

(作 用) 給水ラインと並列に水車を設けるならば、プラント起動
時に給水ポンプから送られる給水によって水車を回し、
その動力で発電を行ない電気出力を得ることができる。
(Function) If a water wheel is installed in parallel with the water supply line, the water supplied from the water pump when the plant is started will rotate the water wheel.
The power can be used to generate electricity and provide electrical output.

この電気出力でプラント補機類の必要電力を賄うように
する。
This electrical output is used to cover the power required by plant auxiliary equipment.

(実施例) 以下1本発明の実施例を第1図を参照して説明する。な
お、第1図中の構成において、第2図に示される構成と
同一のものには同一の符号を付し、その説明を省略する
(Example) An example of the present invention will be described below with reference to FIG. In the configuration shown in FIG. 1, the same components as those shown in FIG. 2 are designated by the same reference numerals, and the explanation thereof will be omitted.

本発明においてはRFPIOで昇圧された高圧のボイラ
給水により水車12を回し、発電機13により発電を行
なう。水車12は可変翼をもった水車で給水は適切な圧
力でボイラ1へ送られる。プラントが通常運転に入った
場合はバルブ14,1.5を操作し、水車12をバイパ
スさせる。すなわち、バルブ14を全閉し、バルブ15
を全開させる。
In the present invention, the water turbine 12 is rotated by high-pressure boiler water supplied by the RFPIO, and the generator 13 generates electricity. The water turbine 12 has variable blades, and feed water is sent to the boiler 1 at an appropriate pressure. When the plant enters normal operation, the valves 14, 1.5 are operated to bypass the water turbine 12. That is, the valve 14 is fully closed, and the valve 15 is closed.
fully open.

標準的な600 MWの蒸気タービンプラントにおいて
本発明の作用について説明する。ボイラ点火からタービ
ン通気までの間、500 ton/h程度の給水がボイ
ラ1を通って循環しているがこのときBFPIOに必要
な蒸気量は数1.Oton/hであり、この時のBFP
IOの吐出圧は100 atg程度である。
The operation of the present invention is illustrated in a standard 600 MW steam turbine plant. From boiler ignition to turbine ventilation, approximately 500 ton/h of feed water is circulated through boiler 1, and the amount of steam required for BFPIO at this time is several tens of thousands of tons. Oton/h and BFP at this time
The discharge pressure of IO is about 100 atg.

BFPIOに送られる蒸気はボイラ点火直後はボイラ1
の発生蒸気の温度が低いため、他の蒸気源から供給され
、ボイラ1の発生蒸気の温度がBFPT9通気に適した
温度にまで上昇した後、この蒸気がB F P T9へ
送られる。一方、定格負荷時において、BFPIOへ送
られる蒸気の圧力は9ata 、温度330℃、流量1
00 ton/h程度であり。
Steam sent to BFPIO is sent to boiler 1 immediately after boiler ignition.
Since the temperature of the generated steam is low, it is supplied from another steam source, and after the temperature of the generated steam of the boiler 1 rises to a temperature suitable for venting the BFPT9, this steam is sent to the BFPT9. On the other hand, at rated load, the pressure of the steam sent to BFPIO is 9ata, the temperature is 330℃, and the flow rate is 1
00 ton/h.

このときのRFPIOの吐出圧は300 atg程度で
ある。従来、起動時にはB F’ P T 9に数10
 ton/hの蒸気を送り100 atg程度のBFP
IOの吐出圧を発生していたが、本発明ではコンデンサ
8へすてられる500 t/hの蒸気のうち、100 
ton/hをBFPIOに送り、300 atgの吐出
圧を発生する。しかし、ボイラ1にとって必要な圧力は
100 atgなので、200 atg分に相当するエ
ネルギが水車12で回収可能となる。これらの様子を第
2図を用いて説明する。第2図は時間に対する給水量、
主蒸気量、BF P T9への抽気量の変化を示してい
る1、現状の蒸気タービンプラントの起動時においては
ボイラ1への給水量は線分OG I K、主タービンへ
入る主蒸気量は線分B Jで表わされる。給水は時間0
からAについては電動給水ポンプ(図示せず)で行なわ
れ1時間Aでボイラ1からの蒸気がBFPIOへ通気可
能となり、給水はBFPIOへ切り換えられる。時間B
になるとボイラ1からの蒸気は主タービンにも通気可能
となり、高圧タービン2への通気が行なわれる。B F
PT9への油気量は線分ACDIKと線分OBJとの差
で表わされるが、ボイラ1の安定燃焼のため時間Aから
Lまでは給水流量は通常運転時の約30%程度の一定量
で給水されており、図形0ACDIGで示される部分の
蒸気は高圧および低圧バイパスバルブ3.7を通してコ
ンデンサ8にすてられることとなる。
The discharge pressure of RFPIO at this time is about 300 atg. Conventionally, at startup, B F' P T 9 and several 10
BFP of about 100 atg by sending ton/h of steam
However, in the present invention, 100 t/h of steam is discharged to the condenser 8.
ton/h is sent to BFPIO to generate a discharge pressure of 300 atg. However, since the pressure required for the boiler 1 is 100 atg, the water turbine 12 can recover energy equivalent to 200 atg. These situations will be explained using FIG. 2. Figure 2 shows the amount of water supplied over time.
Shows the change in the amount of extracted air to the main steam amount, BF P T9 1. At the time of startup of the current steam turbine plant, the amount of water supplied to the boiler 1 is the line segment OG I K, and the amount of main steam entering the main turbine is It is represented by line segment BJ. Water supply time 0
From A to A, an electric water supply pump (not shown) is used, and in one hour A, the steam from the boiler 1 can be vented to the BFPIO, and the water supply is switched to the BFPIO. Time B
At this point, the steam from the boiler 1 can also be vented to the main turbine, and the high pressure turbine 2 is vented. B F
The amount of oil to PT9 is expressed by the difference between line segment ACDIK and line segment OBJ, but for stable combustion in boiler 1, the water supply flow rate from time A to L is constant at about 30% of normal operation. The steam in the portion indicated by the diagram 0ACDIG, which is supplied with water, will be discarded to the condenser 8 through the high-pressure and low-pressure bypass valves 3.7.

本発明においては、BFPIOへの抽気量は線分AE 
FHI Kと線分OBJとの差で表わされ、図形CDI
HFE (斜線部)で表わされる部分の蒸気は従来BF
PT9へ供給されている蒸気に追加されてRFPIOへ
入り、RFPIOは給水に必要以上の吐出圧を与える。
In the present invention, the amount of bleed air to BFPIO is calculated by the line segment AE
It is expressed as the difference between FHI K and line segment OBJ, and the figure CDI
The steam in the area indicated by HFE (shaded area) is conventional BF.
It is added to the steam being supplied to PT9 and enters RFPIO, which gives the feed water a discharge pressure higher than necessary.

この余分の圧力が給水ラインにおかれた水車12により
動力として回収される。
This excess pressure is recovered as power by a water wheel 12 placed in the water supply line.

実際に水車発電機において、発電される電力を試算して
みると、以下のようになる。
When we actually calculate the power generated by a water turbine generator, we get the following.

P=ρ・グ・H−Q・ηH・η。/ 1000発生電力
(Kす) 水の密度= tooOkg/イ 重力加速度=98m/s2 有効落差″:200at X 10= 2000m流量
500 ton/h畔0.14m/ s水車効率=0.
9 発電機効率=0.95 P = 1000 X 9.8 X 2(X)OX O
,14X O,9X O,95/ 1000弁2300
 Kw 現存する水車の最高の落差は600m以上あり、このよ
うな高落差の水車を直列に連結することにより上記の出
力が得られる。
P=ρ・gu・H−Q・ηH・η. / 1000 generated power (Ksu) Water density = tooOkg/I Gravitational acceleration = 98m/s2 Effective head'': 200at
9 Generator efficiency = 0.95 P = 1000 x 9.8 x 2(X)OX O
,14X O,9X O,95/ 1000 valve 2300
Kw The highest head of existing water turbines is 600 m or more, and the above output can be obtained by connecting water turbines with such high heads in series.

また、実際にボイラ1で発生した蒸気でRFPIOを運
転できる時間は、コールドスタートで点火〜通気が12
0分の場合、約60分あり、この場合得られる電力量と
しては2300 Kすhとなる。
In addition, the actual time that RFPIO can be operated with the steam generated in boiler 1 is 12 hours from ignition to ventilation with a cold start.
In the case of 0 minutes, it is approximately 60 minutes, and the amount of power obtained in this case is 2300 Ksh.

油焚きの蒸気タービンプラントにおいてプラント補機を
運転するために必要な補機動力は定格出力の約3%であ
り、600 MWのプラントにおいては約18000 
KVとなる。上記の水車12で得られる出力はこの必要
とされる補機動力の1割以上あり、この分起動時におい
て外部から電力供給を軽減できる。
The auxiliary power required to operate plant auxiliary equipment in an oil-fired steam turbine plant is approximately 3% of the rated output, and in a 600 MW plant it is approximately 18,000 MW.
It becomes KV. The output obtained by the water turbine 12 is more than 10% of the required auxiliary power, and the external power supply can be reduced by this amount at the time of startup.

第3図は本発明の他の実施例を示している。本実施例は
高さの異なる2つのタンクを設置し起動時に使用した水
車発電機を揚水ポンプとして使うことにより、深夜の余
剰電力を使って水をくみあげるものである。通常運転時
はバルブ14を閉とじRFPIOで昇圧された給水はそ
のままボイラ1へ送られる。起動待水車]2を用いて発
電を行なう場合はバルブ14を全閉し、バルブ15.1
6を全閉として高圧水を水車12へ送る。深夜、余剰電
力がある場合は、通常運転を行なうとともにバルブ16
゜17を全開し、バルブ18.19を全開として貯水タ
ンク20の水を揚水タンク21へくみあげる。このとき
水車12はポンプとして発電機13はモータとして働く
FIG. 3 shows another embodiment of the invention. In this embodiment, two tanks of different heights are installed, and the water turbine generator used at startup is used as a water pump to pump water using surplus electricity late at night. During normal operation, the valve 14 is closed and the feed water pressurized by the RFPIO is sent directly to the boiler 1. When generating power using the start-up water tank] 2, fully close the valve 14 and close the valve 15.1.
6 is fully closed and high pressure water is sent to the water wheel 12. Late at night, if there is surplus power, perform normal operation and close valve 16.
17 and fully open valves 18 and 19 to pump water from the water storage tank 20 to the pumping tank 21. At this time, the water turbine 12 works as a pump and the generator 13 works as a motor.

逆に系統事故などで発電所内が全て停電となった場合は
バルブ16.18.19を全開し、バルブ17を全開と
して揚水タンク21の水を落とし水車12により発電す
ることができる。
On the other hand, if there is a power outage in the entire power plant due to a system accident, etc., the valves 16, 18, and 19 are fully opened, the valve 17 is fully opened, the water in the pumping tank 21 is drained, and the water turbine 12 can generate electricity.

蒸気タービンプラントではコンデンサ8およびデアレー
タの貯水タンクという高さの異なるタンクがあるので、
これらをそれぞれ貯水タンク、揚水タンクとして使えば
、新しくタンクを設置する必要もない。
In a steam turbine plant, there are tanks of different heights, the condenser 8 and the dealator water storage tank.
If these can be used as water storage tanks and water pumping tanks, there is no need to install new tanks.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、プラント起動時にす
てられていたボイラの発生蒸気を動力として回収し、プ
ラント補機を運転するのに必要な電力をそのとき回収し
た電力によって賄うことができ、大幅なエネルギの節約
が果されるという優れた効果を奏する。
As described above, according to the present invention, the steam generated by the boiler, which was wasted at the time of plant startup, can be recovered as power, and the electric power necessary to operate the plant auxiliary equipment can be covered by the electric power recovered at that time. This has the excellent effect of significantly saving energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蒸気タービンプラントの構成図、
第2図は時間に対する給水量、主蒸気量。 油気量の変化を示す状態線図、第3図は本発明の他の実
施例を示す構成図、第4図は従来の蒸気タービンプラン
トを示す系統図である。 3・・・高圧バイパスバルブ 7・・・低圧バイパスバルブ 9・・・ボイラ給水ポンプ駆動タービン10・・・ボイ
ラ給水ポンプ 12・・・水車 13・・・発電機 14、15.16.17.18.19・・・バルブ20
・・・貯水タンク 21・・・揚水タンク 代理人 弁理士  則 近 憲 佑 同     第子丸   健 第 図 第 図
FIG. 1 is a configuration diagram of a steam turbine plant according to the present invention;
Figure 2 shows the amount of water supplied and main steam amount versus time. FIG. 3 is a state diagram showing changes in oil amount, FIG. 3 is a configuration diagram showing another embodiment of the present invention, and FIG. 4 is a system diagram showing a conventional steam turbine plant. 3... High pressure bypass valve 7... Low pressure bypass valve 9... Boiler feed water pump drive turbine 10... Boiler feed water pump 12... Water turbine 13... Generator 14, 15.16.17.18 .19...Valve 20
... Water storage tank 21 ... Pumping tank agent Patent attorney Norihiro Ken Yudo Daishimaru Ken

Claims (1)

【特許請求の範囲】[Claims] 復水器からボイラに至る経路にタービンによって駆動さ
れる給水ポンプを有する蒸気タービンプラントにおいて
、前記給水ポンプより前記ボイラにかけて給水ラインと
並列に水車あるいはポンプ水車を設けたことを特徴とす
る蒸気タービンプラント。
A steam turbine plant having a water supply pump driven by a turbine in a path from a condenser to a boiler, characterized in that a water turbine or a pump turbine is provided in parallel with a water supply line extending from the water supply pump to the boiler. .
JP30896788A 1988-12-08 1988-12-08 Steam turbine plant Pending JPH02157405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30896788A JPH02157405A (en) 1988-12-08 1988-12-08 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30896788A JPH02157405A (en) 1988-12-08 1988-12-08 Steam turbine plant

Publications (1)

Publication Number Publication Date
JPH02157405A true JPH02157405A (en) 1990-06-18

Family

ID=17987381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30896788A Pending JPH02157405A (en) 1988-12-08 1988-12-08 Steam turbine plant

Country Status (1)

Country Link
JP (1) JPH02157405A (en)

Similar Documents

Publication Publication Date Title
US4590384A (en) Method and means for peaking or peak power shaving
JPS6026107A (en) Power generation plant with multistage turbine
EP2801705A2 (en) Method for operating a combined-cycle power plant
US20140250901A1 (en) Method for starting-up and operating a combined-cycle power plant
JPS61152914A (en) Starting of thermal power plant
US20170207628A1 (en) Method for operating a power plant, and power plant
JPH11247669A (en) Gas turbine combined cycle
JP2000297657A (en) Electric power storage type gas turbine generator facility
JPH09144560A (en) Hydrogen combustion gas turbine plant and its operating method
JPH05248260A (en) Coal gasified compound power generating plant
JPH0333890B2 (en)
JPH02157405A (en) Steam turbine plant
KR20220020586A (en) Nuclear power load response generation system using thermal energy storage system
CN214506566U (en) Black start power supply system
JP3697291B2 (en) Fluidized bed boiler power plant
JP2002089209A (en) Gas turbine-hydraulic power combined generator
JPH06146815A (en) Gas turbine composite power generator
EP2542763B1 (en) Power generation assembly and method
JPS6359005B2 (en)
WO2024019723A1 (en) Electrolysis energy recovery
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH08232608A (en) Steam accumulated power generating plant
CN111412032A (en) Combined cycle unit
CN117588279A (en) Gas-steam combined cycle unit starting system based on fused salt heat storage and release
CN118008510A (en) Gas-steam combined cycle power generation and heat supply system