JPH02157199A - Metal mold for single crystal forming substrate and single crystal substrate using same - Google Patents

Metal mold for single crystal forming substrate and single crystal substrate using same

Info

Publication number
JPH02157199A
JPH02157199A JP31337788A JP31337788A JPH02157199A JP H02157199 A JPH02157199 A JP H02157199A JP 31337788 A JP31337788 A JP 31337788A JP 31337788 A JP31337788 A JP 31337788A JP H02157199 A JPH02157199 A JP H02157199A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
film
alloy
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31337788A
Other languages
Japanese (ja)
Inventor
Masaki Aoki
正樹 青木
Hideo Torii
秀雄 鳥井
Teruyuki Fujii
映志 藤井
Kiyoshi Kuribayashi
清 栗林
Hideto Monju
秀人 文字
Makoto Umetani
誠 梅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31337788A priority Critical patent/JPH02157199A/en
Publication of JPH02157199A publication Critical patent/JPH02157199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the metal mold at a low cost by forming a rectangular wavy, dotted or saw-toothed lattice on a superalloy or cermet contg. WC or Cr8C2 and coated with an Ir alloy film. CONSTITUTION:The surface of a superalloy or cermet 11 contg. WC or Cr8C2 is mirror-polished and coated with an Ir alloy film 12 by sputtering. An electron beam resist 13 is applied to the film 12, prebaked, irradiated with electron beams and developed. The film 12 is then etched with ion obtd. by electron cyclotron resonance through the resist and this resist is removed. A metal mold for a single crystal forming substrate having a rectangular wavy, dotted or saw-toothed lattice is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気光学材料、半導体材料、あるいは超伝導
材料等の単結晶を形成するために用いられるガラス基板
を作成するための金型およびガラス基板上に形成した」
1記材料の単結晶膜(単結晶基板)に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a mold and a glass substrate for producing a glass substrate used for forming a single crystal of a magneto-optical material, a semiconductor material, a superconducting material, etc. formed on top.”
The present invention relates to a single crystal film (single crystal substrate) of the material listed in item 1.

従来の技術 従来の薄膜単結晶の製造方法としては、例えば、シリコ
ンにおいては、シリコン単結晶基板上に、エピタキシャ
ル法にてシリコン薄膜が作成されている。又磁気光学材
料であるガーネット薄膜については、単結晶のガドリミ
ウムー鉄−ガーネノト(GGG)基板上に液相エピタキ
シャル法(L P E法)にて、単結晶のガー不ントF
l膜が作成されている。超伝導体においては、酸化マグ
ネシウム(MgO)単結晶基板上に、ビスマス−ストロ
ンチウム−カルシウム−銅−酸素系の単結晶薄膜が作成
されている。又シリコンに関しては、非晶質基板上に矩
形波構造の格子を設け、その上にシリコンを蒸着させ単
結晶薄膜を作成しようという試みも行われている。
2. Description of the Related Art As a conventional method for producing a thin film single crystal, for example, in the case of silicon, a silicon thin film is formed on a silicon single crystal substrate by an epitaxial method. Regarding garnet thin films, which are magneto-optical materials, single-crystal garnet film is deposited on a single-crystal gadolinium-iron-garnet (GGG) substrate using a liquid phase epitaxial method (LPE method).
l membrane has been created. In superconductors, a bismuth-strontium-calcium-copper-oxygen single-crystal thin film is formed on a magnesium oxide (MgO) single-crystal substrate. Regarding silicon, attempts have also been made to create a single crystal thin film by providing a rectangular wave structure lattice on an amorphous substrate and depositing silicon thereon.

(例えば D、C,Flanders、andH,1,
Smi  th  :App  1.  physLe
tt、  32  (1978)  112)発明が解
決しようとする課題 各種(Si、ガーネノ)、超伝導等の)単結晶薄膜を作
成しようとする場合、従来は、すべて下地基板として、
高価な単結晶基板(例えば5IGGC;、MgO等)が
用いられ、しかも高温にてその基板上にエピタキシャル
成長させなければならないという欠点を有していた。
(For example, D, C, Flanders, and H, 1,
Smith: App 1. physLe
tt, 32 (1978) 112) Problems to be Solved by the Invention When trying to create a single crystal thin film of various types (Si, Garneno, superconducting, etc.), conventionally, as a base substrate,
It has the disadvantage that an expensive single crystal substrate (for example, 5IGGC, MgO, etc.) is used, and epitaxial growth must be performed on the substrate at a high temperature.

又シリコンに関しては、下地に非晶質のS + 02基
板を用いているが、矩形波構造を基板上に作成するのに
1枚1枚レジストパターンを画かき反応性イオンエツチ
ングを行なわなりればならず基板作成において高価で複
雑な工程を含んでおりきわめて生産性が悪いという欠点
を有していた。
Regarding silicon, an amorphous S + 02 substrate is used as the base, but in order to create a rectangular wave structure on the substrate, it is necessary to draw the resist pattern one by one and perform reactive ion etching. Moreover, it involves an expensive and complicated process in producing the substrate, and has the drawback of extremely low productivity.

課題を解決するだめの手段 本発明は、前記問題点を解決するため、If合金膜をコ
ートした、WCやサーメット上にフォトリソグラフィー
法にて、矩形波状、格子点状あるいは、鋸歯状の格子を
設けた金型を作成し、この金型を用いて、単結晶形成用
のガラス基板(加熱圧縮成形法によりガラス基板上に格
子形状を設けたガラス基板。)を生産性良く安価に製造
し、しかもこの格子形状を有するガラス基板上にシリコ
ンやガーネットあるいは超伝導体の単結晶膜を化学蒸着
法(CVD法)により作成するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention fabricates a rectangular wave-like, lattice-dot-like, or sawtooth-like lattice by photolithography on WC or cermet coated with an If alloy film. A mold is prepared, and using this mold, a glass substrate for forming a single crystal (a glass substrate in which a lattice shape is formed on the glass substrate by a heating compression molding method) is manufactured with high productivity and at low cost. Moreover, a single crystal film of silicon, garnet, or a superconductor is formed on a glass substrate having this lattice shape by chemical vapor deposition (CVD).

作用 本発明は、ガラス材料(非晶質材料)をあたかもレコー
ドディスクのプレス成形のように、一対の格子形状(矩
形波状、格子点状、鋸歯状)を持つ金型で加熱プレス成
形して、格子形状を形成する方法であり、(金型の作成
には、フォトリソグラフィー法が用いられるが金型は1
組作成しておけば何回でも格子形状をガラス材料上に転
写できる)製造工程が少なく生産性の向上が期待できる
Effect of the present invention: A glass material (amorphous material) is heated and press-molded using a mold having a pair of lattice shapes (rectangular wave shape, lattice dot shape, sawtooth shape), just like press molding of a record disc. This is a method of forming a lattice shape (photolithography is used to create the mold, but the mold is
(If you create a set, you can transfer the lattice shape onto the glass material as many times as you like.) With fewer manufacturing steps, you can expect to improve productivity.

又このような格子形状を有する非晶質基板上に、CVD
法にて各種材料を成膜すると格子形状に応じた配向性の
薄膜が成長し、やがてこれらが単結晶化するものである
Furthermore, on an amorphous substrate having such a lattice shape, CVD
When various materials are deposited using this method, thin films with orientation according to the lattice shape grow, and these eventually become single crystals.

実施例 以下、本発明の一実施例の単結晶形成基板金型およびそ
れを用いた単結晶基板の製造方法について、図面を用い
て説明する。
EXAMPLE Hereinafter, a single crystal forming substrate mold according to an example of the present invention and a method for manufacturing a single crystal substrate using the mold will be described with reference to the drawings.

実施例1 以下、本発明の実施例を第1図に沿って説明する。第1
[F(a)に示すように、まず10mm角、厚さ3mm
のWCを主成分とする超硬合金母材を鏡面研磨して、そ
の表面粗度をRMS=8〜10人に仕上げた後、第1図
(b)に示すようにイリジウム合金膜(Ir−Rh)を
スパッタ法により3μmの厚さに製膜した。
Example 1 An example of the present invention will be described below with reference to FIG. 1st
[As shown in F(a), first, a 10 mm square and 3 mm thick
After polishing the cemented carbide base material whose main component is WC to a surface roughness of RMS=8 to 10, an iridium alloy film (Ir- Rh) was formed into a film with a thickness of 3 μm by sputtering.

次に第1図(C)に示すように電子線レジスト(PMM
A)を1000人の厚さに塗布し、プリベークした後電
子線をピンチ0.5μm、線中0.25μmの格子状溝
が形成できるように電子線を照射(露光)した〔第1図
(d)。] 次に現像後〔第1図(e)]アルゴン(Ar)ガス中で
、電子サイクロトロン共鳴(ECR)イオンエツチング
法により、イリジウム合金膜を700人の深さまでエツ
チングした〔第1図(f)〕後、不要となったレジスト
を除去し格子状溝(ピンチ0.5μm巾0.25μm深
さ0.07μm)を形成し単結晶形成用基板金型を作成
した〔第1図(g)〕。イリジウム合金がIr−Pt、
Ir−0s  Ir−Re系でも同様の作成方法にて単
結晶形成用基板金型が作成できた。
Next, as shown in FIG. 1(C), an electron beam resist (PMM) is applied.
A) was applied to a thickness of 1,000 mm, prebaked, and then irradiated (exposed) with an electron beam so that a lattice-like groove of 0.5 μm in the pinch and 0.25 μm in the line was formed [Figure 1 ( d). After development [Fig. 1(e)], the iridium alloy film was etched to a depth of 700 nm in argon (Ar) gas by electron cyclotron resonance (ECR) ion etching [Fig. 1(f)]. ] After that, the unnecessary resist was removed and lattice grooves (pinch width 0.5 μm, width 0.25 μm, depth 0.07 μm) were formed to create a substrate mold for single crystal formation [Figure 1 (g)] . Iridium alloy is Ir-Pt,
A substrate mold for forming a single crystal was also created using the same method for Ir-0s Ir-Re.

実施例2 実施例1と同様にして鏡面研磨された10mm角、厚さ
3mmのチタンカーバイト(T i C)を主成分とす
るサーメン1−母材上にlr合金膜(Ir−Pt膜)を
スバンタ法により3μmの厚さに製膜した。
Example 2 An lr alloy film (Ir-Pt film) was deposited on a 10-mm square, 3-mm-thick samen 1 base material whose main component was titanium carbide (T i C), which was mirror-polished in the same manner as in Example 1. A film with a thickness of 3 μm was formed using the Svanta method.

次に電子線レジストを2000人の厚さに塗布し、プリ
ベークした後、電子線をピッチ1.0μmで線中0.5
μmの格子状溝がレジスト上に形成できるように電子ビ
ームを照射しレジストを露光した。
Next, an electron beam resist was applied to a thickness of 2,000 mm, and after prebaking, an electron beam resist was applied with a pitch of 1.0 μm and a thickness of 0.5 μm in the line.
The resist was irradiated with an electron beam to expose the resist so that a lattice groove of μm size was formed on the resist.

次ニレジスト現像後、アルゴンガス及びCF4の混合ガ
ス中でイオンエツチング法を用いて、第1図(h)に示
すように鋸歯状にエンチングしくイオン照射角度45度
)レジストを除去し、鋸歯状をした単結晶形成用基板金
型を作成した〔第1図(j)〕。
After developing the second resist, the resist is removed using ion etching in a mixed gas of argon gas and CF4 to form a sawtooth pattern (ion irradiation angle: 45 degrees) as shown in Figure 1 (h). A substrate mold for forming a single crystal was created [Figure 1 (j)].

実施例3 実施例1と同様にして、10mm角厚さ3mmの鏡面研
磨したクロムカーバイトを主成分とする超硬合金上にI
r合金(Ir−Re系合金膜)を形成後レジストを塗布
し、第2図(a)に示した、ピンチ100/1m(タテ
横開しピンチ)の格子点上に1μm角のマスク(遮光)
のあるフォトマスク(ガラスあるいは、石英上にCrで
形成したフォトマスク)を用意し、紫外線露光法により
レジスト上にマスクパターンを転写後〔第2図(b)〕
レジストを現象し、その後アルゴンイオンビームで、I
r合金を深さ600人エンチングし、格子状のピット(
1μm角で深さ600人)を設けた単結晶形成用金型を
作成した。
Example 3 In the same manner as in Example 1, I was deposited on a 10 mm square, 3 mm thick mirror-polished cemented carbide whose main component was chromium carbide.
After forming the r-alloy (Ir-Re alloy film), a resist is applied, and a 1 μm square mask (light-shielding )
After preparing a photomask (a photomask made of Cr on glass or quartz) and transferring the mask pattern onto the resist using the ultraviolet exposure method [Figure 2 (b)]
The resist is developed and then irradiated with an argon ion beam.
The r-alloy was etched to a depth of 600 mm, and a lattice-shaped pit (
A mold for forming a single crystal was prepared with a 1 μm square and a depth of 600 mm.

実施例4 本発明の実施例(4)を第3図、第4図に沿って説明す
る。実施例(1)で作成された単結晶形成用基板金型(
格子状スクンパ)を2枚用意して(内1枚ば、格子状溝
のないWCの平面でも良い)、第3図(a)に示すよう
に、組成が5i0281重量%Na20が4重量%、A
l2O2が2重量%B2O3が12重量%から成るガラ
ス板(10mm角厚さ3mm)をスクンパの間にはさみ
込んで800°Cに加熱しながら加圧しく圧力2 kg
 / CIfl )冷却後ガラス板を取り出した。
Example 4 Example (4) of the present invention will be described with reference to FIGS. 3 and 4. Substrate mold for single crystal formation created in Example (1) (
Prepare two sheets of lattice-shaped skumpers (one of them may be a flat surface of WC without lattice-like grooves), and as shown in FIG. A
A glass plate (10 mm square, 3 mm thick) consisting of 2% by weight of l2O2 and 12% by weight of B2O3 was inserted between the scoopers and heated to 800°C while applying pressure of 2 kg.
/CIfl) After cooling, the glass plate was taken out.

次にこの格子形状の溝が付いたガラス基板(単結晶形成
用基板第3図(b))を用いてガーネット単結晶膜を形
成する工程を第4図を参照しながら説明する。
Next, the process of forming a garnet single crystal film using a glass substrate with grooves in the lattice shape (single crystal forming substrate, FIG. 3(b)) will be described with reference to FIG.

第4図は、ECRプラズマCVD装置の概略図を示して
いる。図において、41はECRの高密度プラズマを発
生させるためのプラズマ室、42は、ECRに必要な磁
場を供給する電磁石であり、43は反応室、44はマイ
クロ波(2,45GHz)導入口、45はプラズマ源と
なるガスの導入口、46は下地基板(単結晶形成用基板
)、47は基板ホルダーで、基板加熱が可能となってい
る。
FIG. 4 shows a schematic diagram of an ECR plasma CVD apparatus. In the figure, 41 is a plasma chamber for generating high-density plasma for ECR, 42 is an electromagnet that supplies the magnetic field necessary for ECR, 43 is a reaction chamber, 44 is a microwave (2.45 GHz) inlet, Reference numeral 45 is an inlet for a gas serving as a plasma source, 46 is a base substrate (substrate for forming a single crystal), and 47 is a substrate holder, which enables heating of the substrate.

48.49,50.51は原料の入った気化器で、52
はキャリアガス(N2)の導入口である。
48.49, 50.51 are vaporizers containing raw materials, 52
is an inlet for carrier gas (N2).

53は反応室を強制排気するためのポンプ(タボ分子ポ
ンプあるいは拡散ポンプ)につながっている排気口であ
る。
53 is an exhaust port connected to a pump (a turbomolecular pump or a diffusion pump) for forcibly evacuating the reaction chamber.

まずプラズマ室41および反応室23内を4×107T
orrまで減圧して、吸着ガス等を除去する。
First, the inside of the plasma chamber 41 and reaction chamber 23 was 4×107T
The pressure is reduced to orr to remove adsorbed gas, etc.

次にプラズマ室41に導入口45からプラズマ源となる
酸素(流量20cc/分)を導入し、導入口44より、
2.45GHzのマイクロ波を500W印加して、電磁
石により磁界強度を875ガウスとすることにより、E
CRプラズマを発生させる。
Next, oxygen (flow rate 20 cc/min), which becomes a plasma source, is introduced into the plasma chamber 41 from the introduction port 45, and from the introduction port 44,
By applying 500 W of 2.45 GHz microwave and setting the magnetic field strength to 875 Gauss using an electromagnet, E
Generate CR plasma.

その際、電磁石42による発散磁界により発生したプラ
ズマは、プラズマ室41より反応室43に引き出される
。また、気化器48.49.5051にそれぞれ、鉄ア
セチルアセトナト、ビスマスアセチルアセトナト イソ
トリウムジピハロイドメタン、アルミニウムアセチルア
セトナトを入れておき、それぞれ130°C,120°
C,100°ClO3°Cに加熱し、その蒸気を窒素キ
ャリア(流量それぞれ1.0cc/分)とともに反応室
43内に導入し、500°Cに加熱された基板46上に
流して約30分間反応させた。なお成膜時の真空度は、
1、9 X 10′4Torrであった。
At this time, plasma generated by the divergent magnetic field by the electromagnet 42 is drawn out from the plasma chamber 41 to the reaction chamber 43. In addition, iron acetylacetonate, bismuth acetylacetonate, isotria dipyhaloid methane, and aluminum acetylacetonate were placed in vaporizers 48, 49, and 5051, respectively, and heated to 130°C and 120°C, respectively.
The vapor was introduced into the reaction chamber 43 together with a nitrogen carrier (flow rate of 1.0 cc/min each) and flowed onto the substrate 46 heated to 500°C for about 30 minutes. Made it react. The degree of vacuum during film formation is
The pressure was 1.9 x 10'4 Torr.

得られた膜を解析した結果、膜組成りi2゜Yo、s 
F C3,8Aff+、z >、2で、ガーネット型の
単結晶構造をしていた。
As a result of analyzing the obtained film, the film composition was found to be i2゜Yo,s
FC3,8Aff+, z > 2, and had a garnet-type single crystal structure.

次に波長780nmでのファラデー回転角を測定したと
ころ4.1deg/μmであった。この結果を表1試料
番号1に示す。以下同様にして、他の金属化合物を用い
た場合、あるいは、実施例2,3で得られた単結晶形成
用基板等を変えて、ガーネット単結晶膜を作成した。そ
の結果を表1の試料番号2〜5に示す。
Next, the Faraday rotation angle at a wavelength of 780 nm was measured and found to be 4.1 deg/μm. The results are shown in Table 1 Sample No. 1. Garnet single crystal films were similarly created using other metal compounds or by changing the single crystal forming substrates obtained in Examples 2 and 3. The results are shown in sample numbers 2 to 5 in Table 1.

(以 下 余 白) ■ 実施例5 本発明の実施例5を第3図、第4図に沿って説明する。(Hereafter, extra white) ■ Example 5 Embodiment 5 of the present invention will be described with reference to FIGS. 3 and 4.

実施例2で作成された単結晶形成用基板金型(鋸歯状ス
タンパ)を2枚用意しく内1枚は、鋸歯状溝のない平面
型でも良い)第3図(a)に示すように、組成がSiO
□73重量%、Na2Oが16.5重量%、A#!20
3が1重量%、CaOが5重量%、MgOが3.5重量
%から成るガラス板(10mm角、厚さ3mm)をスタ
ンバの間にはさみ込んで780°Cに加熱しながら加圧
し、(圧力2kg / crM )冷却後ガラス板を取
り出した。
Two single crystal forming substrate molds (serrated stampers) prepared in Example 2 are prepared (one of which may be a flat type without serrated grooves), as shown in FIG. 3(a). Composition is SiO
□73% by weight, Na2O is 16.5% by weight, A#! 20
A glass plate (10 mm square, 3 mm thick) consisting of 1% by weight of 3, 5% by weight of CaO, and 3.5% by weight of MgO was sandwiched between stand bars and heated to 780°C while pressurized. After cooling (pressure: 2 kg/crM), the glass plate was taken out.

次にこの鋸歯状の溝が付いたガラス基板[第3図(b)
](単結晶形成用基板)を用いて超伝導単結晶膜を形成
する工程を第4図を参照しながら説明する。
Next, a glass substrate with this sawtooth groove [Fig. 3(b)]
The process of forming a superconducting single crystal film using a single crystal forming substrate will be described with reference to FIG.

第4図は、ECRプラズマCVD装置の概略図を示して
いる。第4図において、41はECRの高密度プラズマ
を発生させるためのプラズマ室、42はECRに必要な
磁場を供給する電磁石であり、43は反応室、24はマ
イクロ波(2,450+−1z)導入口、45はプラズ
マ源となるガス(酸素)の導入口、46は下地基板(単
結晶形成用基板)、47は基板ホルダーで、基板加熱が
可能となっている。48,49,50.51は原料の入
った気化器で、42はキャリアガス(N2)の導入口で
ある。43は反応室を強制排気するためのポンプ(ター
ボ分子ポンプあるいは、拡散ポンプ)につながっている
排気口である。
FIG. 4 shows a schematic diagram of an ECR plasma CVD apparatus. In Fig. 4, 41 is a plasma chamber for generating high-density plasma for ECR, 42 is an electromagnet that supplies the magnetic field necessary for ECR, 43 is a reaction chamber, and 24 is a microwave (2,450+-1z). An inlet 45 is an inlet for a gas (oxygen) serving as a plasma source, 46 is a base substrate (substrate for forming a single crystal), and 47 is a substrate holder, which enables heating of the substrate. 48, 49, 50, and 51 are vaporizers containing raw materials, and 42 is an inlet for carrier gas (N2). 43 is an exhaust port connected to a pump (turbo molecular pump or diffusion pump) for forcibly evacuating the reaction chamber.

まずプラズマ室41および反応室43内を4×107T
orrまで減圧して、吸着ガス等を除去する。
First, the inside of the plasma chamber 41 and reaction chamber 43 was 4×107T
The pressure is reduced to orr to remove adsorbed gas, etc.

次にプラズマ室41に導入口45からプラズマ源となる
酸素(流量20cc/分)を導入し、導入口44より、
2.45 GHzのマイクロ波を500W印加して、電
磁石により磁界強度を875ガウスとすることにより、
ECRプラズマを発生させる。の際、電磁石42による
発散磁界により発生したプラズマは、プラズマ室41よ
り反応室43に引き出される、また気化器48,49,
50.51にそれぞれ銅ジピバロイルメタン〔C11(
CIIHI902)2) 、カルシウムジピバロイ)’
vjタフ 1:ca(CIII11902)2) l 
ストロンチウムジピバロイルメタン(Sr(CzH+q
O□)2ビスマスジピバロイルメタン(Bi(C++H
+qO□)3〕を入れておき、それぞれ105°C,1
30°C135°C,100°Cに加熱し、その蒸気を
窒素キャリア(流量それぞれ1.0cc/分)とともに
反応室43内に導入する。導入された蒸気をプラズマ室
41内より引き出された活性なプラズマに触れさせるこ
とにより、60分間反応を行ない鋸歯状溝の付いたガラ
ス基板46上に成膜した。
Next, oxygen (flow rate 20 cc/min), which becomes a plasma source, is introduced into the plasma chamber 41 from the introduction port 45, and from the introduction port 44,
By applying 500 W of 2.45 GHz microwave and setting the magnetic field strength to 875 Gauss using an electromagnet,
Generate ECR plasma. At this time, the plasma generated by the divergent magnetic field by the electromagnet 42 is drawn out from the plasma chamber 41 to the reaction chamber 43, and is also drawn out from the vaporizers 48, 49,
Copper dipivaloylmethane [C11 (
CIIHI902)2) , Calcium dipivaloy)'
vj tough 1: ca (CIII11902) 2) l
Strontium dipivaloylmethane (Sr(CzH+q
O□)2 Bismuth dipivaloylmethane (Bi(C++H
+qO□)3] and heated to 105°C, 1
It is heated to 30°C, 135°C, and 100°C, and its vapor is introduced into the reaction chamber 43 together with a nitrogen carrier (flow rate of 1.0 cc/min, respectively). By bringing the introduced vapor into contact with active plasma drawn out from inside the plasma chamber 41, a reaction was carried out for 60 minutes, and a film was formed on the glass substrate 46 having sawtooth grooves.

なお成膜時の基板温度は、400 ’Cで一定であった
。また成膜時の真空度は、3.5 X 104Torr
であった。
Note that the substrate temperature during film formation was constant at 400'C. The degree of vacuum during film formation was 3.5 x 104 Torr.
Met.

得られた膜を解析した結果、ペロブスカイト系の単結晶
構造を持ち、4端子法による超伝導の転移温度は、12
4°にであった。
Analysis of the obtained film revealed that it has a perovskite single crystal structure, and the superconducting transition temperature measured by the four-terminal method is 12
It was at 4°.

この時の結果を表2の試料番号1に示す。以下同様にし
て、気化器に入れる材料(蒸発原料)を変えた時の膜の
解析結果および、超伝導転移温度を表2の試料番号2〜
3に示す。
The results at this time are shown in sample number 1 in Table 2. In the same manner, the analysis results of the membrane and the superconducting transition temperature when the material (evaporation raw material) put into the vaporizer was changed were calculated from sample numbers 2 to 2 in Table 2.
Shown in 3.

発明の効果 以上性べてきたように、本発明によれば、きわめて生産
性良く単結晶作成用の基板(格子状溝付き基板)が作成
でき、しかもこの基板(ガラス製)を用いれば、従来の
ように高価な単結晶の基板を用いずに単結晶膜および単
結晶基板が得られるものであり、産業上きわめて有益な
発明である。
Effects of the Invention As described above, according to the present invention, a substrate for producing a single crystal (a substrate with lattice grooves) can be produced with extremely high productivity, and if this substrate (made of glass) is used, This is an extremely useful invention industrially, since a single-crystal film and a single-crystal substrate can be obtained without using such an expensive single-crystal substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単結晶膜を形成するだめの基板を作成する金型
(スタンパ−)の製造工程の断面図、第2図は第1図と
同様に単結晶膜を形成するための基板を作成する金型の
製造工程図、第3図は単結晶膜を形成するだめの基板を
作成する工程の断面図、第4図は単結晶形成用基板上に
ECRプラズマCVD法によって単結晶膜を形成するた
めのECRプラズマCVD装置の概略図である。 〕1・・・・・・母材(超硬合金、サーメッ)L12・
・・・・・イリジウム合金膜、13・・・・・・フォト
レジスト。 代理人の氏名 弁理士 粟野重孝 はか1名へ  囮 L′Fa @巌 佃q柵 V区 た− 11’を 旧マp −cu  o’) 0) 〜 〜 区 Oつ qコ rb $
Figure 1 is a cross-sectional view of the manufacturing process of a mold (stamper) for creating a substrate on which a single crystal film will be formed, and Figure 2 is a cross-sectional view of the manufacturing process of a mold (stamper) for creating a substrate on which a single crystal film will be formed. Figure 3 is a cross-sectional view of the process of creating a substrate on which a single crystal film will be formed, and Figure 4 is a diagram of the manufacturing process of a mold for forming a single crystal film. 1 is a schematic diagram of an ECR plasma CVD device for [1] Base material (carbide, cermet) L12.
...Iridium alloy film, 13... Photoresist. Agent's name Patent attorney Shigetaka Awano To one person Decoy L'Fa @Iwaotsukudeqsaku Vkuta- 11' old map -cu o') 0) ~ ~ Ward Otsuqorb $

Claims (6)

【特許請求の範囲】[Claims] (1)イリジウム(Ir)合金膜でコーティングされた
タングステンカーバイト(WC)、あるいはクロムカー
バイト(Cr_3C_2)を含有する超硬合金もしくは
サーメット上にリソグラフィー法により矩形波状、格子
点状あるいは、鋸歯状の格子を設けたことを特徴とする
単結晶形成基板用金型。
(1) Tungsten carbide (WC) coated with an iridium (Ir) alloy film, or a cemented carbide or cermet containing chromium carbide (Cr_3C_2) is formed into rectangular waves, lattice points, or sawtooth shapes by lithography. A mold for a single crystal forming substrate, characterized by providing a lattice of.
(2)超硬合金あるいは、サーメット上にコーティング
されたイリジウム合金膜が、イリジウム(Ir)−白金
(Pt)合金、イリジウム (Ir)−ロジウム(Rh)合金、イリジウム(Ir)
−オスミニウム(Os)合金、イリジウム(Ir)−レ
ニウム(Re)合金のうちのいずれか一種の合金である
ことを特徴とする請求項(1)記載の単結晶形成基板用
金型。
(2) The iridium alloy film coated on the cemented carbide or cermet is an iridium (Ir)-platinum (Pt) alloy, an iridium (Ir)-rhodium (Rh) alloy, or an iridium (Ir) alloy.
- The mold for a single-crystal forming substrate according to claim 1, wherein the mold is one of an osminium (Os) alloy and an iridium (Ir)-rhenium (Re) alloy.
(3)リソグラフィー法が、電子ビームリソグラフィー
法であることを特徴とする請求項(1)記載の単結晶形
成基板用金型。
(3) The mold for a single crystal forming substrate according to claim (1), wherein the lithography method is an electron beam lithography method.
(4)矩形波状、格子点状あるいは、鋸歯状の格子が設
けられた一対金型を加熱し、これら一対の金型の間にガ
ラスをはさみ込んで、上記一対の金型を上下から圧力を
加えて上記金型の格子形状をガラス上に転写した単結晶
形成用基板。
(4) A pair of molds provided with a rectangular wave, lattice point, or serrated grid is heated, glass is sandwiched between the pair of molds, and pressure is applied from above and below to the pair of molds. In addition, a single crystal forming substrate is obtained by transferring the lattice shape of the mold onto glass.
(5)矩形波状、格子点状あるいは、鋸歯状の格子が設
けられた基板上に化学蒸着法(CVD法)にてガーネッ
ト単結晶膜を設けた単結晶基板。
(5) A single-crystal substrate in which a garnet single-crystal film is provided by chemical vapor deposition (CVD) on a substrate provided with a rectangular wave, lattice point, or sawtooth lattice.
(6)矩形波状、格子点状あるいは、鋸歯状の格子が設
けられた基板上に化学蒸着法(CVD法)にて、銅(C
u)−カルシウム(Ca)−ストロンチウム(Sr)−
酸素(O)−M〔ただしMは、ビスマス(Bi)、鉛(
Pb)タリウム(Tl)のうちのいずれか一種の元素〕
系単結晶膜を設けた超伝導単結晶基板。
(6) Copper (C
u) - Calcium (Ca) - Strontium (Sr) -
Oxygen (O)-M [where M is bismuth (Bi), lead (
Pb) Any element among thallium (Tl)]
A superconducting single crystal substrate with a system single crystal film.
JP31337788A 1988-12-12 1988-12-12 Metal mold for single crystal forming substrate and single crystal substrate using same Pending JPH02157199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31337788A JPH02157199A (en) 1988-12-12 1988-12-12 Metal mold for single crystal forming substrate and single crystal substrate using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31337788A JPH02157199A (en) 1988-12-12 1988-12-12 Metal mold for single crystal forming substrate and single crystal substrate using same

Publications (1)

Publication Number Publication Date
JPH02157199A true JPH02157199A (en) 1990-06-15

Family

ID=18040536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31337788A Pending JPH02157199A (en) 1988-12-12 1988-12-12 Metal mold for single crystal forming substrate and single crystal substrate using same

Country Status (1)

Country Link
JP (1) JPH02157199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113642A (en) * 2005-10-19 2007-05-10 Advics:Kk Friction couple and friction material
CN107511162A (en) * 2016-06-18 2017-12-26 中国石油化工股份有限公司 The preparation method of binder free Y molecular sieve catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170893A (en) * 1981-04-13 1982-10-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of substrate for forming single crystal film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170893A (en) * 1981-04-13 1982-10-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of substrate for forming single crystal film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113642A (en) * 2005-10-19 2007-05-10 Advics:Kk Friction couple and friction material
CN107511162A (en) * 2016-06-18 2017-12-26 中国石油化工股份有限公司 The preparation method of binder free Y molecular sieve catalyst
CN107511162B (en) * 2016-06-18 2020-12-01 中国石油化工股份有限公司 Preparation method of binder-free Y molecular sieve catalyst

Similar Documents

Publication Publication Date Title
US5459099A (en) Method of fabricating sub-half-micron trenches and holes
US4624214A (en) Dry-processing apparatus
JPH07294700A (en) X-ray window
JPH02208601A (en) Optical window member and its manufacture
US5139633A (en) Film-forming on substrate by sputtering
KR100212906B1 (en) Process for producing oxide films and chemical deposition apparatus therefor
JPH02157199A (en) Metal mold for single crystal forming substrate and single crystal substrate using same
JPS6224605A (en) Amorphous magnetic thin film
JPH05326380A (en) Thin-film composition and mask for x-ray exposure using the same
US3669863A (en) Technique for the preparation of iron oxide films by cathodic sputtering
JP4405615B2 (en) Optical thin film forming method and optical thin film
JPS6033557A (en) Manufacture of material of electron beam mask
JPS6046372A (en) Thin film forming method
US3650921A (en) Technique for the preparation of iron oxide films by cathodic sputtering
JPH0472062A (en) Production of crystal film
JPS63126234A (en) Manufacture of luminescent material
JPS58171876A (en) Method of producing josephson junction element of high capacitance resistance in thermal cycling with lead alloy as main content
JPH04171915A (en) X-ray transmission film used for x-ray lithography mask
JPS63136518A (en) Manufacture of x-ray mask
JPS63113504A (en) Manufacture of self-standing type optical element
JPH03182752A (en) Formation of mask for exposing
JPH01283830A (en) Mask for x-ray exposure
JPS6353255A (en) Formation of thin carbon film
JPH08264419A (en) Manufacture of x-ray mask
JPS5891170A (en) Dry etching method for chromium oxide (or203)