JPH02157167A - Production of aluminum nitride sintered body - Google Patents

Production of aluminum nitride sintered body

Info

Publication number
JPH02157167A
JPH02157167A JP63310496A JP31049688A JPH02157167A JP H02157167 A JPH02157167 A JP H02157167A JP 63310496 A JP63310496 A JP 63310496A JP 31049688 A JP31049688 A JP 31049688A JP H02157167 A JPH02157167 A JP H02157167A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
sintering
powder
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63310496A
Other languages
Japanese (ja)
Other versions
JP2684729B2 (en
Inventor
Kazuhiko Nakano
和彦 中野
Michio Shinohara
篠原 道夫
Mitsutoshi Murase
村瀬 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63310496A priority Critical patent/JP2684729B2/en
Priority to EP89312677A priority patent/EP0372910B1/en
Priority to DE68916521T priority patent/DE68916521T2/en
Publication of JPH02157167A publication Critical patent/JPH02157167A/en
Priority to US07/646,476 priority patent/US5076981A/en
Application granted granted Critical
Publication of JP2684729B2 publication Critical patent/JP2684729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high density AlN sintered body having superior heat conductivity by mixing AlN powder with specified sintering aids and subjecting this mixture to molding and sintering in a nonoxidizing atmosphere. CONSTITUTION:Ca and Cu oxides as sintering aids are added to AlN powder of <=4.0mum central particle size by 0.01-3wt.% each (expressed in terms of CaO and CuO) basing on the amt. of the AlN in <=1 molar ratio of CuO to CaO and then a nonaq. solvent and a binder such as PVA are added. They are mixed, molded, heated to 1,500-2,000 deg.C at 1-5 deg.C/min heating rate and sintered for 2-20hr to obtain an AlN sintered body having >=3.1g/cm<3> density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化アルミニウム焼結体の製造法に関するも
ので、詳しくは従来より低い温度での焼結において、高
密度で良好な熱伝導度を有する窒化アルミニウム焼結体
を得る方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing an aluminum nitride sintered body, and more specifically, it relates to a method for producing an aluminum nitride sintered body, and more specifically, it is sintered at a lower temperature than conventionally, and has a high density and good thermal conductivity. The present invention relates to a method for obtaining an aluminum nitride sintered body having the following properties.

〔従来の技術及び発明が解決しようとする課題〕ICパ
ッケージ、基板材料には従来よりアルミナが用いられて
いるが、LSI等の高集積化、高速化、高出力化に伴い
、チップの発熱を効率よく系外に逃がす必要性が高まり
、アルミナよりも熱伝導性が良く、放熱性に優れた材料
が要望されている。
[Conventional technology and problems to be solved by the invention] Alumina has been used for IC packages and substrate materials, but as LSIs become more highly integrated, faster, and have higher output, it has become difficult to generate heat from chips. There is an increasing need to efficiently release heat from the system, and there is a demand for a material that has better thermal conductivity and better heat dissipation than alumina.

窒化アルミニウムは高い熱伝導性を有すると共に絶縁抵
抗、絶縁耐圧、誘電率等の電気的特性および強度等の機
械的特性に優れており、放熱性に優れたパッケージ、基
板材料として注目されている材料である。
Aluminum nitride has high thermal conductivity and excellent electrical properties such as insulation resistance, dielectric strength, dielectric constant, and mechanical properties such as strength, and is attracting attention as a material for packages and substrates with excellent heat dissipation. It is.

熱伝導性に優れた窒化アルミニウム焼結体を得るには、
窒化アルミニウム粉末を成形し、緻密に焼結することが
必要である。
To obtain an aluminum nitride sintered body with excellent thermal conductivity,
It is necessary to shape the aluminum nitride powder and sinter it densely.

窒化アルミニウムはそれ単独では常圧焼結し難いため、
常圧焼結法では従来cao、 Y20゜等の酸化物を焼
結助剤として添加し、それら助剤と窒化アルミニウム表
面層のAl2O3との反応を利用して緻密化する方法が
採られてきた。
Aluminum nitride alone is difficult to sinter under pressure, so
Conventionally, in the pressureless sintering method, a method has been adopted in which oxides such as cao and Y20° are added as sintering aids, and densification is achieved by utilizing the reaction between these aids and the Al2O3 of the aluminum nitride surface layer. .

例えば、特公昭47−18655号公報にはY2O3を
添加して焼結することにより緻密化する方法、特公昭5
8−49510号公報にはCaO1BaO1Sr[]等
を添加して焼結することにより、相対密度98.5%以
上の緻密な窒化アルミニウム焼結体を得る方法が提案さ
れている。
For example, Japanese Patent Publication No. 47-18655 describes a method of densification by adding Y2O3 and sintering.
8-49510 proposes a method of obtaining a dense aluminum nitride sintered body with a relative density of 98.5% or more by adding CaO1BaO1Sr[ ] and sintering.

しかし、常圧焼結で高熱伝導度の緻密な焼結体を得るた
めに、Y2O3を添加した場合では1800℃以上の高
温を必要とし、Canを添加した場合でも通常1700
℃以上の高温の焼結が必要である。
However, in order to obtain a dense sintered body with high thermal conductivity by pressureless sintering, when Y2O3 is added, a high temperature of 1800°C or higher is required, and even when Can is added, the temperature is usually 1700°C or higher.
Sintering at a high temperature of ℃ or higher is required.

現在ICパッケージ、基板材料に用いられているアルミ
ナは通常1500〜1600℃の温度で焼結、緻密化さ
れている。この温度に比べて上述のような焼結助剤を添
加して窒化アルミニウム焼結体を得る場合、その焼結温
度は相当高く、このことが窒化アルミニウム焼結体のコ
ストを低減出来ない理由の一つになっている。
Alumina, which is currently used for IC packages and substrate materials, is usually sintered and densified at a temperature of 1500 to 1600°C. Compared to this temperature, when an aluminum nitride sintered body is obtained by adding a sintering aid as described above, the sintering temperature is considerably higher, and this is the reason why the cost of aluminum nitride sintered bodies cannot be reduced. They are one.

このため、特開昭61−209959号公報では希土類
酸化物あるいはフッ化物とアルカリ土類酸化物あるいは
フッ化物とを添加することにより、1600℃で緻密化
出来る方法を提案しているが、その熱伝導度は100 
W/mK程度である。
For this reason, JP-A No. 61-209959 proposes a method that can be densified at 1600°C by adding rare earth oxides or fluorides and alkaline earth oxides or fluorides, but the heat conductivity is 100
It is about W/mK.

本発明は従来の焼結助剤では達成できなかった窒化アル
ミニウム粉末の低温焼結の課題を解決しようとするもの
であり、その目的とするところは従来よりも低い温度の
焼結で緻密化した高い熱伝導度の窒化アルミニウム焼結
体の製造法を提供することにある。
The present invention attempts to solve the problem of low-temperature sintering of aluminum nitride powder, which could not be achieved with conventional sintering aids, and its purpose is to sinter aluminum nitride powder at a lower temperature than conventional methods. An object of the present invention is to provide a method for manufacturing an aluminum nitride sintered body with high thermal conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、窒化アルミニウム粉末に焼結助剤と
してカルシウムおよび銅の化合物を窒化アルミニウムに
対して各々C,aO,CuOに換算して0.01〜3重
量%、CuO/CaO換算モル比が1以下の範囲で添加
し、混合、成形後、非酸化性雰囲気中で焼成することを
特徴とする窒化アルミニウム焼結体の製造法を提供する
ものである。
That is, in the present invention, calcium and copper compounds are added to aluminum nitride powder as sintering aids in an amount of 0.01 to 3% by weight in terms of C, aO, and CuO, respectively, with a molar ratio of CuO/CaO. The object of the present invention is to provide a method for producing an aluminum nitride sintered body, characterized in that the aluminum nitride sintered body is added in an amount of 1 or less, mixed, formed, and then fired in a non-oxidizing atmosphere.

本発明によれば、従来に比べて低い焼結温度でも密度が
3.Ig/cm3以上で、熱伝導度の大きい窒化アルミ
ニウム焼結体を得ることができる。
According to the present invention, the density can be maintained at 3.0% even at a lower sintering temperature than conventional ones. At Ig/cm3 or more, an aluminum nitride sintered body with high thermal conductivity can be obtained.

本発明において窒化アルミニウム焼結体が低温から緻密
化する理由としては次の様に考えることが出来る。
The reason why the aluminum nitride sintered body becomes dense from a low temperature in the present invention can be considered as follows.

すなわち、窒化アルミニウムの常圧焼結は液相を介して
緻密化が進むと考えられている。従って、より低温で液
相を生成するような物質を焼結助剤として添加すれば、
より低温から窒化アルミニウムの緻密化が進むと考えら
れる。
In other words, it is believed that pressureless sintering of aluminum nitride progresses densification through the liquid phase. Therefore, if a substance that generates a liquid phase at a lower temperature is added as a sintering aid,
It is thought that densification of aluminum nitride progresses from lower temperatures.

従って、この液相に窒化アルミニウム粉末表面のAl2
O3が溶は込むことにより、緻密化が低温から進むもの
と考えられる。
Therefore, this liquid phase contains Al2 on the surface of the aluminum nitride powder.
It is thought that densification progresses from low temperatures due to the infiltration of O3.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明において使用する窒化アルミニウム粉末は特に製
造法は限定されないが、純度の良い微粉末が好ましい。
The method of manufacturing the aluminum nitride powder used in the present invention is not particularly limited, but a fine powder with good purity is preferred.

粉末の粒径は中心粒径が4.0μm以下の粉末を用いる
ことが好ましい。特に1600℃以下の温度で緻密化さ
せるためには出来れば中心粒径2.0μm以下の微粉末
を用いることが好ましい。
As for the particle size of the powder, it is preferable to use a powder having a center particle size of 4.0 μm or less. In particular, in order to achieve densification at a temperature of 1600° C. or lower, it is preferable to use a fine powder with a center particle size of 2.0 μm or less if possible.

焼結助剤として用いられるカルシウムおよび銅の化合物
としては、酸化物、水酸化物、炭酸塩、硫酸塩、硝酸塩
、酢酸塩、蓚酸塩、ハロゲン化物、硫化物、高級脂肪酸
塩等を用いることができる。
As calcium and copper compounds used as sintering aids, oxides, hydroxides, carbonates, sulfates, nitrates, acetates, oxalates, halides, sulfides, higher fatty acid salts, etc. can be used. can.

また、カルシウムと銅の複合化合物やカルシウムとアル
ミニウムの複合化合物、銅とアルミニウムの複合化合物
、カルシウムとアルミニウムと銅の複合化合物を使用す
ることも出来る。
Moreover, a composite compound of calcium and copper, a composite compound of calcium and aluminum, a composite compound of copper and aluminum, and a composite compound of calcium, aluminum, and copper can also be used.

カルシウムおよび銅は化合物であればどのような物質で
も良いが、結晶水を含まない化合物が好ましい。
Calcium and copper may be any compounds as long as they are compounds, but compounds that do not contain water of crystallization are preferred.

例えば、Cab、 Ca(OH)2. CaCO3,C
aSO4・2H20゜Ca(NO3)2’4H20,C
,a(CH3COO)2. ca(coo)2・h2゜
CaF2. CaS、 Ca 〔CHs(Ct12)+
6COO〕2. CuO。
For example, Cab, Ca(OH)2. CaCO3,C
aSO4・2H20゜Ca(NO3)2'4H20,C
,a(CH3COO)2. ca(coo)2・h2゜CaF2. CaS, Ca [CHs(Ct12)+
6COO〕2. CuO.

Cu2O,Cu(叶)2. CuCO3・Cu(叶)2
・H2O,CuSO2゜Cu(No3)2・3H20,
Cu(C113COO)2・H2O,CI(Coo)2
゜CuF2CuS、 [l:u [:CH3(CH2)
16COO〕2+ CuF2CuS。
Cu2O, Cu (leaf) 2. CuCO3・Cu(leaf)2
・H2O, CuSO2゜Cu(No3)2・3H20,
Cu(C113COO)2・H2O, CI(Coo)2
゜CuF2CuS, [l:u[:CH3(CH2)
16COO]2+ CuF2CuS.

CaAl、04.  CuO−Al2O,等が使用され
る。
CaAl, 04. CuO-Al2O, etc. are used.

また、これらの化合物の粒径は微細なものほど好ましく
、特に窒化アルミニウム粉末との混合の際に用いられる
溶媒に溶解しないか、し難い化合物を用いる場合には1
1通常中心粒径5.0μm以下の微粉末を用いることが
好ましい。また、これら化合物の添加量は窒化アルミニ
ウム粉末に対し、各々CaO, CuOに換算して0.
01〜3重量%、CuO/CaO換算モル比が1以下の
範囲であることが好ましい。
In addition, the finer the particle size of these compounds, the better, and especially when using compounds that do not dissolve or are difficult to dissolve in the solvent used when mixing with the aluminum nitride powder, 1.
1 It is preferable to use fine powder with a center particle size of 5.0 μm or less. Further, the amount of these compounds added is 0.000% in terms of CaO and CuO, respectively, relative to the aluminum nitride powder.
The CuO/CaO molar ratio is preferably in the range of 01 to 3% by weight and 1 or less.

=6 各々の添加量がこの範囲を逸脱すると常圧焼結では緻密
な焼結体が得られにくいだけでなく、仮に緻密な焼結体
が得られたとしても十分高い熱伝導度が得られない。よ
り好ましくは窒化アルミニウム粉末に対し、各々CaO
, CuOに換算して0.05〜2重量%でCuO/C
aロ換算モル比が1以下の範囲である。
=6 If the amount of each additive deviates from this range, not only will it be difficult to obtain a dense sintered body by pressureless sintering, but even if a dense sintered body is obtained, a sufficiently high thermal conductivity will not be obtained. do not have. More preferably, each CaO
, CuO/C at 0.05 to 2% by weight in terms of CuO
The molar ratio in terms of a and b is in the range of 1 or less.

窒化アルミニウム粉末とカルシウムおよび銅の化合物の
粉末との混合は、乾式混合またはアルコール等の非水溶
媒を用いた湿式混合を用いることが出来るが、通常は非
水溶媒を用いた湿式混合を用いることが好ましい。湿式
混合の際には、次の成形工程を容易にするため、ポリビ
ニルブチラール、ポリビニルアルコール、ポリアクリル
酸エステル等公知のバインダーが通常添加される。また
、バインダーの他に通常各種の分散剤、可塑剤、湿潤剤
が添加される。
For mixing aluminum nitride powder and powder of calcium and copper compounds, dry mixing or wet mixing using a non-aqueous solvent such as alcohol can be used, but wet mixing using a non-aqueous solvent is usually used. is preferred. During wet mixing, a known binder such as polyvinyl butyral, polyvinyl alcohol, or polyacrylic acid ester is usually added to facilitate the subsequent molding process. In addition to the binder, various dispersants, plasticizers, and wetting agents are usually added.

これらの添加剤およびその添加量は次に述べる成形方法
に応じて適当に選択されて使用される。
These additives and their added amounts are appropriately selected and used depending on the molding method described below.

混合装置としてはボールミル、混線機等通常用いられる
装置を使用することが出来る。
As the mixing device, commonly used devices such as a ball mill and a mixer can be used.

さらに、該混合物は成形方法に応じて乾燥、造粒された
顆粒、はい土またはスラリー等の性状に調製される。
Further, the mixture is prepared into the form of dried, granulated granules, clay, slurry, etc. depending on the molding method.

成形方法は一軸プレス、ラバープレス等の乾式法、ドク
ターブレード法、押出し法等の湿式法等公知の方法を用
いることが出来る。また、成形と焼結を同時に行うホッ
トプレス法を用いても何ら差支えはない。
As a forming method, a known method such as a dry method such as a uniaxial press or a rubber press, or a wet method such as a doctor blade method or an extrusion method can be used. Further, there is no problem in using a hot press method in which molding and sintering are performed simultaneously.

得られた成形体は通常匣鉢と呼ばれる容器に収納して焼
結される。その材質にはグラファイト、窒化はう素、窒
化アルミニウム、アルミナ等を用いることが出来るが、
1700℃以上の高温の焼結ではグラファイト、窒化は
う素、窒化アルミニウムからなる匣鉢を用いることが好
ましい。また、成形体を窒化アルミニウムを主成分とす
る粉末の中に埋め込んで焼結するパウダーベツド法を用
いることも出来る。焼結は焼結時の窒化アルミニウムの
酸化を防ぐために、非酸化性雰囲気で行うことが必要で
ある。非酸化性雰囲気としては窒素、アゴン、窒素と水
素の混合ガス、窒素とアルゴンの混合ガス雰囲気等が使
用できるが、窒素ガス雰囲気が製造コスト、装置の取り
扱い易さ等から最も好ましい。
The obtained molded body is usually stored in a container called a sagger and sintered. Graphite, boron nitride, aluminum nitride, alumina, etc. can be used as the material, but
For high-temperature sintering of 1700° C. or higher, it is preferable to use a sagger made of graphite, boron nitride, or aluminum nitride. It is also possible to use a powder bed method in which the compact is embedded in powder whose main component is aluminum nitride and sintered. Sintering must be performed in a non-oxidizing atmosphere to prevent oxidation of aluminum nitride during sintering. As the non-oxidizing atmosphere, nitrogen, agon, a mixed gas atmosphere of nitrogen and hydrogen, a mixed gas atmosphere of nitrogen and argon, etc. can be used, but a nitrogen gas atmosphere is most preferable from the viewpoint of manufacturing cost, ease of handling the apparatus, etc.

焼結温度は1500〜2000℃の範囲を適用すること
が出来るが、実用上は1550〜1800℃の範囲が好
ましい。
The sintering temperature can be in the range of 1,500 to 2,000°C, but is preferably in the range of 1,550 to 1,800°C.

昇温速度は特に限定されるものではないが、通常1〜5
℃/minの範囲が用いられる。
The heating rate is not particularly limited, but is usually 1 to 5.
A range of °C/min is used.

焼結温度における保持時間は、2〜20時間の範囲内で
窒化アルミニウム焼結体の密度が3.1g/cm3 以
上になるような保持時間が選ばれるが、好ましくは2〜
8時間の範囲である。
The holding time at the sintering temperature is selected within the range of 2 to 20 hours such that the density of the aluminum nitride sintered body becomes 3.1 g/cm3 or more, but preferably 2 to 20 hours.
The range is 8 hours.

得られた窒化アルミニウム焼結体の密度は3.1g/c
m3以上であることが好ましい。焼結体の密度が3、1
g/cm3未満でも外観上は緻密化しているように見え
るが、焼結体内に多くの気孔を含んでおり、その結果高
熱伝導度の焼結体とならない。
The density of the obtained aluminum nitride sintered body is 3.1 g/c
It is preferable that it is m3 or more. The density of the sintered body is 3, 1
Even if it is less than g/cm3, the sintered body appears to be dense in appearance, but the sintered body contains many pores, and as a result, the sintered body does not have high thermal conductivity.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明するが、本発明
はこれらにより限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto.

なお、諸物性の測定は次の方法、および装置で行った。The various physical properties were measured using the following method and apparatus.

(酸素含量) インパルス加熱−赤外線吸収法 装置: LEC○社 TC−436型 (金属不純物) ICPC光発光分 光法:■島津製作所 カントレッ) GQM−75(粒
径分布) セデイグラフ 装置: Micromeritics社5ediGra
ph 5000BT(焼結体密度) アルキメデス法 装置:■島津製作所 固体比重測定装置(熱伝導度) レーザーフラッシュ法 装置:真空理工■ TC−7000型 実施例 1 窒化アルミニウム(AIN) 粉末としてアルミナの還
元窒化法により得られた酸素含量1.3%、鉄、珪素、
チタンの含量が各々10,60.16ppm 、中心粒
径1.4μmの粉末を使用した。カルシウム化合物とし
て炭酸カルシウム(CaCO3) (白石カルシウム二
白艶華CCR)、銅化合物として酸化第二銅(CuO)
 (半回化学;試薬GRグレード)を用いた。
(Oxygen content) Impulse heating-infrared absorption method device: LEC○ TC-436 type (metal impurities) ICPC optical emission spectroscopy: ■Shimadzu Corporation Cantore) GQM-75 (particle size distribution) Sedigraph device: Micromeritics 5ediGra
ph 5000BT (density of sintered body) Archimedes method device: ■ Shimadzu Corporation Solid specific gravity measuring device (thermal conductivity) Laser flash method device: Vacuum Riko ■ TC-7000 model Example 1 Aluminum nitride (AIN) Reduction nitridation of alumina as powder Oxygen content 1.3%, iron, silicon,
Powders with a titanium content of 10 and 60.16 ppm, respectively, and a center particle size of 1.4 μm were used. Calcium carbonate (CaCO3) as a calcium compound (Shiraishi Calcium Nibai Enka CCR), cupric oxide (CuO) as a copper compound
(half-time chemistry; reagent GR grade) was used.

上記AIN 粉末19.66g、、CaCL 粉末0.
357gおよびCuO粉末0.14g を250m1 
 ポリエチレン製ポットにとりn−ブタノール25g1
アクリル系バインダー(三洋化成:CB−1)4.0g
および分散剤(第一工業薬品;セラモD−18)1.0
gを加えて、15mmφ鉄芯入りナイロンコーティング
ボールを用いて、5Qrpm の回転速度で4時間湿式
ボールミルを行った。
The above AIN powder 19.66g, CaCL powder 0.
357g and 0.14g of CuO powder in 250ml
25g of n-butanol in a polyethylene pot
Acrylic binder (Sanyo Chemical: CB-1) 4.0g
and dispersant (Daiichi Kogyo Yakuhin; Ceramo D-18) 1.0
Wet ball milling was carried out for 4 hours at a rotation speed of 5 Qrpm using a nylon coated ball with a 15 mm diameter iron core.

得られたスラリーを乾燥した後、メノウ製乳鉢で軽く解
砕して焼結用粉末を調製した。
After drying the obtained slurry, it was lightly crushed in an agate mortar to prepare a powder for sintering.

この焼結用粉末を成形用金型に入れ300Kg/cm2
で一軸プレスし、次いで1500kg/cm2でラバー
プレス成形して直径13mm、厚み10+++mの成形
体を得た。
Put this sintering powder into a mold of 300Kg/cm2
The molded product was uniaxially pressed at a pressure of 1,500 kg/cm2, and then rubber press-molded at a pressure of 1500 kg/cm2 to obtain a molded product having a diameter of 13 mm and a thickness of 10+++ m.

この成形体をグラファイト容器に入れ、窒化アルミニウ
ムと窒化ホウ素の混合粉末に埋めて、窒素雰囲気中で1
550.1600.1700.1800℃の各温度で5
時間常圧焼結した。得られた焼結体の焼結体密度および
熱伝導度を表1に示す。
This molded body was placed in a graphite container, buried in a mixed powder of aluminum nitride and boron nitride, and heated in a nitrogen atmosphere.
5 at each temperature of 550.1600.1700.1800℃
Sintered under pressure for an hour. Table 1 shows the sintered body density and thermal conductivity of the obtained sintered body.

なお、熱伝導度の測定には焼結抜切削加工して得られた
直径10mm厚み3mmの焼結体に金蒸着後、カーボン
スプレーを施して測定した。
The thermal conductivity was measured by evaporating gold onto a sintered body having a diameter of 10 mm and a thickness of 3 mm obtained by sintering and cutting, followed by carbon spraying.

表−1 焼結温度 焼結体密度 熱伝導度 1550 ℃ 3.12 g/ cm31121’l/
mK1600   3.22    1251700 
  3.24    1501800   3.25 
   155実施例 2 実施例1と同様のAIN粉末、CaCO3およびCuO
粉末を用い、CaCO3およびCuO粉末の添加量を表
2のように変えた以外は実施例1と同様の方法で処理し
て焼結用粉末を作成した。
Table-1 Sintering temperature Sintered compact density Thermal conductivity 1550℃ 3.12 g/cm31121'l/
mK1600 3.22 1251700
3.24 1501800 3.25
155 Example 2 AIN powder, CaCO3 and CuO as in Example 1
Powder for sintering was prepared using the same method as in Example 1 except that the amounts of CaCO3 and CuO powder were changed as shown in Table 2.

これらの焼結用粉末を実施例1と同様の方法で成形後、
1600℃で5時間常圧焼結した。
After molding these sintering powders in the same manner as in Example 1,
Normal pressure sintering was performed at 1600°C for 5 hours.

得られた焼結体の焼結体密度および熱伝導度を表2に示
す。
Table 2 shows the sintered body density and thermal conductivity of the obtained sintered body.

表−2 No、焼結用粉末組成(g) 焼結体密度 熱伝導度へ
IN   ClICO3CUD    (g/cm3)
     (III/mK)2−1 19.3 0.4
 0.3  3.21   1222−2 19.0 
0.8 0.2  3.19   1172−3 18
.6 0.9 0.5  3.20   1202−4
 19.5 0.3 0.2  3.23   128
2−5 19.8 0,15 0.05  3.24 
  132比較例 実施例1と同様のへIN粉末に焼結助剤として酸化イツ
トリウム粉末(信越化学級)のみを3重量%添加して得
られた焼結用粉末を1600℃で5時間常圧焼結して焼
結体を作成した。
Table-2 No. Sintering powder composition (g) Sintered body density Thermal conductivity IN ClICO3CUD (g/cm3)
(III/mK)2-1 19.3 0.4
0.3 3.21 1222-2 19.0
0.8 0.2 3.19 1172-3 18
.. 6 0.9 0.5 3.20 1202-4
19.5 0.3 0.2 3.23 128
2-5 19.8 0.15 0.05 3.24
132 Comparative Example A sintering powder obtained by adding only 3% by weight of yttrium oxide powder (Shin-Etsu Chemical grade) as a sintering aid to the same HEIN powder as in Example 1 was sintered at 1600°C for 5 hours under normal pressure. A sintered body was created by sintering.

その焼結体密度は2.87 g/cm3で殆ど緻密化せ
ず熱伝導度も68W/mKと低い値であった。
The density of the sintered body was 2.87 g/cm3, which was hardly densified, and the thermal conductivity was a low value of 68 W/mK.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、カルシウムおよび銅の化合物を焼結助
剤として用いると、1600℃までの温度で窒化アルミ
ニウム粉末を3.1g/cm3以上に緻密化出来、高密
度で熱伝導度に優れた窒化アルミニウム焼結体が得られ
る。これは難焼結性の窒化アルミニウムをアルミナ並の
温度で焼結出来るようにしたものであり、該焼結体の製
造コストの大幅な低減が期待できるものであり、工業的
に非常に重要な効果を持つものである。
According to the present invention, when a compound of calcium and copper is used as a sintering aid, aluminum nitride powder can be densified to 3.1 g/cm3 or more at temperatures up to 1600°C, resulting in high density and excellent thermal conductivity. An aluminum nitride sintered body is obtained. This allows aluminum nitride, which is difficult to sinter, to be sintered at a temperature similar to that of alumina, and is expected to significantly reduce the manufacturing cost of the sintered body, making it an extremely important product from an industrial perspective. It is effective.

14完−14 complete

Claims (1)

【特許請求の範囲】[Claims] 窒化アルミニウム粉末に焼結助剤としてカルシウムおよ
び銅の化合物を窒化アルミニウムに対して各々CaO,
CuOに換算して0.01〜3重量%、CuO/CaO
換算モル比が1以下の範囲で添加し、混合、成形後、非
酸化性雰囲気中で焼成することを特徴とする窒化アルミ
ニウム焼結体の製造法。
Calcium and copper compounds were added to aluminum nitride powder as sintering aids, respectively.
0.01 to 3% by weight in terms of CuO, CuO/CaO
A method for producing an aluminum nitride sintered body, which comprises adding the aluminum nitride sintered body in a converted molar ratio of 1 or less, mixing and shaping, and then firing in a non-oxidizing atmosphere.
JP63310496A 1988-12-07 1988-12-07 Manufacturing method of aluminum nitride sintered body Expired - Fee Related JP2684729B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63310496A JP2684729B2 (en) 1988-12-07 1988-12-07 Manufacturing method of aluminum nitride sintered body
EP89312677A EP0372910B1 (en) 1988-12-07 1989-12-05 Process for production of aluminium nitride sintered body
DE68916521T DE68916521T2 (en) 1988-12-07 1989-12-05 Process for producing a sintered body made of aluminum nitride.
US07/646,476 US5076981A (en) 1988-12-07 1991-01-25 Process for production of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310496A JP2684729B2 (en) 1988-12-07 1988-12-07 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH02157167A true JPH02157167A (en) 1990-06-15
JP2684729B2 JP2684729B2 (en) 1997-12-03

Family

ID=18005927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310496A Expired - Fee Related JP2684729B2 (en) 1988-12-07 1988-12-07 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2684729B2 (en)

Also Published As

Publication number Publication date
JP2684729B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US5077245A (en) Aluminum nitride-based sintered body and process for the production thereof
WO2019031697A1 (en) Method for preparing spherical aluminum nitride powder
US5154863A (en) Aluminum nitride-based sintered body and process for the production thereof
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
JP3481778B2 (en) Aluminum nitride sintered body and method for producing the same
JPH02157167A (en) Production of aluminum nitride sintered body
JP2962466B2 (en) Aluminum nitride sintered body
JP2684728B2 (en) Manufacturing method of aluminum nitride sintered body
JP2807430B2 (en) Aluminum nitride sintered body and method for producing the same
JPH05147910A (en) Aluminum nitride-based powder and its production
JP2666942B2 (en) Aluminum nitride sintered body
JP3145519B2 (en) Aluminum nitride sintered body
US5076981A (en) Process for production of aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JPH0431366A (en) Production of aluminum nitride-based powder
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JPS63277573A (en) Production of sintered aluminum nitride having high thermal conductivity
JP2000044351A (en) Silicon nitride-based heat radiating member and its production
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JP2535139B2 (en) Heat dissipation board
JPH0825799B2 (en) Method for manufacturing high thermal conductivity aluminum nitride sintered body
JPH03218977A (en) Production of aluminum nitride sintered body
JPH0312363A (en) Aluminum nitride-containing sintered body and its manufacture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

LAPS Cancellation because of no payment of annual fees