JPH02157157A - Zirconia sintered body having superior corrosion resistance and hot water resistrance - Google Patents

Zirconia sintered body having superior corrosion resistance and hot water resistrance

Info

Publication number
JPH02157157A
JPH02157157A JP63311961A JP31196188A JPH02157157A JP H02157157 A JPH02157157 A JP H02157157A JP 63311961 A JP63311961 A JP 63311961A JP 31196188 A JP31196188 A JP 31196188A JP H02157157 A JPH02157157 A JP H02157157A
Authority
JP
Japan
Prior art keywords
zirconia
hot water
sintered body
corrosion resistance
partially stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63311961A
Other languages
Japanese (ja)
Other versions
JP2762495B2 (en
Inventor
Kinya Inagaki
稲垣 欣哉
Mitsuhisa Sakamoto
光久 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63311961A priority Critical patent/JP2762495B2/en
Publication of JPH02157157A publication Critical patent/JPH02157157A/en
Application granted granted Critical
Publication of JP2762495B2 publication Critical patent/JP2762495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve hot water resistance, corrosion resistance and mechanical strength by using Al2O3, CaO, SiO2 and partially stabilized zirconia and specifying average grain size. CONSTITUTION:The zirconia sintered body has a compsn. consisting of, by weight, 0.05-60% Al2O3, 0.010-0.4% CaO, <0.05% SiO2 and the balance partially stabilized zirconia. This zirconia contains 2.5-5mol% Y2O3 as a stabilizer and is chiefly tetragonal. The zirconia sintered body has superior mechanical strength, corrosion resistance and such hot water resistance that it hardly undergoes a change with the lapse of time even when held in hot water for a long time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高強度であって耐食性および熱安定性に優れ、
かつ長時間熱水中に保持しても経時劣化の少ない、すな
わち耐熱水性に優れたジルコニア焼結体に関するもので
ある。
[Detailed description of the invention] [Industrial application field] The present invention has high strength, excellent corrosion resistance and thermal stability,
The present invention also relates to a zirconia sintered body that exhibits little deterioration over time even when kept in hot water for a long time, that is, has excellent hot water resistance.

[従来の技術] 従来から高強度セラミックス飼料の1つとして、ジルコ
ニアにY2O3を添加した部分安定化ジルコニアか知ら
れている。しかしながら、この部分安定化ジルコニアは
熱的に不安定であり、大気中200〜250℃で長時間
保持すると結晶の正方晶が単斜晶に相転移し、このため
機械的強度や靭性か低下するという問題かある。
[Prior Art] Partially stabilized zirconia, which is obtained by adding Y2O3 to zirconia, has been known as one of the high-strength ceramic feeds. However, this partially stabilized zirconia is thermally unstable, and when kept in the atmosphere at 200-250°C for a long time, the tetragonal crystal phase transitions to monoclinic crystal, resulting in a decrease in mechanical strength and toughness. There is a problem.

これと同様のことか酸、アルカリ水溶液または熱水中に
おいても生しるが、特に170〜200°Cの熱水中で
は相転移か促進されることか知られている。
A similar phenomenon occurs in acid, alkaline aqueous solutions, or hot water, but it is known that the phase transition is particularly accelerated in hot water at 170 to 200°C.

近年、この温度範囲における劣化(低温劣化)を防くた
めに、Y2O3添加量の増加したあるいは安定化剤をY
2O3からCeO2に変更した部分安定化ジルコニアか
研究されている(1983年窯業基礎討論会IA6.1
0項)。そして、Y203の他にCaO2およびA l
 203の両者を含む耐熱安定性に優れた部分安定化ジ
ルコニアが得られている(特開昭6l−21975G 
)。しかしなから、Y2O3含有量を増加したものやC
eO2系部分安定化ジルコニアを安定化剤として用いた
ものは、機械的強度が低い。また、Y2O3のほかCe
09およびAl2O3を併用するものは、多量のCeO
2を添加しないと効果が発揮されない。この他、Y2O
3系部分安定化ジルコニアにA 1203.Mg0.S
 i○2およびCaOの4成分を添加して低温劣化を抑
制したものも知られているか(特開昭59−11197
0 ) 、これも劣化を防ぐには十分てなく、機械的強
度も低いことや添加剤の種類か多いこともあり、経済的
でない。
In recent years, in order to prevent deterioration in this temperature range (low-temperature deterioration), the amount of Y2O3 added has increased or stabilizers have been added to Y.
Partially stabilized zirconia in which CeO2 is used instead of 2O3 is being researched (1983 Ceramics Basics Conference IA6.1)
0 terms). In addition to Y203, CaO2 and Al
Partially stabilized zirconia containing both No. 203 and excellent heat resistance stability has been obtained (Japanese Patent Application Laid-Open No. 61-21975G).
). However, there are some products with increased Y2O3 content and C
Those using eO2-based partially stabilized zirconia as a stabilizer have low mechanical strength. In addition to Y2O3, Ce
When 09 and Al2O3 are used together, a large amount of CeO
If 2 is not added, the effect will not be exhibited. In addition, Y2O
A 1203. for 3-system partially stabilized zirconia. Mg0. S
Is there any known product that suppresses low-temperature deterioration by adding the four components i○2 and CaO?
0), this is also not economical because it is not sufficient to prevent deterioration, has low mechanical strength, and requires many types of additives.

以上述べてきたように、Y2O3によって部分安定化し
たジルコニアには、優れた耐食性耐熱安定性および耐熱
水性を示し、かつ高い機械的強度を有するものかないの
が現状である。
As described above, at present, there is no zirconia partially stabilized by Y2O3 that exhibits excellent corrosion resistance, heat stability, and hot water resistance, and has high mechanical strength.

[発明か解決しようとする課題] 本発明はこのような背景および状況において、優れた耐
食性、耐熱安定性および耐熱水性を示し、かつ高い機械
的強度を有するY2O3系部分安定化ジルコニアを提供
することにある。
[Problems to be Solved by the Invention] In view of the above background and circumstances, the present invention provides a partially stabilized Y2O3-based zirconia that exhibits excellent corrosion resistance, heat-resistant stability, and hot water resistance, and has high mechanical strength. It is in.

[課題を解決するための手段および作用]本発明は、安
定化剤としてY20.を25〜5 mo1%含む主とし
て正方晶からなる部分安定化ジルコニア、AI203 
0.05〜60wt%およびCaO0,01〜0.4w
t%からなり、5in2含有量は0.05wt%未満で
あり、平均結晶粒径か0.3μm以下であるジルコニア
焼結体、を要旨とするものである。
[Means and effects for solving the problems] The present invention uses Y20. AI203, partially stabilized zirconia mainly consisting of tetragonal crystals containing 25 to 5 mo1% of
0.05-60wt% and CaO0.01-0.4w
t%, the 5in2 content is less than 0.05wt%, and the average crystal grain size is 0.3 μm or less.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明における部分安定化ジルコニアは、十分な機械的
強度および靭性をもたせるために、主として正方晶から
なるものでなければならない。とくに正方晶 70%以
上のものが望ましい。この他の結晶相として、単斜晶や
立方晶か含まれていてもかまわない。
The partially stabilized zirconia in the present invention must be mainly composed of tetragonal crystals in order to have sufficient mechanical strength and toughness. In particular, it is desirable to have 70% or more tetragonal crystals. Other crystal phases may include monoclinic or cubic.

Y2O3は、正方晶のジルコニアを室温まで保持するた
めに必要な安定化剤であるか、2.5mo1%より少な
いと焼結体の熱安定性および耐熱水性を十分には向上さ
せることかできす、いっぽう、5mo1%より多いと結
晶か立方晶からなるジルコニアとなって機械的強度か低
下する。
Y2O3 is a necessary stabilizer to keep tetragonal zirconia up to room temperature, or if it is less than 2.5 mo1%, it can sufficiently improve the thermal stability and hot water resistance of the sintered body. On the other hand, if the amount is more than 5 mo1%, zirconia will be made of crystals or cubic crystals, resulting in a decrease in mechanical strength.

A1□03は、正方晶のジルコニアが単斜晶に転移する
温度を下げ、ジルコニアの粒成長を抑制し、かつジルコ
ニア粒界での滑り抵抗を増加させて高温強度を高める作
用があるが、0.05vt9gより少ないとこの添加効
果が十分でなく、60wt%より多いと靭性の高い上記
ジルコニアの含有量を低めることとなって機械的強度、
靭性共に十分な焼結体とすることができない。しかし、
その含有量が5wt%以上になると耐食性、耐熱安定性
および耐熱水性に差のないことから、0.05〜5wL
%でよい。
A1□03 has the effect of lowering the temperature at which tetragonal zirconia transforms to monoclinic, suppressing zirconia grain growth, and increasing the slip resistance at zirconia grain boundaries to increase high-temperature strength. If it is less than .05vt9g, the effect of this addition will not be sufficient, and if it is more than 60wt%, the content of zirconia, which has high toughness, will be lowered and the mechanical strength will be reduced.
It is not possible to form a sintered body with sufficient toughness. but,
When the content is 5 wt% or more, there is no difference in corrosion resistance, heat resistance stability, and hot water resistance, so 0.05 to 5 wL
% is fine.

CaOは、正方晶ジルコニアを得るための安定化剤とし
ても、または焼結助剤としても知られている。Y2O3
と併用する場合は、Y2O3系ジルコニア焼結体の焼結
助剤として寄与することとなる。0.01.wt%より
少ないと添加効果は見られず、0.4wt%より多くな
るとジルコニアの粒成長か促進され、平均結晶粒径0.
3μm以下の焼結体とするのが困難になる。
CaO is also known as a stabilizer for obtaining tetragonal zirconia or as a sintering aid. Y2O3
When used in combination with Y2O3-based zirconia sintered body, it contributes as a sintering aid for Y2O3-based zirconia sintered body. 0.01. If it is less than 0.4 wt%, no effect is observed, and if it is more than 0.4 wt%, grain growth of zirconia is promoted, and the average crystal grain size is 0.4 wt%.
It becomes difficult to form a sintered body with a diameter of 3 μm or less.

5in2は、ジルコニア中に0.05wt%以上含まれ
ると、Al2O3と共にジルコニア粒界にガラス相を形
成して熱安定性および耐食性を低下させる。
When 5in2 is contained in zirconia in an amount of 0.05 wt% or more, it forms a glass phase together with Al2O3 at the zirconia grain boundaries, reducing thermal stability and corrosion resistance.

平均結晶粒径か0.3μmをこえると、AI。03やC
aOを含有させても熱安定性および耐熱水性が向上しな
いので好ましくない。
When the average crystal grain size exceeds 0.3 μm, AI occurs. 03 and C
Even if aO is contained, thermal stability and hot water resistance are not improved, so it is not preferable.

本発明の焼結体は、例えば、所定量の原料の混合粉末を
ラバープレス法、射出成形法、金形成形法、押出成形法
などの周知の方法で成形して所望の成形体を作り、この
成形体を加熱炉に入れ、1300〜1500°Cて焼成
して製造することかできる。
The sintered body of the present invention can be produced by forming a desired molded body by molding a predetermined amount of mixed powder of raw materials by a well-known method such as a rubber press method, an injection molding method, a metal molding method, or an extrusion molding method. This molded body can be placed in a heating furnace and fired at 1300 to 1500°C to produce the molded body.

[発明の効果] 以上の説明から明らかなように、本発明のジルコニア焼
結体は、従来のY2O3系部分安定化ンルコニア焼結体
が不安定とされる温度に長肋間さらされてもほとんど劣
化することなく、上記の従来の焼結体を激しく劣化させ
る酸、アルカリ、熱水などの中においても高い安定性と
機械的強度を示すため、その実用上の価値は大なるもの
かある。
[Effects of the Invention] As is clear from the above explanation, the zirconia sintered body of the present invention hardly deteriorates even when exposed to long intercostal temperatures at which conventional Y2O3-based partially stabilized luconia sintered bodies are considered unstable. It has great practical value because it exhibits high stability and mechanical strength even in acids, alkalis, hot water, etc., which severely deteriorate the conventional sintered bodies, without causing any damage.

[実施例] 以下、実施例により本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

製造例 第1表(本発明刊)および第2表(比較刊)に示す組成
の部分安定化ジルコニア焼結体を以下のようにして作製
した。ずなイっち、ます、純度99.9wt%のオキシ
塩化ジルコニウム。
Production Example Partially stabilized zirconia sintered bodies having the compositions shown in Table 1 (published by the present invention) and Table 2 (published by the comparative publication) were produced as follows. Zunaichi, Masu, zirconium oxychloride with a purity of 99.9wt%.

塩化イツトリウムおよび塩化カルシウムからなる水溶液
の加水分解によって得られたジルコニアゾル溶液を凝縮
させて沈澱をえ、これを脱水・乾燥し、900°Cで仮
焼して部分安定化シルコア粉末を得た。この粉末の比表
面積は、15rr?/gてあった。この粉末に純度99
.9 w t%のAl20.および純度99.9wt%
の5102を加え、湿式混合後、乾燥させたちのを−,
3ton/ cnYの圧力で等方向に成型し、1400
〜1550°Cで大気中2時間焼成した。
A zirconia sol solution obtained by hydrolysis of an aqueous solution consisting of yttrium chloride and calcium chloride was condensed to form a precipitate, which was dehydrated and dried and calcined at 900°C to obtain a partially stabilized silcore powder. The specific surface area of this powder is 15rr? /g was there. This powder has a purity of 99
.. 9 wt% Al20. and purity 99.9wt%
5102 was added, and after wet mixing, the mixture was dried.
Molded in the same direction with a pressure of 3 tons/cnY, 1400
It was baked at ~1550°C for 2 hours in the air.

こうして得た焼結体を3X4X40mmに切断し、研磨
し、加工したものを試験片とした。
The thus obtained sintered body was cut into 3×4×40 mm, polished, and processed to give test pieces.

焼結体における単斜晶および正方晶の割合を第′3表お
よび第4表の試験前の欄に示す。
The proportions of monoclinic and tetragonal crystals in the sintered bodies are shown in the pre-test columns of Tables 3 and 4.

試験例 ] 熱劣化試験を、オートクレーブを用いて170 ’Cの
熱水中に24時間保持する方法で行った。そして、試験
前と試験後の焼結体表面の結晶(11および曲げ強度を
測定した。結晶相の定H1lli定は、X線回折測定法
により行った。すなわち、lli斜晶の(111)面と
(11■)面の積分強度IMと、正方晶の(1]、 1
. )面の積分強度11゛、立方晶の(11]、 )面
の積分強度ICから単斜晶量か次のように求まる。
Test Example] A thermal deterioration test was conducted by holding the sample in hot water at 170'C for 24 hours using an autoclave. Then, the crystal (11) and bending strength on the surface of the sintered body before and after the test were measured. and the integrated intensity IM of the (11■) plane, and the (1], 1 of the tetragonal crystal.
.. The integrated intensity of the ) plane is 11゛, the integrated intensity of the cubic crystal is (11], and the monoclinic content is determined from the integrated intensity IC of the ) plane as follows.

+11斜晶量(%)− flM / (IM +IT + Ic ) ] X1
00次に、焼結体を微粉砕し、X線回折にょる単斜晶お
よび立方晶の積分強度IM’ およびIc′がら立方品
量か次のように求まる。
+11 Clinic crystal content (%) - flM / (IM +IT + Ic) ] X1
Next, the sintered body is finely pulverized, and the cubic mass is determined from the integrated intensities IM' and Ic' of monoclinic and cubic crystals as determined by X-ray diffraction as follows.

立方品量(%)= NC’ / (IM’ +IC’ ) l X100」
二記の微粉砕によって正方晶はすべて単斜晶に相転移し
たとみなぜるので、正方晶は以下のように求まる。
Cubic quantity (%) = NC' / (IM' + IC') l X100
It is assumed that all the tetragonal crystals undergo a phase transition to monoclinic crystals due to the fine pulverization described in Section 2, so the tetragonal crystals can be determined as follows.

正方晶量(%)= OO−(上記q1斜晶瓜+上記正方晶凰)試験結果を第
3表および第4表に示す。
Amount of tetragonal crystals (%) = OO- (the above q1 crystalline melon + the above tetragonal crystal) The test results are shown in Tables 3 and 4.

これらの表において、本発明制である試料No、1〜1
2は、試験後においても相転移が小さく、曲げ強度にも
劣化は認められず、これに対し、Y2O3が2mo1%
である比較44 N o 。
In these tables, sample Nos. 1 to 1 according to the present invention
2 had a small phase transition even after the test, and no deterioration was observed in bending strength. In contrast, Y2O3 was 2mol1%
Comparison 44 No.

]は、試験後において相転移が進んでおり、曲げ強度に
も劣化が見られる。逆にY2O3か6mo1%のもの(
比較祠No、12)は、試験後において相転移は生じて
いないが、曲げ強度が低く、実用的でない。
], the phase transition has progressed after the test, and deterioration in bending strength is also observed. On the contrary, Y2O3 or 6mo1% (
Comparative shrine No. 12) did not undergo a phase transition after the test, but had low bending strength and was not practical.

Al2O3およびCaOのいずれの含有量も小さずぎる
もの(比較4A No、2) 、CaO含有量の小さす
きるもの(比較月No、3No、6) 、AI。03含
有量の小さすぎるもの(比較)jA’No、4.10.
11)は相転移が進んでおり、曲げ強度にも劣化が認め
られる。
Those in which the contents of both Al2O3 and CaO are too small (Comparison 4A No. 2), those in which the CaO content is too small (Comparison Month No. 3, No. 6), AI. 03 content is too small (comparison)jA'No, 4.10.
In No. 11), the phase transition has progressed, and deterioration in bending strength is also observed.

また、CaOが0.4wt%より多く含まれるもの(比
較祠N017)あるいは1550℃で焼成したもの(比
較月No、5)は粒成長が進み、0.31tmをこえて
いるため、相転移が大きく進む。5in2か0.05w
t%以上含まれる試料(比較44No 、 8 、 9
 )も相転移が進んでいる。
In addition, in those containing more than 0.4 wt% of CaO (comparative shrine No. 017) or those fired at 1550°C (comparative month No. 5), grain growth progresses and the grain size exceeds 0.31 tm, so phase transition occurs. Go big. 5in2 or 0.05w
Samples containing t% or more (Comparison No. 44, No. 8, No. 9)
) is also undergoing a phase transition.

以上のことから本発明によるジルコニア焼結体は優れた
耐熱水性を有することが分る。
From the above, it can be seen that the zirconia sintered body according to the present invention has excellent hot water resistance.

試験例 2 製造例の第1表および第2表にそれぞれ示した本発明4
月の試料No、3.6,10.1.1および比較祠の試
料No、1.2,3.4を用いて、250℃における熱
エージング試験を行った。その結果を第1図に示す。
Test Example 2 Invention 4 shown in Table 1 and Table 2 of Manufacturing Examples, respectively
A heat aging test was conducted at 250° C. using Moon sample No. 3.6, 10.1.1 and comparative shrine sample No. 1.2, 3.4. The results are shown in FIG.

この図より比較祠No、]、、2.3および4は、いず
れも時間と共に相転移か大きく進む。
From this figure, the phase transition of comparative shrines Nos. 2, 2, 3 and 4 significantly progresses over time.

これに対し、本発明祠No、3.6.10および11は
、いずれも相転移か小さいことか分る。
On the other hand, it can be seen that the present invention shrines No. 3, 6, 10, and 11 all have small phase transitions.

従って、本発明の焼結体は優れた耐熱性を有していると
言える。
Therefore, it can be said that the sintered body of the present invention has excellent heat resistance.

試験例 3 試験例2と同じ試料を用いて100℃、30wt%H,
So4に対する耐食性試験をつぎのようにして行った。
Test Example 3 Using the same sample as Test Example 2, 100°C, 30wt%H,
A corrosion resistance test for So4 was conducted as follows.

すなわち、試料を30wt%H,So、溶液中に30日
間浸漬した後、試料表面の単斜晶量および曲げ強度をf
llll定した。
That is, after immersing the sample in a 30 wt% H, So solution for 30 days, the amount of monoclinic crystals and bending strength on the sample surface were determined by f.
lllll determined.

試験結果を第5表に示す。この表より比較材No、]、
、2.3および4は、いずれも相転移が大きく進むこと
か分る。これに対し、本発明祠No、3.6.10およ
び1]は、いずれも相転移か小さく、曲げ強度にも劣化
は認められない。従って本発明の焼結体は耐食性に優れ
ていることか分る。
The test results are shown in Table 5. From this table, comparative material No.],
, 2.3 and 4, it can be seen that the phase transition progresses greatly. On the other hand, in the present invention shrines No. 3.6.10 and 1], the phase transition was small, and no deterioration was observed in the bending strength. Therefore, it can be seen that the sintered body of the present invention has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、 試験例2における熱劣化試験の時 間と単斜晶の量との関係を示した図である。 Figure 1 shows During the thermal deterioration test in Test Example 2 FIG. 4 is a diagram showing the relationship between the monoclinic crystal content and the amount of monoclinic crystals.

Claims (1)

【特許請求の範囲】[Claims] (1)安定化剤としてY_2O_3を2.5〜5mol
%含む主として正方晶からなる部分安定化ジルコニア,
Al_2O_30.05〜60wt%およびCaO0.
01〜0.4wt%からなり、SiO_2含有量は0.
05wt%未満であり、平均結晶粒径が0.3μm以下
であることを特徴とする、ジルコニア焼結体。
(1) 2.5-5 mol of Y_2O_3 as a stabilizer
Partially stabilized zirconia consisting mainly of tetragonal crystals containing %
Al_2O_30.05-60wt% and CaO0.
01 to 0.4 wt%, and the SiO_2 content is 0.01 to 0.4 wt%.
A zirconia sintered body, characterized in that the amount thereof is less than 0.05 wt% and the average crystal grain size is 0.3 μm or less.
JP63311961A 1988-12-12 1988-12-12 Zirconia sintered body with excellent corrosion resistance and hot water resistance Expired - Fee Related JP2762495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311961A JP2762495B2 (en) 1988-12-12 1988-12-12 Zirconia sintered body with excellent corrosion resistance and hot water resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311961A JP2762495B2 (en) 1988-12-12 1988-12-12 Zirconia sintered body with excellent corrosion resistance and hot water resistance

Publications (2)

Publication Number Publication Date
JPH02157157A true JPH02157157A (en) 1990-06-15
JP2762495B2 JP2762495B2 (en) 1998-06-04

Family

ID=18023521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311961A Expired - Fee Related JP2762495B2 (en) 1988-12-12 1988-12-12 Zirconia sintered body with excellent corrosion resistance and hot water resistance

Country Status (1)

Country Link
JP (1) JP2762495B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528782A (en) * 2009-06-03 2012-11-15 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Sintered products based on alumina and zirconia
US8425809B2 (en) 2008-10-15 2013-04-23 Loughborough University Deformable granule production
WO2023190119A1 (en) * 2022-03-31 2023-10-05 第一稀元素化学工業株式会社 Zirconia powder, sintered zirconia object, and method for producing sintered zirconia object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111976A (en) * 1982-12-14 1984-06-28 松下電器産業株式会社 Zirconia ceramics
JPS6126562A (en) * 1984-07-18 1986-02-05 東ソー株式会社 Zirconia sintered body
JPS6212662A (en) * 1985-07-08 1987-01-21 株式会社ノリタケカンパニーリミテド High toughness zirconia base sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111976A (en) * 1982-12-14 1984-06-28 松下電器産業株式会社 Zirconia ceramics
JPS6126562A (en) * 1984-07-18 1986-02-05 東ソー株式会社 Zirconia sintered body
JPS6212662A (en) * 1985-07-08 1987-01-21 株式会社ノリタケカンパニーリミテド High toughness zirconia base sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425809B2 (en) 2008-10-15 2013-04-23 Loughborough University Deformable granule production
JP2012528782A (en) * 2009-06-03 2012-11-15 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Sintered products based on alumina and zirconia
WO2023190119A1 (en) * 2022-03-31 2023-10-05 第一稀元素化学工業株式会社 Zirconia powder, sintered zirconia object, and method for producing sintered zirconia object

Also Published As

Publication number Publication date
JP2762495B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JPH0288423A (en) Stabilized zirconia
JPH0352425B2 (en)
US4690911A (en) Zirconia ceramics and process for producing the same
JPS60141673A (en) Zirconia ceramic and manufacture
US2937102A (en) Zirconia stabilization control
US4835123A (en) Magnesia partially-stabilized zirconia
EP0235936B1 (en) Magnesia partially-stabilized zirconia
JPS6126562A (en) Zirconia sintered body
JPH02157157A (en) Zirconia sintered body having superior corrosion resistance and hot water resistrance
JPH0535103B2 (en)
JPS63156063A (en) High temperature strength and hot water stability zirconia base ceramics
US3533815A (en) Stabilized zirconia bodies
JPS6212662A (en) High toughness zirconia base sintered body
JPH01212273A (en) Alumina ceramic reinforced with zirconia
JPS63123861A (en) High strength zirconia base hip sintered body
JPS63277560A (en) Zro2-mgo-y2o3 ceramic and production thereof
JPH0811707B2 (en) Alumina-zirconia sintered body and method for producing the same
JPH01208366A (en) Production of zirconia-reinforced mullite ceramics
JPS61219757A (en) High toughness zirconia sintered body
JP2002121070A (en) Sintered low temperature thermal deterioration resistant zirconia compact and method of manufacturing for the same
SU1218362A1 (en) Mixture for manufacturing ceramic articles
JPS62275060A (en) Green color zro2 ceramics and manufacture
JPH0840770A (en) Zirconia sintered product and method for producing the same
JPH0469105B2 (en)
JPH01234354A (en) Production of alumina ceramic containing zirconia

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees