JPH02156740A - Optical information transmission equipment - Google Patents

Optical information transmission equipment

Info

Publication number
JPH02156740A
JPH02156740A JP63311129A JP31112988A JPH02156740A JP H02156740 A JPH02156740 A JP H02156740A JP 63311129 A JP63311129 A JP 63311129A JP 31112988 A JP31112988 A JP 31112988A JP H02156740 A JPH02156740 A JP H02156740A
Authority
JP
Japan
Prior art keywords
optical
receiver
light
optical transmitter
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63311129A
Other languages
Japanese (ja)
Inventor
Atsushi Sato
淳 佐藤
Kazutoshi Hirohashi
広橋 一俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP63311129A priority Critical patent/JPH02156740A/en
Publication of JPH02156740A publication Critical patent/JPH02156740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce the radiation intensity of an optical transmitter by applying weighting to a directivity of a light receiving characteristic of an optical receiver in an optical information transmitter sending optical information from the optical transmitter through spatial transmission. CONSTITUTION:An optical means such as a lens or a reflecting mirror is fitted to a photodetector of a light receiver of an optical receiver A. Moreover, weighting in response to an angle X representing the direction of an optical transmitter B is applied to a vertical direction directivity (nondirectivity in horizontal direction) of the light receiving characteristic. Thus, the radiation illuminance of the light reaching the photodetecting element of the photodetector of the optical receiver A is uniformized regardless of the location of the optical transmitter B.

Description

【発明の詳細な説明】 (産業上の利用分野)。[Detailed description of the invention] (Industrial application field).

本発明は所定空間内の定位置に固定設置された光受信器
に、前記所定空間内の任意の位置にある光送信器から空
間伝送により光情報を伝送する光情報伝送装置に関する
The present invention relates to an optical information transmission device that transmits optical information by spatial transmission from an optical transmitter located at an arbitrary position within a predetermined space to an optical receiver fixedly installed at a predetermined position within the predetermined space.

(従来の技術) 従来より赤外線などの光を用いた構内(所定空間内)で
の光情報の空間伝送は、第9図に示すように、部屋の天
井に光送受信器(無指向性)Aを固定設置し、部屋内の
任意の位置にある端末側の光送受信器Bとの間で空間伝
送により相互に光情報(データ)の伝送を行なう方式が
実用化されている【電子通信学会[通信方式研究会資料
36昭和57・8年J C382−83(P57〜64
)「オフィス内通信用光ワイヤレスモデム」)。
(Prior Art) Conventionally, spatial transmission of optical information within a premises (within a predetermined space) using light such as infrared rays has been carried out by installing an optical transmitter/receiver (omnidirectional) A on the ceiling of the room, as shown in Figure 9. A method has been put into practical use in which optical information (data) is transmitted between fixedly installed terminals and an optical transceiver B on the terminal side located at any position in the room by spatial transmission [Institute of Electronics and Communication Engineers]. Communication Method Study Group Material 36 1982 J C382-83 (P57-64
) "Optical wireless modem for office communication").

しかし、この方式は天井に取り付けられた光送受信器(
この場合は光送信器としての機能に注目する)への光強
度(11104強度)の指向性が無指向であるため、端
末側の光送受信器(この場合は光受信器としての機能に
注目する)Bの受信(受光)ターミナルヘッドの設置位
置によって光送受信器B側で得られる光照度(放射照度
)が変化する。
However, this method requires an optical transmitter/receiver (
Since the directivity of the light intensity (11104 intensity) to the optical transmitter/receiver on the terminal side (in this case, the focus is on the function as an optical transmitter) is omnidirectional, the focus is on the function as an optical receiver (in this case, the focus is on the function as an optical receiver). ) The light illuminance (irradiance) obtained on the optical transceiver B side changes depending on the installation position of the receiving (light receiving) terminal head of B.

そのため、光送受信器(光送信器)への放射強度は、光
送受信器への直下より最も離れた位置に設置した光送受
信器(光受信器)Bの受信ターミナルヘッドに対して必
要な放射照度を与えるように設定する必要がある。
Therefore, the radiation intensity to the optical transceiver (optical transmitter) is the irradiance required for the reception terminal head of optical transceiver (optical receiver) B installed at the farthest position from directly below the optical transceiver. It is necessary to set it to give .

従って、光送受信器Aの放射強度を無指向性にするとい
った従来の方法は、エネルギーの効率使用面で無駄が多
い。
Therefore, the conventional method of making the radiation intensity of the optical transceiver A omnidirectional is wasteful in terms of energy efficiency.

そこで、上記の問題点を解決するために、本出願人は先
に、光送受信器(光受信器)Bの位置に拘らず光送受信
器Bが均一な放射照度が得られるよう光送受信器(光送
信器)Aの放射強度の指向性に重み付けを施した「光情
報伝送装@jを提案し、昭和62年3月20日付で特許
出願した(特開昭63−232720号(特願昭62−
66531号))。
Therefore, in order to solve the above problems, the applicant first developed an optical transceiver (optical receiver) so that the optical transceiver B could obtain uniform irradiance regardless of the position of the optical transceiver (optical receiver) B. We proposed an optical information transmission system@j in which the directivity of the radiation intensity of optical transmitter A was weighted, and filed a patent application on March 20, 1986 (Japanese Patent Application Laid-Open No. 63-232720). 62-
No. 66531)).

また、従来の光伝送システムの受光装置に関しては、第
10図に示すにうに、受光素子(フォトトランジスタ)
1の前方に、楕円の一部を回転させて立体面に形成した
2つの反射面2.3を組み合わUだ反DIiflを取り
付け、広い指向性を持たせ受光感度を高めたものがある
(特開昭50−28908号)。
Regarding the light receiving device of the conventional optical transmission system, as shown in Fig. 10, a light receiving element (phototransistor)
In front of 1, there is a U-shaped anti-DIifl that combines two reflective surfaces 2 and 3 formed into a three-dimensional surface by rotating a part of an ellipse, and has a wide directivity and high light-receiving sensitivity (special 1972-28908).

その他、第11図に示すような半値角60°のところが
受光感度0.5となっていて、受光感度の指向特性が球
形になっているフォ[・ダイオードpを複数配置し、例
えば、第12図に示すように3個のフォトダイオードp
+”=p3がそれぞれ作る指向特性を合成した合成指向
特性がほぼ円形状になるにうに組み合わせて無指向(3
60” )に広角度の受光領域を得るものがある(特開
昭59−238号)。
In addition, as shown in FIG. 11, a plurality of photo diodes p having a light-receiving sensitivity of 0.5 at a half-power angle of 60° and a spherical directional characteristic of light-receiving sensitivity are arranged, for example, Three photodiodes p as shown in the figure
+”=The composite directional characteristics created by combining the directional characteristics created by p3 are combined into an almost circular shape to create omnidirectional (3
60") that provides a wide-angle light receiving area (Japanese Patent Laid-Open No. 59-238).

(発明が解決しようとする課題) ところで、前記した光を用いた構内(所定空間内)での
光情報の空間伝送システムであるベージングシステムは
、親機である光送受信器(以下、これの光受信器(受光
器)としての機能について注目するので、[光受信器]
と記す)Aを通常は部屋の天井中央部に固定設置し、子
機である光送受信器(以下、これの光送信器(発光器)
としての機能について注目するので、「光送信器」と記
す)Bは部屋内の任意の位置(場所)より親機である光
受信器Aへ送信する形態になっている。
(Problems to be Solved by the Invention) By the way, the paging system, which is a spatial transmission system of optical information within a premises (within a predetermined space) using light, uses an optical transmitter/receiver (hereinafter referred to as this) as a base unit. Since we are focusing on the function as an optical receiver (optical receiver),
A) is usually fixedly installed in the center of the ceiling of the room, and an optical transmitter/receiver (hereinafter referred to as an optical transmitter (light emitter) of this) is attached.
Since we are focusing on its function as an optical transmitter, the optical transmitter (hereinafter referred to as "optical transmitter") B is configured to transmit data from an arbitrary position within the room to the optical receiver A, which is a main unit.

そのため、光受信器(親機>Alfi無指向性の場合、
光送信器(子1)Bから送信される光のtllai強度
は、光受信器(親機)への直下より最も離れた位置に設
置した光送信器(子機)Bからの送信を受信可能とする
ように設定する必要がある。
Therefore, if the optical receiver (base unit > Alfi omnidirectional),
The tllai intensity of the light transmitted from optical transmitter (child 1) B is such that the transmission from optical transmitter (child unit) B installed at the farthest position from directly below the optical receiver (base unit) can be received. It is necessary to set it so that

しかし、そのように光送信器(子機)Bの放射強度を設
定すると、光送信器(子機)Bが光受信器(親機)への
直下、あるいはその周辺部にある場合に光受信器(親機
)Aに必要量以上の放射強度を与えることになる。すな
わち、光送信器(子機)Bの放射強度(発光量)は部屋
の大部分で必要mをオーバーし、極めて非効率的で、エ
ネルギーの効率使用の面で無駄が多い。
However, if the radiation intensity of optical transmitter (slave unit) B is set in this way, optical reception will be affected if optical transmitter (slave unit) B is directly below or around the optical receiver (base unit). This will give the device (base unit) A more radiation intensity than the required amount. That is, the radiation intensity (amount of light emitted) of the optical transmitter (slave device) B exceeds the required m in most of the room, which is extremely inefficient and wasteful in terms of efficient energy use.

また、子機である光送信器Bは携帯性の必要から電源を
電池に頼るため、放射強度(発光量)をなるべく少なく
抑えたいという要求がある。従って、このようなエネル
ギーの無駄は極力減らす必要がある。
Furthermore, since the optical transmitter B, which is a slave device, relies on a battery for its power source due to the need for portability, there is a demand to keep the radiation intensity (light emission amount) as low as possible. Therefore, it is necessary to reduce such energy waste as much as possible.

更に、前記した第10図に示した受光装置は、光送信2
!i(送光)側が特定の位置に固定設置された場合に対
応したものであるため、ベージングシステムの親機であ
る光受信2!!八における受光装置としては適さない。
Furthermore, the light receiving device shown in FIG.
! This corresponds to the case where the i (light transmitting) side is fixedly installed at a specific position, so the optical receiver 2! which is the base unit of the paging system! ! It is not suitable as a light receiving device in 8.

そこで、本発明は上記した従来の技術の課題を解決し、
光送信器の放射強度を従来に比較して大幅に低減するこ
とができる光情報伝送装置を提供することを目的とする
Therefore, the present invention solves the problems of the conventional technology described above,
It is an object of the present invention to provide an optical information transmission device that can significantly reduce the radiation intensity of an optical transmitter compared to conventional devices.

(課題を解決するための手段) 本発明は上記の目的を達成するために、所定空間内の定
位置に固定設置された光受信器に、前記所定空間内の任
意の位置にある光送信器から空間伝送により光情報を伝
送する光情報伝送装置において、前記光送信器の位置に
拘らず萌記光受信器の受光素子が均一な放射照度が得ら
れるように前記光受信器の受光特性の指向性に重み付け
を施したことを特徴とする光情報伝送装置を提供するも
のである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an optical receiver fixedly installed at a fixed position within a predetermined space, and an optical transmitter located at an arbitrary position within the predetermined space. In an optical information transmission device that transmits optical information by spatial transmission, the light-receiving characteristics of the optical receiver are adjusted so that the light-receiving element of the optical receiver receives uniform irradiance regardless of the position of the optical transmitter. The present invention provides an optical information transmission device characterized in that the directivity is weighted.

更に、この光情報伝送装置における光受信器は、この光
受信器を中心とする垂直方向と光送信器の方向とのなす
角をXとし、前記垂直方向と前記光送信器の方向とのな
す角の最大値をX ll1axとした時、前記光受信器
の受光特性の垂直方向指向性の唄み付けYxを次式 %式% (但し、Pは定数) で与えることを特徴とする。
Further, in the optical receiver in this optical information transmission device, the angle between the vertical direction centered on the optical receiver and the direction of the optical transmitter is X, and the angle between the vertical direction and the direction of the optical transmitter is X. When the maximum value of the angle is set to Xll1ax, the pitch Yx of the vertical directivity of the light receiving characteristic of the optical receiver is given by the following formula (where P is a constant).

(作 用) 上記した構成の光−情報伝送装置においては、所定空間
内の任意の位置にある光送信器が一定の放射強度を発す
ることにより、光送信器の位置に拘らず光受信器の受光
素子は均一な放射照度がLqられる。
(Function) In the optical information transmission device configured as described above, an optical transmitter located at an arbitrary position within a predetermined space emits a constant radiation intensity, so that the optical receiver can be activated regardless of the position of the optical transmitter. A uniform irradiance Lq is applied to the light receiving element.

(実 施 例) 本発明について説明するために、まず、親機(光受信器
)に無指向の受光特性を持たせた従来例における子機(
光送信器)の発する放射強度(発光m)の無駄について
述べ、次に本発明の受光特性について定量的に述べる。
(Example) In order to explain the present invention, first, a slave unit (optical receiver) in a conventional example in which the base unit (optical receiver) has omnidirectional light receiving characteristics will be explained.
The waste of the radiation intensity (light emission m) emitted by the optical transmitter) will be described, and then the light receiving characteristics of the present invention will be quantitatively described.

第1図に示ず部屋をモデルに考え、部屋の天井中央部に
受光、特性がMAN向な受光器を持つ光受信器〈親!f
f)Aを固定設置した場合について部屋内の各位置の光
送信器(子機)Bに要求されるtIi躬強度を求める。
A room not shown in Figure 1 is used as a model, and an optical receiver with a light receiver whose characteristics are suitable for MAN is placed in the center of the ceiling of the room. f
f) Determine the tIi error intensity required for the optical transmitter (slave device) B at each position in the room when A is fixedly installed.

同図において、光受信器(親機)Aと光送信器(子1f
f>8との間の距離が最短となるのは、光送信器(子機
)Bが81の位置にある時、すなわち光受信器(親1)
Aの直下にある場合である。この場合、光送信器(子り
Bに要求される光の放射強度■1は、次のように求まる
In the same figure, an optical receiver (master unit) A and an optical transmitter (child 1f
The distance between f>8 is the shortest when optical transmitter (child unit) B is at position 81, that is, when optical receiver (parent unit 1)
This is the case where it is directly under A. In this case, the light radiation intensity (1) required from the optical transmitter (child B) is determined as follows.

1+/H2=に 但し、Kは受光器の放射照度感度(受信可能な最低ll
1a4照度)、Hは光受信器Aと光送信器Bとの間の最
短路M(垂直方向距離)とする。
1+/H2=, where K is the irradiance sensitivity of the receiver (minimum receivable
1a4 illuminance), and H is the shortest path M (vertical distance) between the optical receiver A and the optical transmitter B.

従って、 1+=に−82・・・(1) となる。Therefore, 1+= to -82...(1) becomes.

次に、光送信器(子1)Bが光受信器(親゛機)Aの直
下から離れた位置exにある場合の光送信器(子機)B
の発Jる必要放用強度(発光量)I×は、 lx / (L2+H2)=に となる。但し、LはB1と8×との間の距離とする。
Next, optical transmitter (child unit) B when optical transmitter (child unit 1) B is located at a position ex away from directly below optical receiver (master unit) A.
The required emission intensity (amount of light emitted) Ix to be emitted is as follows: lx/(L2+H2)=. However, L is the distance between B1 and 8x.

従って、 lx =K・(L2+112) =K  4 ト1 2 −  sec  2  X  
               −(2)となる。但し
、Xは光受信器(親+1)Aを中心とする垂直方向と光
送信器(子機)Bの方向とのなす角[ラジアン]とする
。1 (1)、0式より両者の放射強度の比Mを求めると、M
= lx /I + =sec2X       ・(
3)となる。この(3)式より次のことが言える。すな
わち、光受信器(親tfl)Aの直下の81の位置より
離れるにしたがって光送信i8(子1)Bに要求される
放射強度は増大し、Xが最大の82の位置(光受信器A
の直下より最も離れた位置)で最大となる。
Therefore, lx = K・(L2+112) = K 4 t1 2 − sec 2 X
-(2). However, X is the angle [in radians] between the vertical direction centered on the optical receiver (parent+1) A and the direction of the optical transmitter (slave device) B. 1 (1), When calculating the ratio M of both radiation intensities from equation 0, we get M
= lx /I + =sec2X ・(
3). From this equation (3), the following can be said. In other words, the radiation intensity required for optical transmitter i8 (child 1) B increases as the distance from position 81 directly below optical receiver (parent TFL) A increases, and from position 82 (optical receiver A) where X is maximum,
It is maximum at the position farthest from directly below).

従って、部屋全体をサービスエリアとするために番よ、
B2の位置で要求されるtIl射強度I2に光送信器(
子機)Bの発光レベルを設定する必要がある。
Therefore, turn the entire room into a service area.
The optical transmitter (
It is necessary to set the light emission level of slave unit) B.

しかし、これは逆に言えば、最遠距離の82の位置以外
に光送信器(子機)Bがある場合は、そこから常にオー
バーレベルの光を発することを意味し、橋めて非効率的
で、エネルギーの効率使用の面で無駄が多い。
However, conversely, this means that if there is an optical transmitter (slave unit) B at a location other than the farthest position 82, it will always emit over-level light from there, making it inefficient. There is a lot of waste in terms of efficient use of energy.

これに対し、本発明では、光受信器(親機)Aの受光器
の受光素子にレンズまたは、反用鏡などの光学的手段を
取り付け、第2図に示すように受光特性の垂直方向指向
性(但し、水平方向は全方向で無指向性)に光送信器(
子1)Bの方向を承り角度Xに応じた重み付けを施すこ
とによって、光送信器(子機)Bの位置に拘らず光受信
器(1機)への受光器の受光素子に到達する光の放射照
度が均一になるようにし、上記した非効率を無くすと共
に、光送信器(子機)Bの必要放射強度を大幅に低減さ
せているものである。
In contrast, in the present invention, an optical means such as a lens or a mirror is attached to the light receiving element of the light receiver of the optical receiver (base unit) A, and the light receiving characteristics are vertically oriented as shown in FIG. (However, the horizontal direction is omnidirectional) and the optical transmitter (
Child 1) By taking into account the direction of B and applying weighting according to the angle This makes the irradiance uniform, eliminates the above-mentioned inefficiency, and significantly reduces the required radiation intensity of the optical transmitter (slave device) B.

同図をもとに先ず、光送信器(子機)Bの必要放(ト)
強度が均一となる様子について説明する。
Based on the diagram, first determine the required emissions of optical transmitter (slave unit) B.
The manner in which the intensity becomes uniform will be explained.

いま、光送信器(子機)Bが光受信器(親機)Aを中心
とする垂直線(鉛直線)から角度Xの方向3xにある時
、光送信器(子機)8の放射強度をIとすると、光受信
器(親機)Aに到達する光の放射照度JXは、次のよう
になる。
Now, when the optical transmitter (slave unit) B is in the direction 3x of the angle X from the vertical line (vertical line) centered on the optical receiver (base unit) A, the radiation intensity of the optical transmitter (slave unit) 8 is Let I be the irradiance JX of the light that reaches the optical receiver (base unit) A as follows.

Jx = I/ (H−secX)2     ・・A
4)今、角度Xにおける光受信3(親機)Aの受光器の
受光特性の指向性のmみ付けYXを次の(5)式%式%
(5) 但し、Pは定数、X maxは最大角度(光送信器(子
機)Bが最も離れた位置の角度)とする。
Jx = I/ (H-secX)2...A
4) Now, find the directivity m of the light receiving characteristics of the light receiver of the optical receiver 3 (base unit) A at the angle X using the following formula (5) % formula %
(5) However, P is a constant, and X max is the maximum angle (the angle at the farthest position from the optical transmitter (child device) B).

すると、光受信器(親機)Aの受光器の受光素子に到達
する光の放射照度Jx’ は次の0式で与えられる。
Then, the irradiance Jx' of the light reaching the light receiving element of the optical receiver (base unit) A is given by the following equation 0.

Jx ’ =Jx −Yx =P ・I ・(cosXmax /l−1)2・@こ
の(6)式より、光受信器(親1)Aの受光器の受光素
子に到達する光の放射照度J x r は角度Xによら
ず一定の値(均一)になることがわかる。
Jx ' = Jx - Yx = P ・I ・ (cos It can be seen that x r is a constant value (uniform) regardless of the angle X.

1なわち、光受信器(親機)Aの受光器の指向性を(0
式で与えれば、光送信器(子1)Bの必要放射強度(発
光量)を位置(場所)に拘らず均一とすることが可能と
なる。そして、受光器の/& DI照度感度(受信可能
な最低成用照度)をここでもKとすれば、光送信器(子
機)8の放射強度の必要最低値I ll1inは、次の
0式のようになる。
1, that is, the directivity of the optical receiver (base unit) A is (0
If given by the formula, it becomes possible to make the required radiation intensity (light emission amount) of the optical transmitter (child 1) B uniform regardless of the position (location). If the receiver's /&DI illuminance sensitivity (minimum receivable illuminance) is K here, then the required minimum value Ill1in of the radiation intensity of the optical transmitter (slave unit) 8 is given by the following formula: become that way.

K=Pφlm1n −(cosXmax /H)2従っ
て、 lm1n =に−1−12/(P −co s2X+a
x)  −C0次に、無指向性の受光器を用いた場合と
本発明の指向性を有する受光器を用いた場合とで光送信
″JS(子機)Bに要求される放(ト)強度(発光量)
がどの程度衣なるかについて、Pのvi(但し、Pは定
数)を求めることにより明らかにする。
K=Pφlm1n −(cosXmax /H)2 Therefore, lm1n = −1−12/(P −cos2X+a
x) -C0Next, the radiation required for optical transmission "JS (slave unit) B" when using an omnidirectional light receiver and when using a directional light receiver of the present invention. Intensity (light emission amount)
The extent to which is a difference will be clarified by finding the vi of P (where P is a constant).

ところで、受光特性は、送光特性に置き換えて考えるこ
とができる。つまり、光受信器(親機)への受光器に求
められる指向性を与える光学的手段を、光送信器(子機
)Bの発光素子に施し、その振舞いを調べれば、受光特
性は単に光の進む向きを逆にしたのみであるから同一の
結果が得られるのである。
By the way, the light receiving characteristics can be considered in place of the light transmitting characteristics. In other words, if we apply optical means to provide the required directivity to the optical receiver (base unit) to the light emitting element of optical transmitter (slave unit) B and examine its behavior, we can determine the light receiving characteristics simply by The same result can be obtained by simply reversing the direction of travel.

今、光受信器(親機)Aを中心とする垂直方向(鉛直方
向)に対して、角度Xmax  (光送信器(子機)が
最も離れた位置の角度)の円錐内で無指向性を何する発
光器と、(つ式で与えられる指向性を有する発光器とに
ついて考える。
Now, with respect to the vertical direction centered on the optical receiver (base unit) A, omnidirectionality is established within a cone at an angle Xmax (the angle at which the optical transmitter (slave unit) is furthest away). Consider a light emitter that does what it does and a light emitter that has directivity given by the following equation.

ここで、上記の各発光器の発光素子の放射強度が前二者
で同一とすると、これら発光器の中心点を中心とする球
面が前記の円錐により切り取られる面を通過する全光束
は前二者で同一となる。発光器の発光素子の放射強度を
1として両者の全光束C1,C2を求めると、以下のよ
うになる。
Here, if the radiation intensity of the light-emitting elements of each of the above-mentioned light-emitting devices is the same for the former two, the total luminous flux passing through the surface where the spherical surface centered at the center point of these light-emitting devices is cut by the above-mentioned cone is It is the same for all persons. When the radiation intensity of the light emitting element of the light emitter is set to 1, the total luminous fluxes C1 and C2 of both are determined as follows.

C+= (1−C6SX)・I/2     ・・・■
C2=  (1−cosX) xl/(2P−cosXmax)    −Qここで、
Cl=C2であるから、Pは次の(ト)式%式% ([ 以上、発光器について述べたが、受光器の場合について
は、発光素子を受光素子に置き換え、光の進む向きをち
ょうど逆向きとすれば、(ト)式の関係がそのまま成り
立つ。
C+= (1-C6SX)・I/2...■
C2= (1-cosX) xl/(2P-cosXmax) -Q where,
Since Cl=C2, P is calculated using the following formula (g)% formula% If the direction is reversed, the relationship in equation (g) holds true as is.

そこで、(ト)式の関係を0式に代入すると、(11)
式が得られる。
Therefore, by substituting the relationship in equation (g) into equation 0, we get (11)
The formula is obtained.

JX ’ = I −COS Xmax /H2・’(
11)ここで、光送信器(子機)Bの必要最小放射強度
をI rAinとすると、(11)式より、次の(12
)式が得られる。
JX' = I-COS Xmax /H2・'(
11) Here, if the required minimum radiation intensity of optical transmitter (slave unit) B is IrAin, then from equation (11), the following (12
) formula is obtained.

lm1n =K ・H2−secXmax    −(
12)すなわち、(12)式は受光器に本発明の指向特
性を施した場合の光送信器(子機)Bに要求される最小
放射強度を与える式である。
lm1n =K ・H2-secXmax -(
12) That is, equation (12) is an equation that gives the minimum radiation intensity required of the optical transmitter (slave unit) B when the directional characteristic of the present invention is applied to the light receiver.

一方、受光器の指向特性を無指向性とした場合に要求さ
れる最小敢q4強度は、前記の0式の×にX maxを
代入した値I2である。
On the other hand, the minimum intensity q4 required when the directional characteristic of the light receiver is omnidirectional is the value I2 obtained by substituting X max for x in the above equation 0.

12 =K ・H2−s e c2Xmax    ・
−(13)(12)式と(13)式とを比較すると、前
者に対して、後者はsecxmax倍(s e CX 
maxは常に1より大でX maxが大ぎくなるにした
がって大きくなる)の値を示す。すなわち、受光器に所
定の指向性を施すことにより光送信器(子機)Bに要求
される放射強度は減少し、その減少率はX maxの増
大ととbに増加する。
12 =K ・H2-s e c2Xmax ・
-(13) Comparing equations (12) and (13), the former is secxmax times (s e CX
max is always greater than 1 and increases as X max becomes larger. That is, by imparting a predetermined directivity to the light receiver, the radiation intensity required of the optical transmitter (slave device) B is reduced, and the rate of reduction increases by b as X max increases.

次の第1表に両者を比較して示す。但し、)(max=
oの時、受光器が無指向性の場合の必要放射強度を1と
する。
Table 1 below shows a comparison between the two. However, )(max=
When o, the required radiation intensity is 1 when the receiver is non-directional.

次に、本発明装置を用いた具体的な実施例について、以
下に説明する。
Next, specific examples using the device of the present invention will be described below.

第3図は本発明装置を用いた第1の実施例を示す図であ
る。
FIG. 3 is a diagram showing a first embodiment using the device of the present invention.

同図において、受光器である光受信器(親機)Alよ高
さ2.5[mlの天井に固定設置され、発光器である光
送信器(子1)8は床から1[mlの高さで光受信器(
親殿)Aの直下の地点から半径10[ml以内の任意の
位置(場所)にあるものと1−る。すなわち、第3図に
おいて)(OlaX =81.5’となる。
In the figure, the optical receiver (base unit) Al, which is the light receiver, is fixedly installed on the ceiling with a height of 2.5 [ml], and the optical transmitter (child 1) 8, which is the light emitter, is fixedly installed on the ceiling with a height of 1 [ml] from the floor. Optical receiver at height (
It is assumed that it is located at any position (place) within a radius of 10 [ml] from the point directly below A. That is, in FIG. 3) (OlaX = 81.5').

そこで、第4図に示す指向特性を持ったPIN型フォト
ダイオードを、第5図に示すように水平方向には円周上
に等間隔に8個を配置し、垂直方向には81.5’″の
角度で取り付けると、第6図に示すように、X = X
 maxで受光感度は最高となり、第2図に示した理想
的な手み付けの受光特性の指向性に近い特性が得られる
Therefore, eight PIN photodiodes having the directional characteristics shown in Fig. 4 are arranged at equal intervals on the circumference in the horizontal direction, and 81.5' in the vertical direction, as shown in Fig. 5. When installed at an angle of '', as shown in Figure 6,
At max, the light-receiving sensitivity is the highest, and a characteristic close to the directivity of the ideal hand-built light-receiving characteristic shown in FIG. 2 can be obtained.

第7図及び第8図は本発明装置を用いた第2の実施例を
示す図である。これらの図は、通常の部屋とは形状の異
なった場所に本発明装置を利用する場合を表わしている
。第7図は廊下、第8図は階段に本発明装置を利用しで
ある。このような場所では、その形状を考慮して、発光
器である光送信器(子機)の位置がどこであっても受光
器である光受信器(親8りA内の受光素子に均一な光束
密度の光”が到達するよう指向性に重み付けをml。
FIGS. 7 and 8 are diagrams showing a second embodiment using the apparatus of the present invention. These figures show the case where the apparatus of the present invention is used in a place having a different shape from a normal room. Fig. 7 shows the use of the present invention device in a hallway, and Fig. 8 shows the use of the present invention in a staircase. In such places, taking into consideration the shape of the light transmitter (slave unit), the light receiver (light receiver) (light receiving element in main 8 The directionality is weighted so that the light with the luminous flux density reaches ml.

第7図及び第8図において、aは光受信器(親II)へ
の指向性に重み付けをしない無指向の指向特性(−点鎖
線)を示し、bは各場所の形状を考慮して光受信器(親
機)Aの指向性に重み付けを施した指向特性(実線)を
示す。どちらの場合も、光受信器(親機)Aの受光器に
無指向性のものを用いるよう効率良く広いり−−ビスエ
リアが得られる。
In Figs. 7 and 8, a shows the omnidirectional directivity (-dashed line) in which the directivity toward the optical receiver (parent II) is not weighted, and b shows the light beam in consideration of the shape of each location. The directivity characteristics (solid line) are shown in which the directivity of receiver (base unit) A is weighted. In either case, by using a non-directional light receiver for the optical receiver (base unit) A, a wide beam area can be efficiently obtained.

なお、本発明装置は、上記したベージングシステム以外
の光情報の空間伝送システムにも適用でき、そのシステ
ムにおけるサービスエリア拡大に極めて有効な手段とな
る。
Note that the device of the present invention can be applied to optical information spatial transmission systems other than the above-mentioned paging system, and is an extremely effective means for expanding the service area of such systems.

(発明の効果) 以上の如く、本発明の光情報伝送装置によれば、所定空
間内の任意の位置にある光送信器が一定の放射強度を発
することにより、光送信器の位置に拘らず光受信おの受
光素子は均一な敢用照度が得られるので、光送信器から
発する光の放射強度を大幅に低減できるため、消費電力
が電源でき、特に光送信器の電源に電池を用いる場合そ
のか命を大幅に延ばすことができる。
(Effects of the Invention) As described above, according to the optical information transmission device of the present invention, the optical transmitter located at any position within a predetermined space emits a constant radiation intensity, regardless of the position of the optical transmitter. Since the light-receiving element of the optical receiver can obtain a uniform illuminance, the radiation intensity of the light emitted from the optical transmitter can be significantly reduced, so power consumption can be reduced, especially when batteries are used as the power source for the optical transmitter. Or you can significantly extend your life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる光情報伝送装置について説明する
ための図、第2図は本発明装置の受光特性の指向性を示
す図、第3図乃至第6図は本発明装置を用いた第1の実
施例を示す図、第7図及び第8図は本発明装置を用いた
第2の実施例を示す図、第9図は光を用いた構内での光
情報の空間伝送について説明するための図、第10図乃
至第12図は従来の光伝送システムの受光装置を示す図
である。 A・・・光送受信器(親磯;光受信4)、B・・・光送
受信器(子機:光送信器)、X・・・垂直方向と光送信
器の方向とのなす角、X max・・・光送信ムが最も
離れた位置の角度。 第 図 ’/、=P’CO52X1.5eC2X第 図 第 図 第 図 第 図 第 図 日− 第 図 第 図 第 図 第 図
FIG. 1 is a diagram for explaining the optical information transmission device of the present invention, FIG. 2 is a diagram showing the directivity of the light receiving characteristics of the device of the present invention, and FIGS. 3 to 6 are diagrams for explaining the optical information transmission device of the present invention. A diagram showing the first embodiment, FIGS. 7 and 8 are diagrams showing a second embodiment using the device of the present invention, and FIG. 9 explains spatial transmission of optical information in a premises using light. 10 to 12 are diagrams showing a light receiving device of a conventional optical transmission system. A... Optical transceiver (Oyiso; optical receiver 4), B... Optical transceiver (slave device: optical transmitter), X... Angle between the vertical direction and the direction of the optical transmitter, X max: Angle at the farthest position of the optical transmitter. Figure '/, = P'CO52X1.5eC2X Figure Figure Figure Figure Date - Figure Figure Figure Figure Date

Claims (2)

【特許請求の範囲】[Claims] (1)所定空間内の定位置に固定設置された光受信器に
、前記所定空間内の任意の位置にある光送信器から空間
伝送により光情報を伝送する光情報伝送装置において、 前記光送信器の位置に拘らず前記光受信器の受光素子が
均一な放射照度が得られるように前記光受信器の受光特
性の指向性に重み付けを施したことを特徴とする光情報
伝送装置。
(1) In an optical information transmission device that transmits optical information by spatial transmission from an optical transmitter located at an arbitrary position in the predetermined space to an optical receiver fixedly installed at a fixed position in the predetermined space, the optical transmitter An optical information transmission device characterized in that the directivity of the light receiving characteristic of the optical receiver is weighted so that the light receiving element of the optical receiver can obtain uniform irradiance regardless of the position of the optical receiver.
(2)請求項第1項の光情報伝送装置における光受信器
は、この光受信器を中心とする垂直方向と光送信器の方
向とのなす角をXとし、前記垂直方向と前記光送信器の
方向とのなす角の最大値をXmaxとした時、前記光受
信器の受光特性の垂直方向指向性の重み付けYxを次式 Yx=P・cos^2Xmax・sec^2X(但し、
Pは定数) で与えることを特徴とする光情報伝送装置。
(2) The optical receiver in the optical information transmission device according to claim 1 is arranged such that an angle formed between a vertical direction centering on the optical receiver and a direction of the optical transmitter is X, and the vertical direction and the optical transmitter When the maximum value of the angle formed with the direction of the receiver is Xmax, the vertical directivity weighting Yx of the light receiving characteristics of the optical receiver is calculated by the following formula Yx=P・cos^2Xmax・sec^2X (however,
(P is a constant).
JP63311129A 1988-12-09 1988-12-09 Optical information transmission equipment Pending JPH02156740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311129A JPH02156740A (en) 1988-12-09 1988-12-09 Optical information transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311129A JPH02156740A (en) 1988-12-09 1988-12-09 Optical information transmission equipment

Publications (1)

Publication Number Publication Date
JPH02156740A true JPH02156740A (en) 1990-06-15

Family

ID=18013480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311129A Pending JPH02156740A (en) 1988-12-09 1988-12-09 Optical information transmission equipment

Country Status (1)

Country Link
JP (1) JPH02156740A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182338A (en) * 1985-02-08 1986-08-15 Hitachi Ltd Optical diffusing device
JPS6310623B2 (en) * 1981-09-07 1988-03-08 Asahi Hoso Kk
JPS63232720A (en) * 1987-03-20 1988-09-28 Victor Co Of Japan Ltd Optical information transmission equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310623B2 (en) * 1981-09-07 1988-03-08 Asahi Hoso Kk
JPS61182338A (en) * 1985-02-08 1986-08-15 Hitachi Ltd Optical diffusing device
JPS63232720A (en) * 1987-03-20 1988-09-28 Victor Co Of Japan Ltd Optical information transmission equipment

Similar Documents

Publication Publication Date Title
KR100256477B1 (en) Optical transmitter and transceiver module for wireless data transmission
JP4572754B2 (en) Power transmission system and method
EP3954066B1 (en) An optical wireless charging and data tranmission system
US6804465B2 (en) Wireless optical system for multidirectional high bandwidth communications
US20200083955A1 (en) Determining position via multiple cameras and vlc technology
US20090122395A1 (en) Light emitting device, light receiving device, spatial transmission device, lens design method, and illuminating device
JPH02156740A (en) Optical information transmission equipment
US10931373B2 (en) Wireless communication link between at least one communication terminal device positioned in a predeterminable region and a communication network
JPH10336121A (en) Light receiver and optical radio transmission system
EP0849896A2 (en) Transceiver module for wireless data transmission
JPH10178393A (en) Light transmitter-receiver
JP3022425B2 (en) Transmission / reception optical device
JP3647628B2 (en) Satellite-type full-duplex infrared LAN system
CN113572527B (en) Heterogeneous light beam visible light communication physical layer security pattern comprehensive system and method
JPS63232720A (en) Optical information transmission equipment
KR20180135758A (en) Apparatus for transmitting energy and method for controlling the same
US20040219947A1 (en) Wireless transmission device for a computer peripheral
JPS6349005Y2 (en)
JPH06164506A (en) Light reflecting device for portable optical space communication equipment
JPH1098434A (en) Optical radio communication system
JPS58188944A (en) Optical communication system
JP3086375U (en) Optical launch transmission route device
JPH10322275A (en) Space optical transmitter
JPH06164507A (en) Infrared duplex communication equipment
JPH0536941U (en) Optical wireless transmitter, receiver and transmitter / receiver