JPS58188944A - Optical communication system - Google Patents

Optical communication system

Info

Publication number
JPS58188944A
JPS58188944A JP57071709A JP7170982A JPS58188944A JP S58188944 A JPS58188944 A JP S58188944A JP 57071709 A JP57071709 A JP 57071709A JP 7170982 A JP7170982 A JP 7170982A JP S58188944 A JPS58188944 A JP S58188944A
Authority
JP
Japan
Prior art keywords
master station
light
station
transmission
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57071709A
Other languages
Japanese (ja)
Inventor
Takashi Shinoda
崇志 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57071709A priority Critical patent/JPS58188944A/en
Publication of JPS58188944A publication Critical patent/JPS58188944A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1149Arrangements for indoor wireless networking of information

Abstract

PURPOSE:To perform effective optical communication between a single master station and plural slave stations, by providing the master station with directional characteristics of transmission and reception covering all the slave station and each slave station with those covering only the single master station. CONSTITUTION:The master station 12 which has LEDs and photodiodes on a spherical surface is provided on the attachment surface 11 of a ceiling or wall. The LEDs and photodiodes are arranged with nearly equal density on the spherical surface to obtain wide directivity. When transmission and reception are not performed simultaneously, one kind of diodes are used as LEDs during the transmission and as photodiodes during reception. On the other hand, the slave stations 13, 14, and 15 uses directional beam for transmission or reception and they emit light within an angle 2theta and receives light within the angle.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、単一の親局と複数の子局よりなる光通信方式
に関する。@に、情報処理装置の装置間通信に適する方
式で、子局の位雪を自由に移動できる無線の光送受信方
式の構成KwAする。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an optical communication system comprising a single master station and a plurality of slave stations. The configuration of a wireless optical transmission/reception system that is suitable for inter-device communication between information processing devices and that allows slave stations to move freely is shown below.

〔従来技術の説明〕[Description of prior art]

コンピュータの端末と、それvrヲコンピュータへ接続
するためのインタフェース装置との間では、多数の子局
と華−の親局との間の通(Iを行う必要がある。この場
合に、子局はフロワレイアウドの弯jP # K @え
てその設置場所の移動が自由に行えることが望ましく、
また親局は子局の位雪の移動があっても無調整であるこ
とが望まれる。
Between the computer terminal and the interface device for connecting it to the VR computer, it is necessary to perform communication between a large number of slave stations and the Chinese master station.In this case, the slave stations It is desirable that the installation location of the floor layout can be moved freely.
Further, it is desirable that the master station does not make any adjustments even if the position of the slave station changes.

従来は、端末と前記インタフェース装置間を銅線あるい
は光ケーブルで接続するか、例えば米国N結 Proceedings of工I!KE vol、6
7 NO,11,NOVBMBERj979 pp14
74〜1486のIIWirel、e8s In−Ho
use DateC○mmunication  Vi
a  Diffuse  Infrar@d  Rad
iat−1On# に述べられているごとく、送信光をほぼ無指向性で発射
し1、光受信特性もほぼ無指向性として、子局の移動に
自由度を持たせている。
Conventionally, the terminal and the interface device are connected by a copper wire or an optical cable, or by, for example, the method used in the US N-Connection Proceedings of Engineering I! KE vol, 6
7 NO, 11, NOVBMBERj979 pp14
74-1486 II Wirel, e8s In-Ho
use DateC○mmunication Vi
a Diffuse Infrar@d Rad
As stated in iat-1On#, the transmitting light is emitted almost omnidirectionally1, and the optical reception characteristics are also almost omnidirectional, giving the slave station a degree of freedom in movement.

しかし、前者の方法ではケーブルの布設変更が手数を要
し、後者では信号光の拡散による受信光レベルの低下と
背景光の影響による受信$2の低下を補うため、送伊光
瀞として大出力が要求される欠点のほか人の目に対する
安全性や、消費電力、′I#、熱等の点で問題があった
However, the former method requires a lot of work to change the cable installation, and the latter requires a high output as a transmitter to compensate for the decrease in the received light level due to the diffusion of the signal light and the decrease in reception $2 due to the influence of background light. In addition to the disadvantage of requiring high speed, there are also problems in terms of safety for human eyes, power consumption, 'I#', heat, etc.

r発明の目的〕 本発明はこれを改良するもので、送信光電力を小さくす
ることができ、親局と子局の間の距離を大きくすること
ができる無線の光通信方式を提供することを目的とする
[Object of the Invention] The present invention improves the above, and aims to provide a wireless optical communication system that can reduce the transmitted optical power and increase the distance between the master station and the slave station. purpose.

〔発明の要点〕[Key points of the invention]

本発明親局は送信および受信系をともにはぼ無指向性と
し、子局の位置に制限を与えぬようにし、子局は送信お
よび受信系をともに指向性を持たせて、送信光について
は親局の光受信系に有効に光電力を投射し、受信につい
ては、はぼ親局月外の方向からの光をしやへいして背景
光の影響を減少することを特徴とする。
In the master station of the present invention, both the transmitting and receiving systems are almost omnidirectional, so that there is no restriction on the position of the slave station, and in the slave station, both the transmitting and receiving systems are directional, and the transmitted light is It is characterized by effectively projecting optical power to the optical receiving system of the master station, and for reception, suppressing light from directions outside the master station to reduce the influence of background light.

〔実施例の説明〕[Explanation of Examples]

との発明の実施例を添付図面によって説明する。 Embodiments of the invention will be described with reference to the accompanying drawings.

第1図は本発明実施例通信方式の構成図であん単一の親
局1と複数の子局2〜6との間をwi7で4iする。子
局の位置を自由に選ぶKは、親局の発する光は無指向性
あるいは子局の移動する範囲をすべてカバーする程度の
広い指向性とする必要がある。
FIG. 1 is a block diagram of a communication system according to an embodiment of the present invention, in which communication between a single master station 1 and a plurality of slave stations 2 to 6 is 4i using Wi7. In order to freely select the position of the slave station, the light emitted by the master station must be omnidirectional or have a wide directivity that covers the entire movement range of the slave station.

このため、光源として発光ダイオードを使用する。特に
レンズ状の樹脂モールドされていたい発光ダイオードは
適している。この場合には#1とんど半球面内に無指向
性の光を発するので、親局を天井や壁に取り付ける場合
には何等光学系を使用せずとも所要の無指向性または広
指向性となる。
For this reason, a light emitting diode is used as a light source. Light-emitting diodes that are molded into lens-like resin are particularly suitable. In this case #1, omnidirectional light is emitted mostly within the hemisphere, so if you mount the master station on the ceiling or wall, you can achieve the required omnidirectional or wide directional light without using any optical system. becomes.

また、全空間にほぼ一様な光を投射する必要がある場合
や、送信光出力が1個の発光ダイオードで不足の場合に
はその複数管使用すればよい。
Furthermore, if it is necessary to project almost uniform light over the entire space, or if the transmitted light output is insufficient for one light emitting diode, multiple tubes may be used.

一方親局の光受信特性は多数かつ位!が変る可能性のあ
る子局からの光線を受は入れるために、送信と同様の指
向性を有する必要がある。
On the other hand, the optical reception characteristics of the master station are numerous! In order to receive and accept light beams from slave stations whose light beams may change, it is necessary to have the same directivity as the transmitting beam.

各子局は各々が単一の親局に対してのみ送受信 5を行
えばよいので、送受信ともKそれぞれ指向性を持たせる
ことが可能である。第2図蝶本発明−実施例装冒構成図
であって半球面内に光の送受信を行う場合の構成例であ
る。1lti、天井や帯などの取り付は面、12け発光
ダイオードおよびフォトダイオードを光球状の表面に有
する親、局である。
Since each child station only needs to perform transmission and reception 5 to a single master station, it is possible to give directivity to both transmission and reception. FIG. 2 is a configuration diagram of a butterfly according to the present invention--an embodiment of the present invention, and is an example of the configuration when transmitting and receiving light within a hemisphere. 1lti, a surface for mounting on ceilings, strips, etc., and a main station with 12 light emitting diodes and photodiodes on a photosphere-shaped surface.

この半球状の表面にほぼ等密度に発光ダイオードとフォ
トダイオードを配置することKよって広い指向性が得ら
れる。また、送受を同時に行わないときけ、一種類のタ
イオード管送信時には発光タイオードとして、受信時K
Fiフォトダイオードとして使用することもできる。
By arranging the light emitting diodes and photodiodes at approximately equal density on this hemispherical surface, a wide directivity can be obtained. In addition, if transmitting and receiving are not carried out at the same time, one type of diode tube can be used as a light emitting diode when transmitting, and when receiving K
It can also be used as an Fi photodiode.

子局13〜15Fi、送信および受信に指向性ヒームを
持つように構成し、各々の角度20の内に光を送信し、
またこの角度内の光を受信する。例えば子局15のよう
に光軸19が親局12から少しはずれていても2θの角
度内に新局があれば通信可能であるように構成する。
The slave stations 13 to 15Fi are configured to have directional beams for transmission and reception, and each transmits light within an angle of 20,
It also receives light within this angle. For example, even if the optical axis 19 of the slave station 15 is slightly deviated from the master station 12, the configuration is such that communication is possible if there is a new station within an angle of 2θ.

次にこのように子局のみに指向性を持たせることの有利
性を説明する。
Next, the advantage of providing directivity only to the slave stations will be explained.

第3図は子局の光送受信系の一構成例を示す図である。FIG. 3 is a diagram showing an example of a configuration of an optical transmitting/receiving system of a slave station.

本例でFi発光ダイオード加を送信時には順電流を供給
することKよって光源とし、受信時にに逆バイアス電圧
を印加するととKよってフォトダイオードとして使用し
、レンズ21を送受に共用している。いま発光ダイオー
ド加の有効径をAと17、ルンズ21の焦点距離をfと
すれば光の拡がり角θけ、発光タイオードをレンズ21
の伸AK#いたとき、レンズの左右両側の光の曲り方が
等しぐ o”t i&!1−” ’ f となる、、発光ダイオード加の光出力のうちレンズ21
に入射【7た成分は仁の角度内に集光して放射さtしる
。したがって光軸26を親局の方向に合わせると、親局
の光受信系の受ける信号光の量は、レンズ21がなく発
光ダイオード加の出力光がすべての方向に拡散する場合
よシもはるかに多い。これにより親局の受信系の面積を
それだけ減少すること力く可能であり、不要な背景光を
受は入れる量が下る。あるいけ発光ダイオード美の出力
光電力を丁げ′ることかできる。
In this example, the Fi light emitting diode is used as a light source by supplying a forward current during transmission, and is used as a photodiode by applying a reverse bias voltage during reception, and the lens 21 is shared for transmission and reception. Now, if the effective diameter of the light emitting diode is A and 17, and the focal length of the lens 21 is f, then the light spreading angle is θ, and the light emitting diode is the lens 21.
When the expansion AK# of the lens is extended, the bending of the light on both the left and right sides of the lens is equal.
The incident component [7] is focused within the angle of the angle and is emitted. Therefore, when the optical axis 26 is aligned in the direction of the master station, the amount of signal light received by the optical receiving system of the master station is far greater than when there is no lens 21 and the output light from the light emitting diode is diffused in all directions. many. This makes it possible to reduce the area of the receiving system of the master station by that much, and the amount of unnecessary background light received is reduced. It is possible to reduce the output light power of a light emitting diode.

一方子局の受信時には、前に述べた角度θの範回内の光
のみが発光ダイオード20に入射するので、背景光が減
少し、かつレンズ21の表面積と発光ダイオードの有効
面積の比率だ叶多くの信号光を受信できる。こkwより
親局の送信光電力を減少できる。
On the other hand, when receiving data from a slave station, only light within the range of the angle θ described above enters the light emitting diode 20, so background light is reduced and the ratio of the surface area of the lens 21 to the effective area of the light emitting diode is reduced. Can receive many signal lights. The transmission optical power of the master station can be reduced from this kw.

上記説明は送受信のダイオードを共用としたが受信にけ
受信専用の7オトタイオードを使用することもできる。
In the above explanation, the transmitting and receiving diodes are shared, but it is also possible to use a seven-way diode dedicated to receiving.

この場合KFi、レンズと発光ダイオードの組合わせと
、レンズとフォトダイオードの組み合わせの両方を同時
に使用するか、あるいはハーフミラ−によって発光ター
イオードとフォトダイオードを単一のレンズに結合する
ことが必要である。
In this case, it is necessary to use both KFi, a lens-light-emitting diode combination, and a lens-photodiode combination at the same time, or to combine the light-emitting diode and photodiode into a single lens by means of a half mirror.

上記説明は双方向通信について述べたが、親局から子局
あるいは子局から親局への単一方向通信の場合にも本発
明を実施することができる。この場合にも、親局が送信
のみを行うものけ子局の背景光排除作用により親局の送
信光電力を下げ得るし、子局が送信のみを行うものは親
局に到達する光電力が増加するので、子局の送信光電力
を下げることかできる。
Although the above description deals with bidirectional communication, the present invention can also be implemented in the case of unidirectional communication from a master station to a slave station or from a slave station to a master station. In this case as well, if the master station only transmits, the background light elimination effect of the slave station can lower the transmitting optical power of the master station, and if the slave station only transmits, the optical power reaching the master station will decrease. Since this increases, the transmission optical power of the slave station can be lowered.

〔効果の説明〕[Explanation of effects]

以上述べたように本発明によれば、多数の子局と単一の
親局との間の通信において、子局の位賃金自由に変見ら
れる構成としても、親局および子局ともにほぼ無指向性
の送受信特性を有する場合に比べて光送信電力を大幅に
下げることができ、あるい#i親局・子局間の距離を大
きくできる利点がある。
As described above, according to the present invention, in communication between a large number of slave stations and a single master station, both the master station and the slave stations have almost no direction, even if the slave stations are configured to change freely. This has the advantage that the optical transmission power can be significantly lowered compared to the case where the transmitting/receiving characteristics are similar, and the distance between the #i master station and the slave station can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロック構成図。 第2図は本発明の他の実施例の構成図。 第5図は第2図の子局の実施例の一部分の構成図。 l・・・親局、2〜6・・・子局、12・・・親局、1
3〜15・・・子局、加・・・光源あるいは受光器、2
1・・・レンズ、θ・・・送受信指向性をあられす角度
。 特許出願人 日本電気株式会社 代理人 弁理士 井 出 直 孝 ?P11 日 第2図 ′25 M3図
FIG. 1 is a block diagram of an embodiment of the present invention. FIG. 2 is a block diagram of another embodiment of the present invention. FIG. 5 is a partial configuration diagram of the embodiment of the slave station in FIG. 2. l...Master station, 2-6...Slave station, 12...Master station, 1
3 to 15...Slave station, add...Light source or receiver, 2
1... Lens, θ... Angle that determines the transmitting and receiving directivity. Patent Applicant NEC Corporation Representative Patent Attorney Naotaka Ide? P11 Day 2 Figure '25 M3 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)単一の親局と神数の子局上の間にヤ紳により光通
信を行う方式において、 親局の送信およびまたは受信の指向特性は通信の相手方
となる子局を全て包絡するよう忙広く構成され、 子局の送信およびまたは受信の指向特性は上記単−の親
局を包絡するように狭く構成されたことを特徴とする光
通信方式。
(1) In a system that performs optical communication between a single master station and a diagonal number of slave stations, the transmission and/or reception directional characteristics of the master station are busy so as to envelop all the slave stations with which it communicates. An optical communication system characterized in that the transmission and/or reception directional characteristics of the slave stations are configured narrowly so as to envelop the single master station.
JP57071709A 1982-04-27 1982-04-27 Optical communication system Pending JPS58188944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071709A JPS58188944A (en) 1982-04-27 1982-04-27 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071709A JPS58188944A (en) 1982-04-27 1982-04-27 Optical communication system

Publications (1)

Publication Number Publication Date
JPS58188944A true JPS58188944A (en) 1983-11-04

Family

ID=13468334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071709A Pending JPS58188944A (en) 1982-04-27 1982-04-27 Optical communication system

Country Status (1)

Country Link
JP (1) JPS58188944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261236A (en) * 1986-05-08 1987-11-13 Yagi Antenna Co Ltd Calling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533731U (en) * 1978-08-28 1980-03-04
JPS5586233A (en) * 1978-12-22 1980-06-28 Nec Corp Photo information transmission system for route moving vehicle
JPS58114537A (en) * 1981-12-26 1983-07-07 Fujitsu Ltd Optical space communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533731U (en) * 1978-08-28 1980-03-04
JPS5586233A (en) * 1978-12-22 1980-06-28 Nec Corp Photo information transmission system for route moving vehicle
JPS58114537A (en) * 1981-12-26 1983-07-07 Fujitsu Ltd Optical space communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261236A (en) * 1986-05-08 1987-11-13 Yagi Antenna Co Ltd Calling device

Similar Documents

Publication Publication Date Title
US10938476B2 (en) System for optical free-space transmission of a string of binary data
JP6923596B2 (en) High-speed free space optical communication
CN1121281A (en) Low cost optical fiber RF signal distribution system
JPH069396B2 (en) Optical fiber communication switching equipment
US6804465B2 (en) Wireless optical system for multidirectional high bandwidth communications
US7181143B2 (en) Free space optics communication apparatus and free space optics communication system
JPS58188944A (en) Optical communication system
KR100237988B1 (en) The combination of nondirection and direction ultrared transmitter
JPS58125923A (en) Light transmitting system
CN1201284A (en) Optical receiver and optical radio transmission system thereof
JPS58202633A (en) Optical space propagation network system
CN105680954B (en) A kind of visible light communication receives terminal and system
JP2002009703A (en) Optical data bus communication system and optical data bus communication method
JPH10178393A (en) Light transmitter-receiver
JPS63176033A (en) Optical spatial data transmission system
JP3567794B2 (en) Optical wireless communication method
JPS5995746A (en) Optical space propagating type network
JPS6359229A (en) Relay method for space propagation optical communication
CN117749273A (en) Wireless optical communication system and method for cooperative work of array light source and intelligent reflecting surface
JPH0498209A (en) Optical array device
JP2001281425A (en) Diffused light emitting device
JPS58108839A (en) Optical space propagating system
JPS58125925A (en) Space transmitting system of light
JPH02156740A (en) Optical information transmission equipment
RU18035U1 (en) OPTICAL OPTICAL COMMUNICATION SYSTEM