JPS6359229A - Relay method for space propagation optical communication - Google Patents

Relay method for space propagation optical communication

Info

Publication number
JPS6359229A
JPS6359229A JP61203117A JP20311786A JPS6359229A JP S6359229 A JPS6359229 A JP S6359229A JP 61203117 A JP61203117 A JP 61203117A JP 20311786 A JP20311786 A JP 20311786A JP S6359229 A JPS6359229 A JP S6359229A
Authority
JP
Japan
Prior art keywords
light
repeater
area
light emitting
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61203117A
Other languages
Japanese (ja)
Other versions
JPH0797762B2 (en
Inventor
Osamu Yoshikawa
治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMK Corp
Original Assignee
SMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMK Corp filed Critical SMK Corp
Priority to JP61203117A priority Critical patent/JPH0797762B2/en
Publication of JPS6359229A publication Critical patent/JPS6359229A/en
Publication of JPH0797762B2 publication Critical patent/JPH0797762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the sureness of data transmission by placing a light emitting element to a region opposed to a region of a photodetector in the reception enable state while clipping a center axial line at the signal relay and scanning the element to be in the transmission enable state. CONSTITUTION:When the region P1 is, for example, the photodetecting plane, the region P5 opposed thereto while clipping the center axial line 0 is a light emitting plane. The photodetecting plane is moved, e.g., clockwise as shown in solid line arrow and each region is a light emission plane sequentially in the order of P1-P8. On the other hand, the light emitting plane is moved in the same direction at the same speed as shown in broken line arrow and each region becomes sequentially the photodetecting plane in the order of P5 P6 P7 P8 P1 P2 P3 P4. Thus, the photodetecting plane and the light emitting plane are formed opposite to each other while clipping the center axial line 0 at all times.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光を搬送波として空間的な光伝搬により通信
を行なうための中継方法に関し、特に空回での空間伝搬
光通信に最適な中継方法に関するものでおる。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a relay method for communication by spatial optical propagation using light as a carrier wave, and particularly relates to a relay method optimal for spatial propagation optical communication in idle circuits. I'll go.

従来の技術 近年、光を搬送波として情報データを空間的に送受信す
る空間伝搬光通信方式が開発され、特に空回に配置され
た子局としての各種端末機器例えばファクシミリやプリ
ンタあるいはキャッシュレジスタ等と、同じ空回に配置
された親局としての顕器例えばホストコンピュータとの
間の通信を空間光伝搬によって行なうシステムが実用化
されつつおる。
2. Description of the Related Art In recent years, a space propagation optical communication system has been developed that uses light as a carrier wave to spatially transmit and receive information data. A system is being put into practical use that uses spatial light propagation to communicate with a master station, such as a host computer, located in the same idle station.

従来このような空回における空間伝搬光通信システムに
おいては、第7図に示すように空回の上部例えば天井1
に中継器2を取付けておき、空回の各端末機3a〜3C
と中継器2との間で空間伝搬光による送受信を行ない、
一方中継器2とホストコンピュータ等の親局4との間は
、光ファイバあるいは通常の電線ケーブルなどのワイヤ
5によって結線しておいてそのワイヤ5を介して非空間
伝送により送受信を行なうのが通常であった。しかしな
がらこのようなシステムを実際に適用するに市たっては
、中継器2と親局4との間をワイヤ5で結ぶための配線
工事を必要とし、また親局4を移動ざぜる際には改めて
配線替えの工事を行なわなければならないという不便が
ある。
Conventionally, in such a space propagation optical communication system using an idle circuit, as shown in FIG.
The repeater 2 is attached to the
Transmission and reception using spatially propagating light is carried out between and the repeater 2,
On the other hand, the repeater 2 and a master station 4 such as a host computer are usually connected by a wire 5 such as an optical fiber or an ordinary electric wire cable, and transmission and reception is performed by non-space transmission via the wire 5. Met. However, in order to actually apply such a system, wiring work is required to connect the repeater 2 and the master station 4 with the wire 5, and when the master station 4 is moved, it is necessary to conduct wiring work again. There is the inconvenience of having to perform wiring replacement work.

そこで最近では、第8図に示すように、端末機3a〜3
Gと中継器2との間のみならず、中継器2とホストコン
ピュータ等の親局4との間も空間伝搬光による光信号に
よって送受信するシステムが開発されつつある。このよ
うなシステムによれば、配線工事が不要となって親局も
7内の状況や配置換えなどに応じて任意に移動すること
が可能となる。
Therefore, recently, as shown in FIG.
Systems are being developed that transmit and receive optical signals using space-propagating light not only between G and the repeater 2 but also between the repeater 2 and a master station 4 such as a host computer. According to such a system, there is no need for wiring work, and the master station can also be moved arbitrarily depending on the situation within the station 7, rearrangement, etc.

ところで上述の第8図に示すようなシステムに使用され
る中継器は、基本的には7内のいずれの箇所からの光信
号も受信できかつ7内のいずれの箇所へも光信号を送信
し得るように、受信側(受光側)、送信側(発光側)の
いずれも無指向性とすることが望ましい。ところがこの
種の通信に使用される発光素子、例えば発光ダイオード
は、その指向性が強く、通常は15〜20’程度の角度
の範囲しか有効ではないから、送信(発光)を無指向的
に行なわせるためには少なくとも40〜50個程度の多
数の発光素子を用いて7内の全領域をカバーさせる必要
がある。そしてこのように多数の発光素子を用いれば、
発光素子1個当りの消費電流はわずかであっても、中継
器全体としては消費電流が著しく大きくなってしまう問
題が生じる。
By the way, the repeater used in the system shown in FIG. It is desirable that both the receiving side (light-receiving side) and the transmitting side (light-emitting side) be non-directional so as to obtain the desired results. However, the light-emitting elements used in this type of communication, such as light-emitting diodes, have strong directivity and are usually effective only within an angular range of about 15 to 20', so they transmit (light-emit) omnidirectionally. In order to achieve this, it is necessary to use a large number of light emitting elements, at least about 40 to 50, to cover the entire area within 7. And if we use a large number of light emitting elements like this,
Even if the current consumption per light emitting element is small, a problem arises in that the current consumption of the repeater as a whole becomes significantly large.

また第8図に示すようなシステムにおいて受信側(受光
側)、送信側(発光側)をともに無指向性とした場合、
中継器の受光素子には、本来の端末機器からの空間伝搬
光が入射されるほか、中継器自体の発光素子から発せら
れた空間伝搬光が7内での多重反射、乱反射によって入
射してしまうことがあり、このような場合は本来の伝搬
光による受信信号が反射による信号によって妨害を受け
て、正確な信号中継を行ない得なくなることがおる。こ
のような妨害は、無線通信におけるマルチパス妨害と類
似したものであり、したがってこの明細書でも以下マル
チパス妨害と呼ぶこととする。
Furthermore, in the system shown in Figure 8, when both the receiving side (light receiving side) and the transmitting side (light emitting side) are made omnidirectional,
In addition to the spatially propagating light from the original terminal equipment being incident on the light receiving element of the repeater, the spatially propagating light emitted from the light emitting element of the repeater itself is also incident due to multiple reflections and diffuse reflections within the repeater. In such cases, the received signal due to the original propagation light may be interfered with by the reflected signal, making it impossible to perform accurate signal relay. Such interference is similar to multipath interference in wireless communications, and will therefore be referred to hereinafter as multipath interference in this specification as well.

上述のような2種の問題のうち前者の問題、すなわち多
数の発光素子を用いることによる消費電流の問題につい
ては、既に特開昭59−133744号において一つの
解決策が提案されている。この提案の中継器では、ある
範囲内の方向のみに対して受光、発光を行なうユニット
を複数個用意しておき、かつ中継器の取付ホルダにはそ
れらのユニットをすべての方向に対して着脱可能として
、端末機や親局の配置方向に応じてその方向にのみユニ
ットを取付けることによって実際に使用する発光素子、
受光素子の数を減じ、消費電流を小さくするようにして
いる。
Regarding the former of the above two types of problems, that is, the problem of current consumption due to the use of a large number of light emitting elements, a solution has already been proposed in Japanese Patent Laid-Open No. 133744/1983. In this proposed repeater, multiple units that receive and emit light only in a certain range are prepared, and these units can be attached and removed from the repeater's mounting holder in all directions. According to the direction in which the terminal or master station is placed, the light emitting element that is actually used can be mounted only in that direction.
The number of light-receiving elements is reduced to reduce current consumption.

発明が解決すべき問題点 前記提案の中継器においては、消費電流の問題はある程
度解決できるものの、マルチパス妨害については依然と
して解決されていない。すなわち、前記提案の中継器で
も、その中継器の発光素子から発した光信号が多重反射
、乱反射によって同じ中継器の受光素子に入射してしま
うことは避は得なかったのである。
Problems to be Solved by the Invention Although the proposed repeater can solve the problem of current consumption to some extent, multipath interference still remains unsolved. That is, even in the proposed repeater, it was inevitable that the optical signal emitted from the light emitting element of the repeater would enter the light receiving element of the same repeater due to multiple reflections and diffuse reflections.

また前記提案の中継器においては、消費電流を減少する
効果があるとは言えども、場合によっては消費電流が大
きくなってしまうこともあった。
Furthermore, although the proposed repeater has the effect of reducing current consumption, the current consumption may increase in some cases.

すなわち、端末機の数が多くかつその端末機がそれぞれ
離れて配置されている場合には、中継器に取付けておく
べきユニットの数も増加し、その場合には消費電流もあ
る程度大きくならざるを得なかった。
In other words, if there are a large number of terminals and the terminals are located far apart from each other, the number of units that must be attached to the repeater will also increase, and in that case, the current consumption will inevitably increase to some extent. I didn't get it.

このほか前記の提案の中継器では、端末機や親局の配置
に応じてユニットの取付は取外しを行なりなけばならず
、そのための手間が煩雑であるという問題もあった。
In addition, the above-mentioned proposed repeater has the problem that the unit must be attached or removed depending on the arrangement of the terminals and the master station, which requires a lot of effort.

この発明は以上の事情を背景としてなされたもので、空
間伝搬光通信における中継方法、特に中継器と他の機器
との間の送受信をすべて空間伝搬光による光信号によっ
て行なう方式の中継方法において、基本的には無指向性
として、しかも消費電流を著しく小さくなし得ると同時
に、マルチパス妨害の如き妨害が生じないようにしてデ
ータ伝送の確実性を高め得るようにし、またその他の煩
雑な手間なども必要としないようにした中継方法を提供
することを目的とするものである。
The present invention was made against the background of the above-mentioned circumstances, and relates to a relay method in space propagation optical communication, particularly a relay method in which all transmission and reception between a repeater and other equipment is performed by optical signals using space propagation light. Basically, it is non-directional, and the current consumption can be significantly reduced, and at the same time, the reliability of data transmission can be increased by preventing interference such as multipath interference, and other troublesome work etc. It is an object of the present invention to provide a relay method that does not require the following.

問題点を解決するための手段 この発明は、機器から送信された空間伝搬光による光信
号を中継器の受光素子により受信し、これを中継器内で
増幅して中継器の発光素子により空間伝搬光による光信
号として他の機器へ送信する空間伝搬光通信の中継方法
において、前記中継器は、垂直な軸線の周囲に、その中
心軸線に対して傾斜する傾斜外周面部を備えた構成とさ
れ、その傾斜外周面部は、周方向に複数の領域に区分さ
れて、各領域に各々受光素子および発光素子が配設され
ており、信号中継時には、受光素子を各領域ごとに受信
可能状態となるように走査させるとともに、発光素子を
、受信可能状態にある受光素子の領域に対して前記中心
軸線を挟んで常に反対側に位置する領域において送信可
能状態となるように走査させることを特徴とするもので
必る。
Means for Solving the Problems This invention receives an optical signal based on spatially propagating light transmitted from a device by a light receiving element of a repeater, amplifies it in the repeater, and transmits it in space by a light emitting element of the repeater. In a method for relaying spatial propagation optical communication in which light is transmitted as an optical signal to another device, the repeater is configured to include, around a vertical axis, an inclined outer peripheral surface portion that is inclined with respect to the central axis thereof; The inclined outer circumferential surface is divided into a plurality of regions in the circumferential direction, and a light receiving element and a light emitting element are arranged in each region, and when relaying signals, the light receiving elements are set in a state where each region can receive data. , and the light emitting element is scanned in such a way that it is always in a transmittable state in an area located on the opposite side of the central axis with respect to the area of the light receiving element that is in a receivable state. It is necessary.

作   用 この発明の中継方法においては、中継器は例えば下向の
天井等に配設される。端末機などの波器から送信された
光信号としての空間伝搬光は、中継器の傾斜外周面部の
各領域のうち、その機器の方向を向いた領域(もしくは
それに隣接する領域)に入射される。受光素子は各領域
ごとに受信可能状態となるように走査されるから、機器
からの光信号が入射した領域の受光素子が受信可能状態
となった時点で光信号がその領域の受光素子により電気
信号に変換されて中継器内に取込まれる。このようにし
て取込まれた信号は、中継器内において信号の変調方式
に応じて復調、変調や信号の補間、あるいは増幅や波形
整形などが行なわれた後、中継器の発光素子から空間伝
搬光による光信号として送信される。発光素子も各領域
ごとに送信可能状態となるように走査されるから、送信
信号としての光信号も、各領域の発光素子から順次送信
されることになる。そしてホストコンピュータ等の受信
側の機器が中継器に対していずれの方向に位置していて
も、上述のように各領域の発光素子が順次走査されるこ
とにより、いずれかの領域の発光素子から送信された光
信号か゛必ず受信側の機器の受光部により受信されるこ
とになる。
Function: In the relay method of the present invention, the relay is installed, for example, on a downward ceiling. Spatial propagation light as an optical signal transmitted from a wave device such as a terminal device is incident on the region (or adjacent region) of each region of the inclined outer surface of the repeater facing the direction of the device. . The light-receiving element is scanned so that each area becomes ready for reception, so when the light-receiving element in the area into which the optical signal from the device is incident becomes ready to receive, the optical signal is electrically transmitted by the light-receiving element in that area. It is converted into a signal and taken into the repeater. The signals captured in this way are subjected to demodulation, modulation, signal interpolation, amplification, waveform shaping, etc. in accordance with the signal modulation method in the repeater, and then spatial propagation from the repeater's light emitting element. It is transmitted as an optical signal using light. Since the light emitting elements are also scanned in each area so as to be in a transmittable state, optical signals as transmission signals are also sequentially transmitted from the light emitting elements in each area. No matter which direction the receiving device, such as a host computer, is located with respect to the repeater, the light emitting elements in each area are sequentially scanned as described above, so that the light emitting elements in any area can be The transmitted optical signal is always received by the light receiving section of the receiving device.

ここで、受信可能状態にある受光素子の・領域と送信可
能状態にある発光系子の領域とは、常に中心軸線を挟ん
で反対側に位置するように、受光素子および発光素子の
走査の位相が180°ずれている。このことは、現に中
継器から光信号が送信されつつある発光素子の属する領
域やその近辺の領域の受光素子は受信可能状態となって
おらず、光信号が送信されつつおる発光素子の屈する領
域の反対側の領域の受光素子のみが受信可能状態となっ
ていることを意味するから、その発光素子から発せられ
た光信号が下向での多重反射、乱反射によって受信可能
状態にある受光素子に入射してしまうおそれが少なく、
したがってマルチパス妨害により信号伝送精度が低下す
るおそれが著しく少なくなる。
Here, the scanning phase of the light receiving element and the light emitting element is adjusted so that the area of the light receiving element that is ready for reception and the area of the light emitting element that is ready for transmission are always located on opposite sides of the central axis. is shifted by 180°. This means that the light-receiving elements in the area to which the light-emitting element to which the optical signal is currently being transmitted from the repeater and its surrounding areas are not ready for reception, and the light-receiving element in the area where the light-emitting element to which the optical signal is being transmitted is bent. This means that only the light-receiving element on the opposite side of the area is in a receivable state, so the optical signal emitted from that light-emitting element is reflected downward by multiple reflections and diffused reflection, and reaches the light-receiving element in a receivable state. There is little risk of it entering the
Therefore, the possibility that signal transmission accuracy will deteriorate due to multipath interference is significantly reduced.

また前述のところから明らかなように、受光素子のみな
らず発光素子も全てのものを同時に送信可能状態とせず
、各領域ごとに順次送信可能状態となるように走査され
るから、ある時刻において同時に動作している発光素子
は全発光素子のうちのわずかな一部に過ぎず、したがっ
て消費電流は全発光系子を同時に駆動する場合と比較し
て格段に少なくて済む。
Furthermore, as is clear from the above, not only the light-receiving elements but also the light-emitting elements are not all enabled for transmission at the same time, but are scanned so that each area is sequentially enabled for transmission. The light-emitting elements that are in operation are only a small part of the total number of light-emitting elements, and therefore the current consumption is much lower than when all the light-emitting elements are driven at the same time.

実施例 以下第1図〜第6図を参照してこの発明の中継方法の実
施例について説明する。
Embodiments Hereinafter, embodiments of the relay method of the present invention will be described with reference to FIGS. 1 to 6.

第1図および第2図は、中継器2の外観の一例を示すも
のであって、この例において中継器2の垂直な中心軸線
Oに対し所定角度Oだけ傾斜する傾斜外周面部6は、周
方向に等間隔で8個の領域P1〜P8に区分されている
。各領域P1〜P8には、それぞれ発光素子として3個
の発光ダイオード(以下” L E D ”と記す>7
a、7b、7cおよび受光素子として1個のフォトダイ
オード(以下“P D ”と記す)8が配設されている
。ここで各領域P1〜P8内の3個のLED7a〜7G
は、互いに若干角度が異なるように取付けられ゛ てい
る。
1 and 2 show an example of the external appearance of the repeater 2. In this example, the inclined outer peripheral surface portion 6 that is inclined by a predetermined angle O with respect to the vertical central axis O of the repeater 2 is It is divided into eight regions P1 to P8 at equal intervals in the direction. Each area P1 to P8 has three light emitting diodes (hereinafter referred to as "LED") as light emitting elements>7
a, 7b, 7c, and one photodiode (hereinafter referred to as "PD") 8 as a light receiving element. Here, three LEDs 7a to 7G in each area P1 to P8
are installed at slightly different angles from each other.

このような中継器2を用いて空間伝搬光による光信号の
中継を行なうにあたっての各領域P1〜P8に属するP
D、LEDの作動状態の一例を第3図に示す。第3図に
おいて、実線で囲った白扱きの領域はLEDが送信可能
状態にある領域を示し、以下このようにLEDが送信可
能状態すなわち発光可能状態にある領域を発光面と称す
。また第3図において交叉斜線を施した領域はPDが受
信可能状態にある領域を示し、以下このようにPDが受
信可能状態すなわち光信号を受光してその信号を取り入
れ可能な状態にある領域を受光面と称す。
P belonging to each area P1 to P8 when relaying an optical signal using spatially propagating light using such a repeater 2
D. An example of the operating state of the LED is shown in FIG. In FIG. 3, a white area surrounded by a solid line indicates an area where the LED is in a transmittable state, and hereinafter the area where the LED is in a transmittable state, that is, a light emitting state is referred to as a light emitting surface. In addition, in FIG. 3, the area with crossed diagonal lines indicates the area where the PD is in a receivable state.Hereinafter, we will refer to the area where the PD is in a receivable state, that is, in a state where it can receive an optical signal and take in the signal. It is called the light receiving surface.

第3図に示すように、例えばPlの領域が受光面となっ
ている時点では、その領域P1に対し中心@線Oを挟ん
で反対側の領域P5が発光面となっている。受光面は第
3図の実線矢印で示すように例えば時計方向へ移動し、
第3図の状態からP1→P2→P3→P4→P5→P6
→P7→P8の順に各領域が順次発光面となる。一方発
光面も、第3図の破線矢印で示すように同じ方向く図示
の例では時計方向)、同じ速度で移動し、第3図の状態
から、P5→P6→P7→P8→P1→P2→P3→P
4の順に各領域が順次受光面となる。したがって常に中
心軸線Oを挟んで反対側の領域が受光面、発光面となっ
ていることになる。
As shown in FIG. 3, for example, when the region Pl is the light-receiving surface, the region P5 on the opposite side of the center @ line O with respect to the region P1 is the light-emitting surface. For example, the light-receiving surface moves clockwise as shown by the solid arrow in FIG.
From the state in Figure 3, P1 → P2 → P3 → P4 → P5 → P6
Each region becomes a light emitting surface in the order of →P7→P8. On the other hand, the light emitting surface also moves in the same direction (clockwise in the illustrated example) and at the same speed as indicated by the broken line arrow in FIG. 3, and from the state shown in FIG. →P3→P
Each region becomes a light-receiving surface in the order of 4. Therefore, the regions on opposite sides of the central axis O are always the light-receiving surface and the light-emitting surface.

なお第3図の例では、ある時刻で同時に発光面となって
いる領域が1領域、また発光面となっている領域が1領
域とされているが、場合によっては2つの領域もしくは
3つの領域が同時に受光面もしくは発光面となっても良
い。同時に2つの領域が受光面、2つの領域が発光面と
なる場合の例を第4図に示す。この場合は、例えばPl
、P2の領域(Pi 十P2 )が受光面となっている
状態ではその反対側のPs、Paの領域(Ps +Pe
 )が発光面となっており、その状態から受光面は(P
I +P2 )→(P2 +P3 )→(P3 +P4
 )→(P4 +Ps )→(Ps +P8 )→(P
a十P7)→(P7 +Pa )→(Pa 十Pt )
→(Pt十P2)となるように移動し、また発光面も同
様に移動する。なおもちろん同時に受光面となる領域の
数と同時に発光面となる領域の数は必ずしも一致させる
必要はない。
In the example shown in Fig. 3, the number of regions that simultaneously serve as light-emitting surfaces at a certain time is one region, and the number of regions that serve as light-emitting surfaces is one region, but in some cases there may be two or three regions. may also serve as a light-receiving surface or a light-emitting surface. FIG. 4 shows an example in which two regions simultaneously serve as light-receiving surfaces and two regions serve as light-emitting surfaces. In this case, for example, Pl
, P2 area (Pi + Pe
) is the light emitting surface, and from that state the light receiving surface is (P
I +P2 ) → (P2 +P3 ) → (P3 +P4
)→(P4 +Ps)→(Ps+P8)→(P
a 10P7) → (P7 +Pa) → (Pa 10Pt)
→(Pt+P2), and the light emitting surface also moves in the same way. Of course, the number of regions that simultaneously serve as light-receiving surfaces does not necessarily have to match the number of regions that simultaneously serve as light-emitting surfaces.

第5図には、この発明の方法に使用される中継器の回路
構成の一例をブロック図で示す。
FIG. 5 shows a block diagram of an example of the circuit configuration of a repeater used in the method of the present invention.

第5図において、8個の受信回路ユニット91〜98は
それぞれ各領ij/J、 P 1〜P8のPDに対応す
るもので市って、これらの各受信回路ユニット91〜9
8からは、それぞれのユニットに対応するPDに機器か
らの光信号、例えば伝送すべき情報データをCMI変調
した光信号が入射された時に、その光信号を電気信号に
変換して得られたデータ信号と、光信号が入射されたこ
とを表わす受信検知信号とが出力される。受信検知信号
は、受信ユニット判別回路10に送られ、いずれの受信
回路ユニット91〜98において受信されたか、換言す
ればいずれの領域P1〜P8に光信号が入射されたかが
判別されて、その結果がシステムコントローラ11に与
えられる。一方いずれかの受信回路ユニット91〜98
から出力されたデータ信号は、スイッチ回路121〜1
28を経て復調器13へ送られる。スイッチ回路121
〜128は、直接的にはスイッチ制御回路14によって
オンオフ制御され、またそのスイッチ制御回路14は前
記システムコントローラ11からの情報によっていずれ
のスイッチ回路121〜128をオンもしくはオフとす
るか指示される。前記復調器13は、単にCMI変調さ
れているデータ信号を復調するのみならず、信号の補間
やエラーコレクトをも行なうものであって、前記システ
ムコントローラ11からの信号によってその動作が制御
される。復調器13の復調出力信号は、変調器15に入
力され、再びCMI変調される。変調された信号は送信
回路ユニット161〜168に与えられる。これらの送
信回路ユニット161〜168は、それぞれ前記各領域
P1〜P8のLED7a〜7Cを変調器15からのデー
タ信号に応じて発光させ、空間伝搬光として光信号を送
信するためのものであって、これらの送信回路ユニット
161〜168は、送信ユニット制御回路17からの制
御信号により指定された順番で、順次送信可能状態(発
光状態)となるように走査制御される。
In FIG. 5, eight receiving circuit units 91 to 98 correspond to each region ij/J and PD of P1 to P8, respectively.
From 8 onwards, when an optical signal from a device, for example an optical signal that has been CMI modulated with information data to be transmitted, is input to the PD corresponding to each unit, the optical signal is converted into an electrical signal and the data is obtained. A signal and a reception detection signal indicating that an optical signal has been input are output. The reception detection signal is sent to the reception unit determination circuit 10, which determines in which reception circuit unit 91 to 98 the optical signal was received, or in other words, to which region P1 to P8 the optical signal was incident, and the result is determined. It is given to the system controller 11. On the other hand, one of the receiving circuit units 91 to 98
The data signal output from the switch circuits 121 to 1
The signal is sent to the demodulator 13 via 28. Switch circuit 121
128 are directly controlled on and off by the switch control circuit 14, and the switch control circuit 14 is instructed by information from the system controller 11 which of the switch circuits 121 to 128 to turn on or off. The demodulator 13 not only demodulates the CMI-modulated data signal, but also performs signal interpolation and error correction, and its operation is controlled by signals from the system controller 11. The demodulated output signal of the demodulator 13 is input to the modulator 15, where it is CMI-modulated again. The modulated signals are provided to transmitting circuit units 161-168. These transmitting circuit units 161 to 168 are for causing the LEDs 7a to 7C in the respective regions P1 to P8 to emit light in accordance with the data signal from the modulator 15, and transmitting optical signals as spatially propagated light. , these transmitting circuit units 161 to 168 are sequentially scan-controlled in an order specified by a control signal from the transmitting unit control circuit 17 so as to be in a transmittable state (light emitting state).

以上のような第5図の回路構成において、スイッチ回路
121〜128は、送信可能状態(発光状態)にある送
信回路ユニット161〜168に対応する領域に対し反
対側に位置する領域の受信回路ユニット91〜98から
のデータ信号のみを取り入れるように、スイッチ制御回
路14によって制御される。例えば領域P5の送信回路
ユニット165が送信可能状態にある時点では、その領
ll1Psに対し反対側の領域P1の受信回路ユニット
91の出力系路のスイッチ回路121のみがオン状態と
なって領域P1のPDに入射した光信号によるデータの
みが取り入れられ、一方その他のスイッチ回路122〜
128はオフ状態となっているから、領域P2〜P8の
PDに入射した光信号による受信回路ユニット92〜9
8のデータ出力信号は取り入れられない。そして順次送
信回路ユニツ1〜161〜]68の送信可能状態が走査
されるに伴なってスイッチ回路121〜128のオン状
態が走査され、これによって送信可能状態にある領域の
送信回路ユニット161〜168に対し常に反対側の領
域の受信回路ユニット91〜98からのデータ信号のみ
が取り入れられることになる。このようにある領域の受
信回路ユニットの出力系路のスイッチ回路がオン状態と
なった状態がその領域のPDについての受信可能状態に
相当する。
In the circuit configuration shown in FIG. 5 as described above, the switch circuits 121 to 128 are connected to the receiving circuit units in the area located on the opposite side to the area corresponding to the transmitting circuit units 161 to 168 in the transmitting enabled state (light emitting state). It is controlled by the switch control circuit 14 to take in only the data signals from 91-98. For example, when the transmitting circuit unit 165 in the area P5 is in a transmittable state, only the switch circuit 121 of the output path of the receiving circuit unit 91 in the area P1 on the opposite side to the area 11Ps is turned on, and Only the data from the optical signal incident on the PD is taken in, while the other switch circuits 122~
Since 128 is in the off state, the receiving circuit units 92 to 9 receive optical signals incident on the PDs in areas P2 to P8.
8 data output signals are not accepted. As the transmission enabled states of the transmitting circuit units 1 to 161 to ]68 are sequentially scanned, the ON states of the switch circuits 121 to 128 are scanned. Only the data signals from the receiving circuit units 91 to 98 in the area on the opposite side are always taken in. In this way, the state in which the switch circuit of the output path of the receiving circuit unit in a certain area is in the on state corresponds to the reception enabled state for the PD in that area.

以上のようにして第5図の回路構成によれば、第3図に
示したような走査方式で光信号の受信および送信、すな
わち光信号の中継を行なうことができる。
As described above, according to the circuit configuration shown in FIG. 5, it is possible to receive and transmit optical signals, that is, to relay optical signals, using the scanning method shown in FIG.

なお上)ホの第5図についての説明では同時に受信可能
状態となる領域の数および同時に送信可能状態となる領
域の数がともに1である場合、すなわち同時に受光面、
発光面となる領域の数がともに1どなる場合について説
明したが、同じ第5図−の回路構成のままで、システム
コントローラ11での設定により、同時に受光面、発光
面となる領域の数を任意に変更することができる。
In addition, in the explanation regarding FIG. 5 of (above) E, when the number of areas that are simultaneously in a receiving state and the number of areas that are simultaneously in a transmitting state are both 1, that is, at the same time, the light-receiving surface,
Although we have explained the case where the number of regions that serve as light-emitting surfaces is both 1, it is also possible to maintain the same circuit configuration as shown in Figure 5 and set the number of regions that serve as light-receiving and light-emitting surfaces at the same time as desired by setting the system controller 11. can be changed to .

また走査速度についても、システムコントローラ11で
の設定により任意に変更することができるが、一般に任
意の位置の領域から全領域が走査されるまでの間に1つ
の信@(1ビツトの信@)を確実に送受信するためには
、元になる信号ビットの周波数に対し、区分した領域の
数の数倍、例えば2〜3倍を乗じた周波数以上で走査さ
せることが望ましい。すなわち、前述のように8領域に
区分されている場合、8個の領域がすべて走査されるこ
とによって1つの信号が送信もしくは受信されることに
なるから、元の信号の1ビツトの間に少なくとも8領域
が走査されることが必要であり、しかもデータの送受信
の確実性、信頼性を増すためにはざらにその数倍以上の
走査周波数が必要となり、結局元のビット周波数に対し
て領域区分数×2〜3倍程度以上の走査周波数が必要と
なる。
The scanning speed can also be changed arbitrarily by setting in the system controller 11, but generally one signal @ (1 bit signal @) is sent from an arbitrary position until the entire area is scanned. In order to reliably transmit and receive data, it is desirable to scan at a frequency equal to or higher than the frequency of the original signal bit multiplied by several times the number of divided regions, for example, 2 to 3 times. In other words, when the area is divided into eight areas as described above, one signal is transmitted or received by scanning all eight areas, so at least one signal is transmitted or received during one bit of the original signal. It is necessary for eight areas to be scanned, and in order to increase the reliability and reliability of data transmission and reception, a scanning frequency that is roughly several times higher than that is required, and in the end, the area division is different from the original bit frequency. A scanning frequency that is about 2 to 3 times higher is required.

なお第1図〜第4図の例では中継器2の傾斜外周面部6
が8個の領域P1〜P8に区分されている例を示したが
、領域区分数は8に限らないことは勿論であり、例えば
第6図に示すように16個の領t4Pt〜P+aに区分
しても良い。この場合も同時に受光面となる領域の数、
同時に発光面となる領域の数は1に限らず、2〜4程度
とすることかできる。
In addition, in the example of FIGS. 1 to 4, the inclined outer peripheral surface portion 6 of the repeater 2
Although we have shown an example in which the area is divided into 8 areas P1 to P8, it goes without saying that the number of area divisions is not limited to 8. For example, as shown in FIG. You may do so. In this case as well, the number of areas that serve as light-receiving surfaces at the same time,
The number of regions that simultaneously serve as light emitting surfaces is not limited to one, but may be about two to four.

なおまた、前述の例ではいずれも順次隣り合う鎖酸が受
信可能状態となるように、また順次隣り合う領域が送信
可能状態となるように走査されるものとしたが、場合に
よってはいくつかの領域をとばしながら走査させても良
い。例えば第2図に示すように領域区分数が8の場合に
おいて、2つの領域をとばしながら走査しても良い。こ
の場合第2図においてPlの領域から時計方向へ走査さ
れるとすれば、受信可能状態となる領域は、P1→P4
→P7→P2→P5→P8→P3→P6→P1の順に走
査されることになる。もちろん送信可能状態となる領域
は、受信可能状態の領域に対して反対側の領域となるよ
うに走査され、例えば上述の例では、P5→P8→P3
→P6→P1→P4→P7→P2→P5の順に走査され
ることになる。
In addition, in the above examples, it was assumed that scanning is performed so that adjacent chain acids become ready for reception, and sequentially adjacent areas become ready for transmission, but in some cases, some Scanning may be performed while skipping areas. For example, when the number of area divisions is eight as shown in FIG. 2, scanning may be performed while skipping two areas. In this case, if the area is scanned clockwise from the area Pl in FIG. 2, the area in which reception is possible is from P1 to P4
The scanning is performed in the order of →P7→P2→P5→P8→P3→P6→P1. Of course, the area that becomes ready for transmission is scanned so as to be the area on the opposite side to the area that is ready for reception. For example, in the above example, P5 → P8 → P3
The scanning is performed in the order of →P6 →P1 →P4 →P7 →P2 →P5.

また第1図、第2図の例では1つの領域に3個のLED
7a〜7G@設けているが、1つの領域に配設するLE
Dの数は必要に応じて任意に定めることができる。ざら
に、第1図、第2図の例では傾斜外周面部6を区分した
各領域P1〜P8をそれぞれ傾斜した平面としているが
、場合によっては曲面としても良く、その場合傾斜外周
面部6の全体を連続する球面の一部としても良い。この
ように傾斜外周面部6を連続する球面の一部とした場合
、それを周方向に区分した各領域P1〜P8もそれぞれ
同じ球面の一部となるから外観上は特に各領域の境界が
あられれないことになる。
In addition, in the examples shown in Figures 1 and 2, three LEDs are placed in one area.
7a to 7G @ provided, but LE placed in one area
The number of D can be arbitrarily determined as necessary. Roughly speaking, in the examples shown in FIGS. 1 and 2, each of the regions P1 to P8 into which the inclined outer circumferential surface portion 6 is divided is an inclined plane, but depending on the case, it may be a curved surface, and in that case, the entire inclined outer circumferential surface portion 6 may be part of a continuous spherical surface. When the inclined outer circumferential surface portion 6 is made part of a continuous spherical surface in this way, each of the regions P1 to P8 divided in the circumferential direction also becomes a part of the same spherical surface, so that there are no boundaries between the regions in terms of appearance. It will not be possible.

発明の効果 以上の説明で明らかなように、この発明の中継方法によ
れば、機器から送信された空間伝搬光による光信号を中
継器の受光素子により受信し、これを中継器内で増幅し
て中継器の発光素子により空間伝搬光による光信号とし
て他の機器へ送信するにあたり、送信側の機器および受
信側の機器がいずれの位置にあっても基本的に無指向性
で受信、送信を行なうことができるにもかかわらず、同
時に送信状態(発光状態)となる発光素子の数が全発光
系子の故と比較して著しく少ないため、消費電力が極め
て少なくて済み、しかも中継器の発光系子から送信され
た光信号が下向での多重反射や乱反射によって同じ中継
器の受光素子に受信されてしまうおそれが少なく、した
がってその反射による信号によって本来の受信信号が妨
害を受けるおそれが極めて少ない。したがってこの発明
の中継方法によれば、ワイヤを用いない仝空間光伝搬方
式の無指向性の中幕を、低いランニングコストで、しか
も高い信号伝送精度で行なうことができる。
Effects of the Invention As is clear from the above explanation, according to the relay method of the present invention, an optical signal based on spatially propagating light transmitted from a device is received by a light receiving element of a repeater, and this is amplified within the repeater. When transmitting spatially propagated light as an optical signal to other equipment using the light emitting element of the repeater, the reception and transmission are basically omnidirectional regardless of the position of the transmitting and receiving equipment. However, the number of light-emitting elements that are in the transmitting state (light-emitting state) at the same time is significantly smaller than that of all light-emitting elements, so power consumption is extremely low, and the light emitting state of the repeater is extremely low. There is little risk that the optical signal transmitted from the system will be received by the light-receiving element of the same repeater due to multiple reflections or diffuse reflections in the downward direction, and therefore there is a high possibility that the original received signal will be interfered with by the signal due to the reflection. few. Therefore, according to the relay method of the present invention, it is possible to perform non-directional middle curtain using the free space optical propagation method without using wires at low running cost and with high signal transmission accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の中継方法に使用される中継器の外観
の一例を示す正面図、第2図は第1図の中継器の底面図
、第3図は第1図、第2図に示される中継器の走査状況
の一例を示す略解図、第4図は第1図、第2図に示され
る中継器の走査状況の他の例を示す略解図、第5図はこ
の発明の中継方法に使用される中継器の電気的回路構成
を示すブロック図、第6図はこの発明の中継方法に使用
される中継器の他の例を示す底面図、第7図は従来の中
継方法の一例を示す説明図、第8図はこの発明の前提と
なる従来の中継方法を示す説明図である。 2・・・中継器、 6・・・傾斜外周面部、 P1〜P
8・・・領域、 7a、7b、7C・・・発光素子とし
ての発光ダイオード(LED)、 8・・・受光素子と
してのフォトダイオード(PD)
FIG. 1 is a front view showing an example of the external appearance of a repeater used in the relay method of the present invention, FIG. 2 is a bottom view of the repeater shown in FIG. 1, and FIG. FIG. 4 is a schematic diagram showing another example of the scanning situation of the repeater shown in FIGS. 1 and 2, and FIG. 5 is a schematic diagram showing an example of the scanning situation of the repeater shown in FIG. A block diagram showing the electrical circuit configuration of a repeater used in the method, FIG. 6 is a bottom view showing another example of a repeater used in the relay method of the present invention, and FIG. An explanatory diagram showing an example, FIG. 8 is an explanatory diagram showing a conventional relay method which is a premise of the present invention. 2...Repeater, 6...Slanted outer peripheral surface portion, P1-P
8... Area, 7a, 7b, 7C... Light emitting diode (LED) as a light emitting element, 8... Photodiode (PD) as a light receiving element

Claims (1)

【特許請求の範囲】 機器から送信された空間伝搬光による光信号を中継器の
受光素子により受信し、これを中継器内で増幅して中継
器の発光素子により空間伝搬光による光信号として他の
機器へ送信する空間伝搬光通信の中継方法において、 前記中継器は、垂直な軸線の周囲に、その中心軸線に対
して傾斜する傾斜外周面部を備えた構成とされ、その傾
斜外周面部は、周方向に複数の領域に区分されて、各領
域に各々受光素子および発光素子が配設されており、信
号中継時には、受光素子を各領域ごとに受信可能状態と
なるように走査させるとともに、発光素子を、受信可能
状態にある受光素子の領域に対して前記中心軸線を挟ん
で反対側に位置する領域において送信可能状態となるよ
うに走査させることを特徴とする空間伝搬光通信におけ
る中継方法。
[Claims] An optical signal based on spatially propagating light transmitted from a device is received by a light receiving element of a repeater, amplified within the repeater, and then converted into an optical signal based on spatially propagating light by a light emitting element of the repeater. In the relay method of space propagation optical communication for transmission to a device, the repeater is configured to include an inclined outer circumferential surface portion around a vertical axis that is inclined with respect to the central axis, and the inclined outer circumferential surface portion is configured to include: It is divided into a plurality of areas in the circumferential direction, and a light receiving element and a light emitting element are arranged in each area.When relaying signals, the light receiving element is scanned in each area so that it is ready for reception, and the light emitting element is A relay method in space propagation optical communication, characterized in that the element is scanned so as to become in a transmittable state in an area located on the opposite side of the central axis with respect to the area of the light receiving element in a receivable state.
JP61203117A 1986-08-29 1986-08-29 Relay method in space propagating optical communication Expired - Lifetime JPH0797762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203117A JPH0797762B2 (en) 1986-08-29 1986-08-29 Relay method in space propagating optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203117A JPH0797762B2 (en) 1986-08-29 1986-08-29 Relay method in space propagating optical communication

Publications (2)

Publication Number Publication Date
JPS6359229A true JPS6359229A (en) 1988-03-15
JPH0797762B2 JPH0797762B2 (en) 1995-10-18

Family

ID=16468681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203117A Expired - Lifetime JPH0797762B2 (en) 1986-08-29 1986-08-29 Relay method in space propagating optical communication

Country Status (1)

Country Link
JP (1) JPH0797762B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012462A1 (en) * 1989-03-30 1990-10-18 Photonics Corporation Infrared network entry permission method and apparatus
US5245460A (en) * 1989-03-30 1993-09-14 Photonics Corporation Infrared network entry permission method and apparatus
US5737690A (en) * 1995-11-06 1998-04-07 Motorola, Inc. Method and apparatus for orienting a pluridirectional wireless interface
US6104512A (en) * 1998-01-23 2000-08-15 Motorola, Inc. Method for adjusting the power level of an infrared signal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012462A1 (en) * 1989-03-30 1990-10-18 Photonics Corporation Infrared network entry permission method and apparatus
US5119226A (en) * 1989-03-30 1992-06-02 Photonics Corporation Infrared network entry permission apparatus
US5245460A (en) * 1989-03-30 1993-09-14 Photonics Corporation Infrared network entry permission method and apparatus
US5737690A (en) * 1995-11-06 1998-04-07 Motorola, Inc. Method and apparatus for orienting a pluridirectional wireless interface
US6104512A (en) * 1998-01-23 2000-08-15 Motorola, Inc. Method for adjusting the power level of an infrared signal

Also Published As

Publication number Publication date
JPH0797762B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US4680811A (en) Vehicle to fixed station infrared communications link
US4977618A (en) Infrared data communications
US5663739A (en) Method and arrangement for establishing networks of electro-optical display-field modules
US5880868A (en) Infrared backbone communication network having a radio frequency backup channel
US5416627A (en) Method and apparatus for two way infrared communication
CA2197916A1 (en) Optical transmitter and transceiver module for wireless data transmission
US20020072357A1 (en) Wireless communication network and wireless communication apparatus suitable for indoor network
JPS6359229A (en) Relay method for space propagation optical communication
KR100237988B1 (en) The combination of nondirection and direction ultrared transmitter
JPS6359230A (en) Relay method for space propagation optical communication
EP0849896A2 (en) Transceiver module for wireless data transmission
JP3026292B2 (en) Optical transmitter / receiver for wireless communication attached to portable information terminal, active star coupler, portable information terminal, and optical communication network
JPS59122141A (en) Infrared ray communicating system
JPS63176033A (en) Optical spatial data transmission system
JPH06152489A (en) Antenna system for mobile object
JPS5995746A (en) Optical space propagating type network
JPH0993196A (en) Optical space transmitter
JPS6369338A (en) Light receiver
JPH0936805A (en) Infrared ray communication equipment
CN218868231U (en) Optical fidelity Li-Fi communication system
JPS60246467A (en) Portable type information processor
CN113328800B (en) Space optical communication omnidirectional receiving method and equipment
EP0909048B1 (en) Optical transmission unit
JPS6123427A (en) Information transmitter
JPS58200644A (en) Optical bus system