JPH06164507A - Infrared duplex communication equipment - Google Patents

Infrared duplex communication equipment

Info

Publication number
JPH06164507A
JPH06164507A JP4308469A JP30846992A JPH06164507A JP H06164507 A JPH06164507 A JP H06164507A JP 4308469 A JP4308469 A JP 4308469A JP 30846992 A JP30846992 A JP 30846992A JP H06164507 A JPH06164507 A JP H06164507A
Authority
JP
Japan
Prior art keywords
infrared
directivity
transmission
lens
communication device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4308469A
Other languages
Japanese (ja)
Inventor
Masaru Abei
大 安部井
Akiyoshi Yokoyama
昭慈 横山
Kazuhide Nishiyama
一秀 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4308469A priority Critical patent/JPH06164507A/en
Publication of JPH06164507A publication Critical patent/JPH06164507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain an infrared duplex communication equipment which can easily correspond to the move of an equipment using infrared space communication. CONSTITUTION:A transmission/reception directivity alterating means 107 which can change the directivity of transmitting infrared beams and received infrared beams by interlocking is provided. The directivity of transmission/reception is changed by changing the position of a case 107 which moves a transmission lens 103 and a reception lens 106 by interlocking them in the direction of the axes of the lenses.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線による双方向の
無線通信装置に係り、特に該無線通信装置の可動にも簡
易に対応するのに好適な赤外線の指向性可変の通信技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared bidirectional wireless communication device, and more particularly to an infrared directivity variable communication technique suitable for easily responding to movement of the wireless communication device.

【0002】[0002]

【従来の技術】近年、テレビ,VTR等の家電製品のリ
モコンのみならず、OA機器やオーディオのデータや音
声等の情報を赤外線を用いて通信する赤外線通信を採用
した機器が増えている。赤外線通信を行う距離や範囲は
目的により異なる。特開平3−109830号に記載の
ようにプリズム或いはレンズ等を用いて赤外線信号の送
信,受信の方向や指向性を決めている製品も多い。
2. Description of the Related Art In recent years, not only remote controllers for home electric appliances such as televisions and VTRs, but also devices that employ infrared communication for communicating information such as OA devices and audio data and voice using infrared rays have been increasing. The distance and range for infrared communication vary depending on the purpose. As described in Japanese Patent Application Laid-Open No. 3-109830, there are many products that use a prism or a lens to determine the direction and directivity of infrared signal transmission and reception.

【0003】[0003]

【発明が解決しようとする課題】最近のパーソナルコン
ピュータ,ワードプロセッサ,電子手帳,テレビ,VT
R,ビデオムービー等の情報機器やオーディオビジュア
ル製品、家電製品には小型軽量で手軽に持ち運べること
を特徴にしているものも多い。それらの機器に赤外線空
間通信を採用した場合、機器の移動が頻繁に行われるた
め、赤外線信号の送信,受信の指向性が固定されている
と、そのために機器の移動範囲や使用場所,使用方法が
固定されてしまうという問題がある。本発明の目的は、
赤外線空間通信を利用する機器の移動に簡易に対応し得
る双方向赤外線通信装置を提供することにある。
Recent personal computers, word processors, electronic notebooks, televisions, VTs.
Many of the information devices such as R and video movies, audiovisual products, and home appliances are characterized by their small size and light weight, and they can be carried easily. When infrared space communication is adopted for such devices, the devices are frequently moved. Therefore, if the directivity of infrared signal transmission and reception is fixed, the range of movement of the device, the place of use, and the method of use are therefore fixed. There is a problem that is fixed. The purpose of the present invention is to
It is an object of the present invention to provide a two-way infrared communication device that can easily cope with the movement of a device using infrared spatial communication.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では、例えば図1に示すように、双方向赤外
線通信装置として、送信する赤外線と受信する赤外線の
指向性を連動して変え得る送受信指向性変更手段を備え
ることとする。ここで上記送受信指向性変更手段とし
て、赤外線送信部及び赤外線受信部に一枚或は複数枚の
レンズを設け、該レンズを介して赤外線を送信及び受信
する構造と、上記赤外線送信部と赤外線受信部の全てま
たは一部のレンズが該レンズの軸方向に連動して動くよ
うにするレンズ位置移動手段を備えるようにしてもよ
い。例えば図1に示すように、送信用第2のレンズ10
3と受信用第1のレンズ106を連動して移動させるケ
ース107の位置を図1(a)に示す位置から図1
(b)に示す位置に変えて送受信の指向性を変えること
ができる。あるいは、上記送受信指向性変更手段とし
て、例えば図3に示すように、赤外線送信部及び赤外線
受信部に一枚或は複数枚のレンズを設け、該レンズを介
して赤外線を送信及び受信する構造と、上記赤外線送信
部と赤外線受信部のレンズ或はレンズ群を連動して交換
可能な構造を備えるようにしてもよい。例えば図3
(a)に示すケース307に収納された送受信レンズ
を、図3(b)に示す指向特性の異なる別のケース31
0に収納された送受信レンズに交換できるようにしても
よい。あるいはまた、上記送受信指向性変更手段とし
て、放射及び入射する赤外線の指向性の異なる赤外線送
信部及び赤外線受信部と有する複数個の構成の中から任
意の一つを選択して装備し得るよう、赤外線送信部と赤
外線受信部に連動して着脱可能な構造を備えることとし
て例えば図4に示すような構造を採用することもでき
る。例えば図4では送受信部を内蔵する403の部分を
コネクタ402及び405によって着脱し得るようにし
て指向性を変更し得るようにする。さらにあるいは、上
記送受信指向性変更手段として、該手段を自動制御する
自動指向性制御手段と、赤外線による通信が良好に行わ
れるかを検出する赤外線通信状態検知手段を備え、赤外
線送受信の指向性を自動制御するようにしてもよい。そ
の自動制御例として例えば図5及び図6に示す。
In order to achieve the above object, in the present invention, for example, as shown in FIG. 1, as a bidirectional infrared communication device, directivity of infrared rays to be transmitted and infrared rays to be received are interlocked. A changeable transmission / reception directivity changing means is provided. Here, as the transmission / reception directivity changing means, a structure is provided in which one or more lenses are provided in the infrared transmitter and the infrared receiver, and infrared rays are transmitted and received through the lenses, and the infrared transmitter and the infrared receiver. A lens position moving means may be provided for moving all or a part of the lenses in the axial direction of the lens. For example, as shown in FIG. 1, the second lens 10 for transmission is used.
3 is moved from the position shown in FIG. 1A to the position of the case 107 that moves the first lens for reception 106 in conjunction with each other.
The directivity of transmission and reception can be changed by changing to the position shown in (b). Alternatively, as the transmission / reception directivity changing means, for example, as shown in FIG. 3, a structure is provided in which one or more lenses are provided in the infrared transmitter and the infrared receiver, and infrared rays are transmitted and received through the lenses. A lens or a lens group of the infrared transmitter and the infrared receiver may be interlocked and exchangeable. For example, in FIG.
The transmission / reception lens housed in the case 307 shown in FIG. 3A is replaced with another case 31 shown in FIG.
The transmission / reception lens housed in 0 may be exchangeable. Alternatively, as the transmission / reception directivity changing means, it is possible to select and equip any one of a plurality of configurations having an infrared transmitter and an infrared receiver having different directivities of radiation and incident infrared rays, For example, the structure shown in FIG. 4 can be adopted as the structure in which the infrared transmitter and the infrared receiver are interlocked with each other and can be attached and detached. For example, in FIG. 4, the portion 403 containing the transmitting / receiving unit can be attached / detached by the connectors 402 and 405 so that the directivity can be changed. Further alternatively, as the transmission / reception directivity changing means, an automatic directivity control means for automatically controlling the means and an infrared communication state detection means for detecting whether infrared communication is favorably performed are provided, and the directivity of infrared transmission / reception is controlled. It may be automatically controlled. Examples of the automatic control are shown in FIGS. 5 and 6, for example.

【0005】[0005]

【作用】上記手段により、通信を行う機器の位置関係等
の状況に応じて、赤外線信号の送信及び受信の指向性を
変えることにより、機器の使用状況に適した赤外線空間
通信を行うことができるようになる。例えば通信し合う
機器の間の位置関係が遠く離れれば指向性を狭くし、ま
たその位置関係が左右に動けば指向性を広くするなどに
より双方の通信を確保することが可能になる。しかも指
向性を変更する上記手段はすべて簡易な機構によって構
成できる。なお、上記の機器が移動しても赤外線の送信
部と受信部との位置関係は、通信し合う各機器において
いつも同様な状態にあるので、指向性を変える場合、本
発明のように送受信の両方を連動にして変えるようにす
ることにより、一層簡易に指向性を変えることが可能に
なる。すなわち、本発明により、赤外線空間通信を利用
する機器の移動に簡易に対応し得る双方向赤外線通信が
可能になる。
With the above-mentioned means, by changing the directivity of the transmission and reception of the infrared signal in accordance with the situation such as the positional relationship of the equipment for communication, it is possible to perform the infrared space communication suitable for the usage situation of the equipment. Like For example, if the positional relationship between communicating devices is far apart, the directivity is narrowed, and if the positional relationship moves to the left or right, the directivity is widened, so that it is possible to secure communication between both devices. Moreover, all the above means for changing the directivity can be configured by a simple mechanism. Even if the above-mentioned device moves, the positional relationship between the infrared transmitter and the receiver is always the same in each device that communicates with each other. The directivity can be changed more easily by changing both in conjunction. That is, according to the present invention, it is possible to perform bidirectional infrared communication that can easily cope with the movement of a device using infrared spatial communication.

【0006】[0006]

【実施例】本発明の実施例を図に用いて説明する。図2
は情報処理装置において赤外線による双方向通信を行う
ための構成を示したものであり、赤外線通信に直接関係
の無いものは省略してある。同図において201,21
1は情報処理装置本体、202,212は情報処理装置
を制御する中央演算処理装置(CPU)、203,21
3は赤外線で送信するための信号をシリアル信号に変換
するパラレル/シリアル変換部、204,214はパラ
レル/シリアル変換部203,213でシリアル化した
信号を変調する変調部、205,215は送信する信号
を電気信号から赤外線に変換するため赤外線発光ダイオ
ードを駆動する赤外発光ダイオード駆動部、206,2
16は信号を赤外線に変換し放射する赤外発光ダイオー
ド、207,217は他から入射した赤外線信号を受信
し電気信号に変換するフォトダイオード、208,21
8はフォトダイオード207,217が変換した電気信
号を増幅する増幅部、209,219は増幅した電気信
号を復調する復調部、210,220は復調した信号を
パラレル信号に変換するシリアル/パラレル変換部であ
る。情報処理装置201から情報処理装置211にデー
タを伝送する場合、情報処理装置201のCPU202
はパラレル/シリアル変換部203に伝送するデータを
送り、パラレル/シリアル変換部203でシリアルデー
タに変換されたデータは変調部204で変調され赤外発
光ダイオード駆動部に送られ、赤外発光ダイオード20
6で赤外線信号ら変換され空間に放射される。放射され
た赤外線信号は情報処理装置211のフォトダイオード
217に届くとフォトダイオード217により電気信号
に変換され、増幅部218に送られる。増幅部218で
は送られてきた電気信号を増幅し復調部219に送る。
復調部219で復調された信号はシリアル/パラレル変
換部220でパラレル化される。パラレル化されたデー
タをCPU212が受け取る。情報処理装置211から
情報処理装置201へのデータ伝送も同様に行われる。
上記のような赤外線通信装置において、正しく通信を行
うためには送信側から放射した赤外線信号が受信側のフ
ォトダイオードに一定強度以上のパワーで受信される必
要がある。しかし、発信側が出力する赤外線パワーは機
器の消費電力,コスト或は安全性の問題で制限がある。
そこで限られた赤外線出力で出来るだけ長距離の通信を
行うために、レンズによって赤外線送信,赤外線受信に
一定の指向性をもたせ、レンズを使用しない場合と比較
して長距離の通信を行うことができる方法が考えられ
る。
Embodiments of the present invention will be described with reference to the drawings. Figure 2
Shows a configuration for bidirectional communication by infrared rays in the information processing apparatus, and those not directly related to infrared ray communication are omitted. In the figure, 201, 21
Reference numeral 1 is an information processing apparatus main body, 202 and 212 are central processing units (CPU) that control the information processing apparatus, 203 and 21.
Reference numeral 3 is a parallel / serial conversion unit that converts a signal to be transmitted by infrared rays into a serial signal, 204 and 214 are modulation units that modulate the signals serialized by the parallel / serial conversion units 203 and 213, and 205 and 215 are transmission units. Infrared light emitting diode drive unit for driving an infrared light emitting diode for converting a signal from an electric signal to infrared light, 206, 2
Reference numeral 16 is an infrared light emitting diode that converts a signal into infrared rays and emits it. Reference numerals 207 and 217 are photodiodes that receive an infrared signal incident from another and convert it into an electric signal, 208 and 21.
Reference numeral 8 is an amplification unit that amplifies the electric signal converted by the photodiodes 207 and 217, reference numerals 209 and 219 are demodulation units that demodulate the amplified electric signals, and 210 and 220 are serial / parallel conversion units that convert the demodulated signals into parallel signals. Is. When data is transmitted from the information processing device 201 to the information processing device 211, the CPU 202 of the information processing device 201
Sends data to be transmitted to the parallel / serial conversion unit 203, and the data converted into serial data by the parallel / serial conversion unit 203 is modulated by the modulation unit 204 and sent to the infrared light emitting diode drive unit, and the infrared light emitting diode 20
At 6, the infrared signal is converted and radiated into space. When the radiated infrared signal reaches the photodiode 217 of the information processing device 211, it is converted into an electric signal by the photodiode 217 and sent to the amplifier 218. The amplifying unit 218 amplifies the sent electric signal and sends it to the demodulating unit 219.
The signal demodulated by the demodulation unit 219 is parallelized by the serial / parallel conversion unit 220. The CPU 212 receives the parallelized data. Data transmission from the information processing device 211 to the information processing device 201 is similarly performed.
In the above infrared communication device, the infrared signal emitted from the transmitting side must be received by the photodiode on the receiving side with a power of a certain intensity or more in order to perform proper communication. However, the infrared power output from the transmitting side is limited due to power consumption, cost, or safety of the device.
Therefore, in order to carry out long-distance communication as much as possible with limited infrared light output, it is possible to give a certain directivity to infrared transmission and infrared reception with a lens, and to carry out long-distance communication compared to the case where no lens is used. Possible ways are possible.

【0007】図1は、本発明の第一の実施例の送受信部
の構成図で、レンズにより指向性を調整する方式の一例
である。図1(a)と図1(b)は、連動して動かすレ
ンズの位置関係を変えた状態を示す。同図において10
1は赤外線信号を放射する赤外発光ダイオード、102
は赤外発光ダイオード101が放射した赤外線を集光す
る第一のレンズ、103はレンズ102を通過した赤外
線を更に集光する第二のレンズである。また106は他
の機器が放射した赤外線を集光する第一のレンズ、10
5は第一のレンズ106を通過した赤外線を更に集光す
る第二のレンズ、104は第二のレンズ105を通過し
た赤外線を受光し、電気信号に変換するフォトダイオー
ドである。送信側の第二のレンズ107と受信側の第一
のレンズ106は連動して移動することが可能なように
共通のケース107に固定し、レンズ面と垂直の方向に
移動可能になっている。ケース107とともにレンズ1
03と106を移動することにより赤外線送信及び受信
の指向性を変えることができる。図1において、(a)
図のケース107は(b)図のケースよりも他の部分に
近づいており、送信,受信とも指向性が(b)図よりも
狭くなっている。指向性が狭くなることで赤外線の送信
においては赤外発光ダイオード101が放射した赤外線
が大きく広がらないため、指向性が広い場合と比較して
距離が離れていても赤外線の強度が大きい。また、受信
側でも指向性が広い場合と比較して入射した赤外線を狭
い範囲に集光し、フォトダイオード104にパワーが大
きい赤外線信号を送ることができる。しかし、指向性が
狭い場合には赤外線信号を伝達或は受け取ることが可能
な範囲が狭いために、通信可能なエリアが限られるため
赤外線を送受信する向きと通信を行う相手の機器の位置
を正確に合わせる必要がある。そこで必要に応じて指向
性を可変にすることにより、通信距離や通信方向などの
状況に適した指向性を選択できる。また、通信相手の機
器の赤外線を送信及び受信する位置はほぼ同じと考えら
れるので、送信と受信の指向性を連動して変えられるよ
うにすることにより、手間が省け使い勝手が向上する。
なお、図1においては一部のレンズを連動させたが、全
部のレンズを連動して動かしても同様の効果が得られ
る。上記の実施例ではレンズを用いて指向性を変更した
が、一枚或は複数の反射板を用いて同様の効果を得る方
式も考えられる。
FIG. 1 is a block diagram of a transmission / reception unit of a first embodiment of the present invention, which is an example of a method of adjusting directivity by a lens. FIG. 1A and FIG. 1B show a state in which the positional relationship of the lenses that are moved together is changed. 10 in the figure
1 is an infrared light emitting diode that emits an infrared signal, 102
Is a first lens that collects the infrared light emitted from the infrared light emitting diode 101, and 103 is a second lens that further collects the infrared light that has passed through the lens 102. Reference numeral 106 denotes a first lens that collects infrared rays emitted from other devices, 10
Reference numeral 5 is a second lens that further collects the infrared light that has passed through the first lens 106, and 104 is a photodiode that receives the infrared light that has passed through the second lens 105 and converts it into an electrical signal. The second lens 107 on the transmitting side and the first lens 106 on the receiving side are fixed to a common case 107 so that they can move in conjunction with each other, and can move in a direction perpendicular to the lens surface. . Lens 1 with case 107
By moving 03 and 106, the directivity of infrared transmission and reception can be changed. In FIG. 1, (a)
The case 107 in the figure is closer to other parts than the case in the figure (b), and the directivity for both transmission and reception is narrower than that in the figure (b). Since the directivity is narrowed, the infrared light emitted from the infrared light emitting diode 101 does not spread greatly in the infrared transmission, so that the intensity of the infrared light is large even when the distance is long as compared with the case where the directivity is wide. Further, even on the receiving side, compared with the case where the directivity is wide, the incident infrared rays can be condensed in a narrow range and an infrared signal having a large power can be sent to the photodiode 104. However, if the directivity is narrow, the range in which infrared signals can be transmitted or received is narrow, so the communication area is limited, so the direction of infrared transmission and reception and the position of the other party's device that communicates are accurate. Need to be adjusted to. Therefore, by changing the directivity as necessary, the directivity suitable for the situation such as the communication distance and the communication direction can be selected. Further, since it is considered that the infrared transmission and reception positions of the communication partner device are almost the same, the directivity of transmission and reception can be changed in conjunction with each other, which saves labor and improves usability.
Although some lenses are interlocked in FIG. 1, the same effect can be obtained by interlocking all the lenses. Although the directivity is changed by using the lens in the above-mentioned embodiment, a method of obtaining the same effect by using one or a plurality of reflecting plates is also conceivable.

【0008】次に図3を用いて第二の実施例の説明をす
る。同図は第二の実施例の構成図で図1とほぼ同じ構造
をしている。図3(a)と図3(b)とでは、連動して
変えるレンズとして指向性の異なるものを用いているこ
とを示す。同図において、301は赤外線信号を放射す
る赤外発光ダイオード、302は赤外発光ダイオード3
01が放射した赤外線を集光する第一のレンズ、303
はレンズ302を通過した赤外線を更に集光する第二の
レンズである。また306は他の機器が放射した赤外線
を集光する第一のレンズ、305は第一のレンズ306
を通過した赤外線を更に集光する第二のレンズ、304
は第二のレンズ305を通過した赤外線を受光し、電気
信号に変換するフォトダイオードである。送信側の第二
のレンズ307と受信側の第一のレンズ306は同じケ
ース107に固定してあり、ケース307ごと着脱が可
能である。図3に示すように性質の異なるレンズを備え
たケースを複数用意しておき、通信相手との距離,方向
などの使用状況に応じてレンズを交換することにより、
適切な指向性を得ることができる。交換するレンズは一
般的にはレンズ群であってもよい。
Next, the second embodiment will be described with reference to FIG. This drawing is a block diagram of the second embodiment and has a structure almost the same as that of FIG. FIGS. 3A and 3B show that lenses having different directivities are used as the lenses that are changed in conjunction with each other. In the figure, 301 is an infrared light emitting diode that emits an infrared signal, and 302 is an infrared light emitting diode 3.
303, a first lens for collecting infrared rays emitted by 01
Is a second lens that further collects the infrared light that has passed through the lens 302. Further, 306 is a first lens that collects infrared rays emitted from other devices, and 305 is a first lens 306.
Second lens that further collects infrared rays that have passed through 304
Is a photodiode that receives the infrared light that has passed through the second lens 305 and converts it into an electrical signal. The second lens 307 on the transmission side and the first lens 306 on the reception side are fixed to the same case 107, and the case 307 can be attached and detached. As shown in FIG. 3, a plurality of cases equipped with lenses having different properties are prepared, and the lenses can be exchanged according to the usage conditions such as distance and direction with the communication partner.
Appropriate directivity can be obtained. The lenses to be replaced may generally be a lens group.

【0009】次に第三の実施例の説明をする。図4は本
実施例の情報処理装置の一部を示したものである。同図
において401は情報処理装置の筐体、402は赤外線
送受信部を接続するためのコネクタ、403は赤外線送
信部と赤外線受信部を内蔵したヘッド、404はヘッド
403を支えるアーム、405は赤外線送受信部を情報
処理装置本体に接続するためのコネクタである。赤外線
通信を行う場合、送信する信号は情報処理装置本体から
コネクタ402,405及びアーム404を通してヘッ
ド403に送られ、ヘッド403内の赤外線送信部で赤
外線信号に変換され、放射される。また、受信する赤外
線信号はヘッド403内の赤外線受信部で受信され、電
気信号に変換される。更に、アーム404、コネクタ4
05,402を通して情報処理装置本体に送られる。上
記赤外線送受信部は本体のコネクタ402と赤外線送受
信部のコネクタ405の間で着脱が可能であるため、赤
外線送信及び受信の指向性が異なる複数の赤外線送受信
部を用意しておき、通信相手との距離,方向などの使用
状況に応じて赤外線送受信部を変えることにより適切な
指向性を得ることができる。また、赤外線通信を行わな
いときには赤外線送受信部を外しておくことが可能であ
る。アーム404には柔軟性があるため、アーム404
を調整することにより、赤外線送信及び受信の方向を自
由に設定することが可能である。
Next, a third embodiment will be described. FIG. 4 shows a part of the information processing apparatus of this embodiment. In the figure, 401 is a housing of the information processing device, 402 is a connector for connecting an infrared transmitting / receiving unit, 403 is a head having an infrared transmitting unit and an infrared receiving unit built therein, 404 is an arm supporting the head 403, and 405 is infrared transmitting / receiving. It is a connector for connecting the unit to the information processing apparatus main body. In the case of performing infrared communication, a signal to be transmitted is sent from the information processing apparatus main body to the head 403 through the connectors 402 and 405 and the arm 404, is converted into an infrared signal by an infrared transmitting section in the head 403, and is emitted. Further, the received infrared signal is received by the infrared receiving section in the head 403 and converted into an electric signal. Furthermore, the arm 404, the connector 4
It is sent to the information processing apparatus main body through 05 and 402. Since the infrared transmission / reception unit can be attached / detached between the connector 402 of the main body and the connector 405 of the infrared transmission / reception unit, a plurality of infrared transmission / reception units with different directivity of infrared transmission and reception are prepared in advance to communicate with a communication partner. Appropriate directivity can be obtained by changing the infrared transmitter / receiver according to the usage conditions such as distance and direction. Further, the infrared transmitter / receiver can be removed when the infrared communication is not performed. Because the arm 404 is flexible, the arm 404
It is possible to freely set the directions of infrared transmission and reception by adjusting.

【0010】次に第四の実施例の説明を行う。図5は本
実施例の情報処理装置の構成を示したものである。同図
は図2で説明した構成にレンズ移動制御部501を加え
たものである。また、図6は図1で説明したレンズ移動
方式に自動的にケース107を移動するためのモータ6
01を加えたものである。図5においてCPU202が
レンズ移動制御部501を制御することで図5では省略
したがモータ601を動かしケース107の位置を制御
する。上記情報処理装置201が他の機器と赤外線によ
る通信を行う場合、正しく相手の機器と通信できること
を確認するため、通信確認用のコードを赤外線で送信す
る。相手の機器が通信確認用のコードを受け取った場合
には、受信を知らせる受信確認コードを送り返して来
る。情報処理装置201が受信確認コードを受信した場
合には、相手の機器との赤外線通信が可能であるのでそ
のまま通信を行う。
Next, a fourth embodiment will be described. FIG. 5 shows the configuration of the information processing apparatus of this embodiment. In the figure, a lens movement control unit 501 is added to the configuration described in FIG. Further, FIG. 6 shows a motor 6 for automatically moving the case 107 according to the lens moving method described in FIG.
01 is added. In FIG. 5, the CPU 202 controls the lens movement control unit 501 to move the motor 601 to control the position of the case 107, which is omitted in FIG. When the information processing apparatus 201 performs infrared communication with another device, a communication confirmation code is transmitted by infrared in order to confirm that communication with the other device is possible. When the other party's device receives the communication confirmation code, it sends back a reception confirmation code notifying the reception. When the information processing apparatus 201 receives the reception confirmation code, infrared communication with the other party's device is possible, and the communication is performed as it is.

【0011】しかし、一定時間経過しても受信確認コー
ドを受信できない場合には、赤外線信号の送信或は受信
が正常に行われていないことになるため、CPU202
はレンズ移動制御部501を制御し、モータ601を動
かすことでケース107を一定距離だけ移動させ、再び
赤外線通信の確認を行う。通信の確認を行った結果、正
常な通信を行えることを確認できたらそのまま通信を行
い、確認できなかった場合にはケース107を更に移動
させ通信の確認を行う。ケース107を所定の位置全て
において、通信の確認を行った結果通信を正常にできな
かった場合には表示装置等の情報報知手段を用いて使用
者に現在の状態では赤外線による通信が不可能なことを
報知する。以上のような制御を行うことにより、赤外線
信号の送信及び受信において、使用状況に適した指向性
を自動的に検出し、通信を行うことが可能である。
However, if the reception confirmation code cannot be received within a certain period of time, it means that the infrared signal is not normally transmitted or received.
Controls the lens movement control unit 501 to move the motor 601 to move the case 107 by a predetermined distance, and confirms the infrared communication again. As a result of the confirmation of the communication, if it is confirmed that the normal communication can be performed, the communication is performed as it is, and if it is not confirmed, the case 107 is further moved to confirm the communication. When the communication is not normal as a result of checking the communication at all the predetermined positions of the case 107, it is impossible for the user to use the infrared communication in the present state by using the information notifying means such as the display device. Notify that. By performing the control as described above, it is possible to automatically detect the directivity suitable for the usage situation and perform communication in transmitting and receiving the infrared signal.

【0012】なお、以上の実施例では赤外線を用いた場
合を示したが、本発明による双方向通信の構成は、赤外
線のみならず可視光線を含む光を用いた空間通信におい
ても可能である。
In the above embodiments, the case where infrared rays are used has been shown, but the bidirectional communication structure according to the present invention can be applied not only to infrared rays but also to spatial communication using light including visible rays.

【0013】[0013]

【発明の効果】本発明によれば、赤外線通信の送信及び
受信の指向性を連動して変えることができるため、通信
相手に位置関係などの制約を少なくすることができる。
According to the present invention, the directivity of transmission and reception of infrared communication can be changed in conjunction with each other, so that it is possible to reduce restrictions on a communication partner such as a positional relationship.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の送受信部の構成図。FIG. 1 is a configuration diagram of a transmission / reception unit according to a first embodiment of the present invention.

【図2】赤外線通信の全体構成図。FIG. 2 is an overall configuration diagram of infrared communication.

【図3】本発明の第二の実施例の送受信部の構成図。FIG. 3 is a configuration diagram of a transmission / reception unit according to a second embodiment of the present invention.

【図4】本発明の第三の実施例の送受信部の外観図。FIG. 4 is an external view of a transmitter / receiver according to a third embodiment of the present invention.

【図5】本発明の第四の実施例の情報処理装置の構成
図。
FIG. 5 is a configuration diagram of an information processing apparatus according to a fourth embodiment of the present invention.

【図6】本発明の第四の実施例の送受信部の構成図。FIG. 6 is a configuration diagram of a transmission / reception unit according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101,206,216,301…赤外発光ダイオード 104,207,217,304…フォトダイオード 102,103,105,106,302,303,3
05,306…レンズ 107,307,310…ケース 202,212…CPU 203,213…パラレル/シリアル変換部 204,214…変調部 205,215…赤外発光ダイオード駆動部 208,218…増幅部 209,219…復調部 210,220…シリアル/パラレル変換部
101, 206, 216, 301 ... Infrared light emitting diodes 104, 207, 217, 304 ... Photodiodes 102, 103, 105, 106, 302, 303, 3
05, 306 ... Lens 107, 307, 310 ... Case 202, 212 ... CPU 203, 213 ... Parallel / serial conversion section 204, 214 ... Modulation section 205, 215 ... Infrared light emitting diode drive section 208, 218 ... Amplification section 209, 219 ... Demodulation section 210, 220 ... Serial / parallel conversion section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 一秀 横浜市戸塚区吉田町292番地株式会社日立 製作所マイクロエレクトロニクス機器開発 研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhide Nishiyama 292 Yoshida-cho, Totsuka-ku, Yokohama-shi Hitachi, Ltd. Microelectronics Device Development Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】伝送する電気信号を赤外線に変換し空間に
放射することにより、他の機器に信号を伝達する赤外線
送信部と、他の機器から送られてきた赤外線信号を受信
し電気信号に変換する赤外線信号受信部とを有する双方
向赤外線通信装置において、 送信する赤外線と受信する赤外線の指向性を連動して変
え得る送受信指向性変更手段を備えることを特徴とする
双方向赤外線通信装置。
Claim: What is claimed is: 1. An infrared transmitter for transmitting a signal to another device by converting an electric signal to be transmitted into infrared light and radiating the infrared light into a space, and an infrared signal sent from another device to be received and converted into an electric signal. A bidirectional infrared communication device having an infrared signal receiving unit for converting, comprising a transmission / reception directivity changing unit capable of changing the directivity of an infrared ray to be transmitted and an infrared ray to be received.
【請求項2】請求項1記載の双方向赤外線通信装置にお
いて、上記送受信指向性変更手段が、赤外線送信部及び
赤外線受信部に一枚或は複数枚のレンズを設け、該レン
ズを介して赤外線を送信及び受信する構造と、上記赤外
線送信部と赤外線受信部の全てまたは一部のレンズが該
レンズの軸方向に連動して動くようにするレンズ位置移
動手段を備えることを特徴とする双方向赤外線通信装
置。
2. The bidirectional infrared communication device according to claim 1, wherein the transmission / reception directivity changing means is provided with one or a plurality of lenses in the infrared transmitting section and the infrared receiving section, and infrared rays are transmitted through the lenses. And a lens position moving means for moving all or part of the lenses of the infrared transmitter and the infrared receiver in conjunction with the axial direction of the lens. Infrared communication device.
【請求項3】請求項1記載の双方向赤外線通信装置にお
いて、上記送受信指向性変更手段が、赤外線送信部及び
赤外線受信部に一枚或は複数枚のレンズを設け、該レン
ズを介して赤外線を送信及び受信する構造と、上記赤外
線送信部と赤外線受信部のレンズ或はレンズ群を連動し
て交換可能な構造を備えることを特徴とする双方向赤外
線通信装置。
3. The bidirectional infrared communication device according to claim 1, wherein the transmitting / receiving directivity changing means is provided with one or a plurality of lenses in the infrared transmitting section and the infrared receiving section, and infrared rays are transmitted through the lenses. A two-way infrared communication device comprising: a structure for transmitting and receiving data, and a structure in which a lens or a lens group of the infrared transmitting unit and the infrared receiving unit can be interlocked and exchanged.
【請求項4】請求項1記載の双方向赤外線通信装置にお
いて、上記送受信指向性変更手段が、放射及び入射する
赤外線の指向性の異なる赤外線送信部及び赤外線受信部
を有する複数個の構成の中から任意の一つを選択して装
備し得るよう、赤外線送信部と赤外線受信部に連動して
着脱可能な構造を備えることを特徴とする双方向赤外線
通信装置。
4. The bidirectional infrared communication device according to claim 1, wherein the transmission / reception directivity changing means has a plurality of configurations including an infrared transmitter and an infrared receiver having different directivities of radiated and incident infrared rays. A bidirectional infrared communication device having a structure in which an infrared transmitter and an infrared receiver are detachably attached so that any one can be selected and installed.
【請求項5】請求項1記載の双方向赤外線通信装置にお
いて、上記送受信指向性変更手段が、該手段を自動制御
する自動指向性制御手段と、赤外線による通信が良好に
行われるかを検出する赤外線通信状態検知手段を備え、
赤外線送受信の指向性を自動制御するものであることを
特徴とする双方向赤外線通信装置。
5. The bidirectional infrared communication device according to claim 1, wherein the transmission / reception directivity changing means detects whether the infrared ray communication is favorably performed with an automatic directivity control means for automatically controlling the means. Equipped with infrared communication state detection means,
A bidirectional infrared communication device characterized by automatically controlling directivity of infrared transmission and reception.
JP4308469A 1992-11-18 1992-11-18 Infrared duplex communication equipment Pending JPH06164507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4308469A JPH06164507A (en) 1992-11-18 1992-11-18 Infrared duplex communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4308469A JPH06164507A (en) 1992-11-18 1992-11-18 Infrared duplex communication equipment

Publications (1)

Publication Number Publication Date
JPH06164507A true JPH06164507A (en) 1994-06-10

Family

ID=17981403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4308469A Pending JPH06164507A (en) 1992-11-18 1992-11-18 Infrared duplex communication equipment

Country Status (1)

Country Link
JP (1) JPH06164507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213276A (en) * 2009-03-10 2010-09-24 Fujitsu Technology Solutions Intellectual Property Gmbh Transmission unit for data transmission in optical data network, and method for adjusting position of the same
KR101393486B1 (en) * 2012-12-24 2014-05-13 레드원테크놀러지 주식회사 Method and apparatus of led visible light communication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213276A (en) * 2009-03-10 2010-09-24 Fujitsu Technology Solutions Intellectual Property Gmbh Transmission unit for data transmission in optical data network, and method for adjusting position of the same
KR101393486B1 (en) * 2012-12-24 2014-05-13 레드원테크놀러지 주식회사 Method and apparatus of led visible light communication

Similar Documents

Publication Publication Date Title
US10439714B2 (en) Mobile device for optical wireless communication
US20040227057A1 (en) Wireless power transmission
US4680811A (en) Vehicle to fixed station infrared communications link
JPH0216822A (en) Information transmitter
WO1996008090A1 (en) Optical transmitter and transceiver module for wireless data transmission
JP2007144192A (en) Optical link for transmitting data through air from a plurality of receiver coils in magnetic resonance imaging system
WO2019034864A1 (en) Optical wireless communication connector device
JPH06164507A (en) Infrared duplex communication equipment
EP0782281B1 (en) A combination diffused and directed infrared transceiver
US10374720B2 (en) Light guide arrangement for a mobile communications device for optical data transmission, mobile communications device and method for optical data transmission
EP0849896B1 (en) Transceiver module for wireless data transmission
JP2001197577A (en) System and method for position detection to detect relative positional relation between transmitter and receiver of infrared ray remote controller, and infrared ray remote control receiver
EP0378148B1 (en) Optical space communication apparatus
JPS58114639A (en) Controlling system for light space transmission output
JPH0797762B2 (en) Relay method in space propagating optical communication
JP2002073259A (en) Keyboard device
JPH0936805A (en) Infrared ray communication equipment
EP3613156B1 (en) Mobile device for optical wireless communication
KR20010058873A (en) Multidirectional infrared transmitting and receiving apparatus using spherical structure
JPS6359230A (en) Relay method for space propagation optical communication
JPH09275376A (en) Optical radio communication equipment and optical radio system
KR200163187Y1 (en) A wireless camera is able to remote control
JP2000214354A (en) Optical fiber cord and optical link system
JP2001211123A (en) Electronic equipment with optical communication device
JP2005101682A (en) Infrared transmitter/receiver