JPH02156640A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02156640A
JPH02156640A JP63311204A JP31120488A JPH02156640A JP H02156640 A JPH02156640 A JP H02156640A JP 63311204 A JP63311204 A JP 63311204A JP 31120488 A JP31120488 A JP 31120488A JP H02156640 A JPH02156640 A JP H02156640A
Authority
JP
Japan
Prior art keywords
film
nitride film
plasma nitride
bonding pad
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63311204A
Other languages
Japanese (ja)
Other versions
JP2751274B2 (en
Inventor
Manzo Saito
斉藤 万蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63311204A priority Critical patent/JP2751274B2/en
Publication of JPH02156640A publication Critical patent/JPH02156640A/en
Application granted granted Critical
Publication of JP2751274B2 publication Critical patent/JP2751274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05073Single internal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a semiconductor device of a structure which is extremely resistant to an invasion of moisture by a method wherein a first insulating film at a side face of a passivating film is provided with an undercut part with reference to a second insulating film. CONSTITUTION:An oxide Si film 12 is formed on an Si substrate 11; a bonding pad 13, of a prescribed thickness, connected to an Al wiring part is formed. Then, a plasma nitride film 14A, a coating film 15 composed mainly of Si and a plasma nitride film 14B whose thickness is equal to that of the nitride film 14A, of prescribed thicknesses, are formed as passivating films. Then, an opening is made in the pad 13 by using a parallel-plate type dry etching method. Then, the film 15 is etched by, e.g. 1mum by using diluted hydrofluoric acid. During this process, the films 14A, 14B are hardly etched; only a part of the film 15 is retreated by 1mum as a side face shape at the opening part; an undercut part 16 is formed. In this state, a plasma nitride film 17 of a prescribed thickness is formed again on the whole surface. Thereby, since the film 15 is protected by the film 17 at its side face part, it is extremely resistant to an invasion of moisture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にパッシベーション膜の
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to the structure of a passivation film.

〔従来の技術〕[Conventional technology]

従来、半導体装置の最外殻部分には、外部環境から半導
体装置を保護する目的で、パッシベーション膜が形成さ
れている。通常、このパッシベーション膜には低温成長
が可能な気相成長法を用いてシリコン窒化膜あるいはシ
リコン酸化膜などが使われている。
Conventionally, a passivation film is formed on the outermost shell of a semiconductor device for the purpose of protecting the semiconductor device from the external environment. Typically, this passivation film is made of a silicon nitride film, a silicon oxide film, or the like using a vapor phase growth method that allows low-temperature growth.

第3図は従来技術によるアルミ配線とパッシベーション
膜の構造を示した断面図である。すなわち、シリコン基
板11上に酸化シリコン膜12を形成したのち、アルミ
配線23を形成したのち、全面にプラズマCVD法によ
る窒化膜(以下プラズマ窒化膜という)14を形成する
。このように形成されたプラズマ窒化膜14のアルミ配
線23の側壁部でのカバレッジは悪く、側壁最薄部のカ
バレッジは、平坦部の膜厚より薄い。素子が微細化され
、アルミ配線23の間隔が狭くなるはど、アルミ配線2
3の側壁でのプラズマ窒化膜14の膜厚は薄くなり、パ
ッシベーション性は悪化する。
FIG. 3 is a cross-sectional view showing the structure of aluminum wiring and a passivation film according to the prior art. That is, after a silicon oxide film 12 is formed on a silicon substrate 11, an aluminum wiring 23 is formed, and a nitride film (hereinafter referred to as a plasma nitride film) 14 is formed on the entire surface by plasma CVD. The coverage of the plasma nitride film 14 formed in this manner on the side wall portion of the aluminum wiring 23 is poor, and the coverage at the thinnest portion of the side wall is thinner than the film thickness at the flat portion. As elements become finer and the intervals between the aluminum wiring lines 23 become narrower, the aluminum wiring lines 2
The thickness of the plasma nitride film 14 on the sidewalls 3 becomes thinner, and the passivation properties deteriorate.

このようなパッシベーション性の悪化を防ぐ手段として
、従来シリコンを主成分とする液を塗布・焼成して素子
表面を平坦化する方法が試みられて来た。第4図は塗布
・焼成膜をパッシベーション膜に用いた半導体装置の断
面図であり、11は半導体基板、12は酸化シリコン膜
、13はアルミ配線、14A、14Bはプラズマ窒化膜
、15は塗布・焼成膜である。かかる構造を用いると、
通常の配線領域は素子表面が平滑化され、パッシベーシ
ョン膜のぜい弱部分がなくなり、素子の信頼性は著しく
向上する。
As a means to prevent such deterioration of passivation properties, attempts have been made to planarize the element surface by coating and baking a liquid containing silicon as a main component. FIG. 4 is a cross-sectional view of a semiconductor device using a coated and fired film as a passivation film, in which 11 is a semiconductor substrate, 12 is a silicon oxide film, 13 is an aluminum wiring, 14A and 14B are plasma nitride films, and 15 is a coated and fired film. It is a fired film. With such a structure,
In the normal wiring region, the element surface is smoothed, the weak parts of the passivation film are eliminated, and the reliability of the element is significantly improved.

この構造のボンディングパッド部分の断面図を第5図に
示す。ボンディングパッド13上は、外部回路と接続す
るためパッシベーション膜に開孔が設けられているが、
その開孔側壁部に塗布・焼成膜15が露出する構造とな
っている。
A cross-sectional view of the bonding pad portion of this structure is shown in FIG. On the bonding pad 13, an opening is provided in the passivation film for connection to an external circuit.
The structure is such that the coated and fired film 15 is exposed on the side wall of the opening.

塗布・焼成膜15は、アルミニウムからなるボンディン
グパッド13が許容し得る最高温度で焼成されるが、そ
の温度は高々500℃以下である。この程度の温度では
、塗布・焼成膜15は十分に安定な膜にはなっていない
。すなわち、通常多孔質な膜であり、湿気を吸収し水分
を素子内部へ速やかに運搬する導水路の役割をはたす。
The coated and fired film 15 is fired at the highest temperature that the bonding pad 13 made of aluminum can tolerate, and the temperature is at most 500°C or less. At this temperature, the coated and fired film 15 is not sufficiently stable. That is, it is usually a porous membrane, and serves as a water conduit that absorbs moisture and quickly transports the moisture into the inside of the element.

このため、第4図に示した構造では、半導体装置上面か
らの水分浸入に対しては十分に強いパッシベーション性
を発揮するが、第5図に示した構造ではボンディングパ
ッド部からの水分の浸入に対しては極めて弱い。
Therefore, the structure shown in FIG. 4 exhibits a sufficiently strong passivation property against moisture intrusion from the top surface of the semiconductor device, but the structure shown in FIG. It is extremely weak against

第5図に示した半導体装置の構造を改善したものが第6
図に示す構造のものであり、ボンディングパッド13上
におけるパッシベーション膜の側面にプラズマ窒化膜1
7を設けたものである。その製造方法としては、第5図
に示した構造を得た後に、更にプラズマ窒化膜17を成
長させ、このプラズマ窒化膜17を平行平板型ドライエ
ツチング法でエツチング除去することにより開孔側壁に
のみプラズマ窒化膜17を残すことができる。
The sixth device is an improved structure of the semiconductor device shown in FIG.
The structure shown in the figure has a plasma nitride film 1 on the side surface of the passivation film on the bonding pad 13.
7. The manufacturing method is to further grow a plasma nitride film 17 after obtaining the structure shown in FIG. The plasma nitride film 17 can remain.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一ヒ述した従来の半導体装置におけるパッシベーション
膜では、第6図に示したように、ボンディングパッド1
3上のパッシベーション膜の側面にプラズマ窒化膜17
が存在するため、半導体装置の信頼性は多少向上してい
る。しかし、プラズマ窒化膜17の形成は制御が難しい
。特に、側面に残すプラズマ窒化膜17の膜厚を精度よ
く再現させるのは、大きな困難を伴う。側面のプラズマ
窒化膜17の膜厚が薄くなると、水分は容易に塗布・焼
成v15側へ浸入し、ひいては容易に半導体内部にまで
水分が浸入し、半導体装置の劣化を防ぐことが極めて困
難になるという欠点がある。
In the passivation film in the conventional semiconductor device described above, as shown in FIG.
A plasma nitride film 17 is formed on the side surface of the passivation film on 3.
Due to the existence of the above, the reliability of the semiconductor device is improved to some extent. However, the formation of the plasma nitride film 17 is difficult to control. In particular, it is very difficult to accurately reproduce the thickness of the plasma nitride film 17 left on the side surfaces. When the thickness of the plasma nitride film 17 on the side surface becomes thinner, moisture easily infiltrates into the coating/baking v15 side and, in turn, easily infiltrates into the inside of the semiconductor, making it extremely difficult to prevent deterioration of the semiconductor device. There is a drawback.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、半導体基板上に絶縁膜を介して
形成されたボンディングパッドと、前記ボンディングパ
ッド上の周辺部に形成されたシリコンを主成分とする溶
液を塗布・焼成した第1の絶縁膜と気相成長法により形
成した第2の絶縁膜からなるパッシベーション膜と、前
記ボンディングパッド上の前記パッシベーション膜の側
面に形成された気相成長法による第3の絶縁膜とを有す
る半導体装置において、前記パッシベーション膜の側面
における前記第1の絶縁膜は前記第2の絶縁膜に対して
アンダーカット部を有するものである。
The semiconductor device of the present invention includes a bonding pad formed on a semiconductor substrate via an insulating film, and a first insulating layer formed around the bonding pad by applying and baking a solution containing silicon as a main component. A semiconductor device having a passivation film made of a film and a second insulating film formed by a vapor phase growth method, and a third insulating film formed by a vapor growth method on a side surface of the passivation film on the bonding pad. The first insulating film on the side surface of the passivation film has an undercut portion with respect to the second insulating film.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の製造方法を説明するた
めの半導体チップの断面図である。
FIG. 1 is a sectional view of a semiconductor chip for explaining the manufacturing method of the first embodiment of the present invention.

まず、第1図(a>に示す如く、シリコン基板ll上に
酸化シリコン膜12を形成し、膜厚1μmのアルミ配線
に接続するボンディングパッド13を形成する。次に、
パッシベーション膜として、厚さ5000人のプラズマ
窒化膜14Aと厚さ2000人のシリコンを主成分とす
る塗布・焼成膜15と、厚さ5000のプラズマ窒化p
lA14Bとを形成する。次に、ボンディングパッド1
3の部分を平行平板型ドライエツチング法を用いて開孔
する。
First, as shown in FIG. 1(a), a silicon oxide film 12 is formed on a silicon substrate 11, and a bonding pad 13 connected to an aluminum wiring with a film thickness of 1 μm is formed.Next,
As passivation films, a plasma nitride film 14A with a thickness of 5,000 μm, a coated and fired film 15 mainly composed of silicon with a thickness of 2,000 μm, and a plasma nitride film 14A with a thickness of 5,000 μm are used.
form lA14B. Next, bonding pad 1
A hole is formed in the portion No. 3 using a parallel plate dry etching method.

次に、希釈フッ化水素酸で塗布・焼成膜15を1μmエ
ツチングする。このとき、プラズマ窒化膜14A、14
Bは殆んどエツチングされないのて、開孔部側面形状は
塗布・焼成膜15の部分だけが1μm後退しアンダーカ
ット部16が形成される。この状態で全面に再度プラズ
マ窒化M17を6000人の厚さに形成する。プラズマ
窒化膜はカバレッジが良いので、アンダーカット部16
にも十分な膜厚のプラズマ窒化膜が形成される。
Next, the coated and fired film 15 is etched by 1 μm using diluted hydrofluoric acid. At this time, plasma nitride films 14A, 14
Since B is hardly etched, only the coated and fired film 15 is recessed by 1 μm in the side shape of the opening, and an undercut portion 16 is formed. In this state, plasma nitride M17 is again formed on the entire surface to a thickness of 6000 mm. Since the plasma nitride film has good coverage, the undercut portion 16
A plasma nitride film with a sufficient thickness is formed.

この状態で平行平板型ドライエツチング法でプラズマ窒
化膜17を異方性エツチングすると、第1図(b)に示
す如く、プラズマ窒化膜17がパッシベーション膜の側
面に残る。
In this state, when the plasma nitride film 17 is anisotropically etched using a parallel plate dry etching method, the plasma nitride film 17 remains on the side surfaces of the passivation film, as shown in FIG. 1(b).

このように構成された第1の実施例によれば、塗布・焼
成膜15は十分に厚いプラズマ窒化膜17で側面部を保
護されているので、水分の浸入に対して極めて強い構造
の半導体装置が得られ信頼性は向上する。
According to the first embodiment configured in this manner, the side surfaces of the coated and fired film 15 are protected by the sufficiently thick plasma nitride film 17, so that the semiconductor device has a structure that is extremely resistant to moisture intrusion. is obtained and reliability is improved.

更に本第1の実施例によれば、第1の実施例と同等の信
頼性を得るための、例えば金属配線形成の如き高価なプ
ロセスを用いる必要がないので、コストが安く、製造の
納期短縮化、プロセスの容易さ故の製造良品率の向上な
どを図ることができる。
Furthermore, according to the first embodiment, there is no need to use expensive processes such as metal wiring formation in order to obtain the same reliability as in the first embodiment, so the cost is low and the manufacturing delivery time is shortened. It is possible to improve the production rate of non-defective products due to the ease of the process.

第7図は、従来構造の半導体装置と、本発明の実施例の
信頼性試験をシリコンウェーハ状態で行った結果を示す
図である。試験環境は、125℃、湿度100%、2.
2気圧の条件で行った。不良率の判定は、ボンディング
パッドから10100ttれた場所でのアルミ配線の腐
蝕の有無で行った。
FIG. 7 is a diagram showing the results of a reliability test conducted on a semiconductor device having a conventional structure and an embodiment of the present invention in a silicon wafer state. The test environment was 125°C, 100% humidity, 2.
The test was carried out under the condition of 2 atmospheres. The defective rate was determined based on the presence or absence of corrosion of the aluminum wiring at a location 10,100 tt away from the bonding pad.

第5図に示した従来例では、12時間以内に不良が発生
し、24時間後にはほぼ全数不良となった。改善された
従来技術である第6図に示した従来例では、はぼ100
%不良になるまでに約60時間を要している。しかし、
ここで特徴的なことは、試験の初期段階で約10%の不
良が既に発生していることである。これは、第6図に示
したプラズマ窒化膜17の制御が困難であり、部分的に
薄いところが出来、そこから水分が浸入したためと考え
られる。
In the conventional example shown in FIG. 5, defects occurred within 12 hours, and almost all the products were defective after 24 hours. In the conventional example shown in FIG. 6, which is an improved conventional technique,
It takes about 60 hours to reach % failure. but,
What is characteristic here is that approximately 10% of defects have already occurred at the initial stage of the test. This is thought to be because it is difficult to control the plasma nitride film 17 shown in FIG. 6, and there are thin areas in some areas, through which moisture infiltrates.

それに反し、第1の実施例では48時間まで不良がまっ
たくなく、顕著な改善が示されている。
In contrast, the first example had no defects for up to 48 hours, indicating a significant improvement.

プラスチツブ樹脂等で保護されると、耐湿性は格段に向
上するので、第1図の構造であれば十分な耐湿性を有す
ると言える。
When protected with plastic resin or the like, moisture resistance is greatly improved, so it can be said that the structure shown in FIG. 1 has sufficient moisture resistance.

第2図は本発明の第2の実施例の断面図である。シリコ
ン基板11上には酸化シリコン膜12を介してアルミ配
線に接続するボンディングパッド13が形成されている
。そして、このボンディングパッド13の周辺部には、
ボンディングパッド13を陽極化成して形成されたアル
ミナ膜24が形成されており、更にパッシベーション膜
としてアンダーカット部16を有する塗布・焼成膜15
の第1の絶縁膜とプラズマ窒化膜14の第2の絶縁膜と
が形成されている。更にボンディングパッド13上のパ
ッシベーション膜の側面には第3の絶縁膜としてプラズ
マ窒化膜17が形成されている。
FIG. 2 is a sectional view of a second embodiment of the invention. A bonding pad 13 is formed on the silicon substrate 11 to be connected to the aluminum wiring via a silicon oxide film 12. Then, around this bonding pad 13,
An alumina film 24 formed by anodizing the bonding pad 13 is formed, and a coated/fired film 15 having an undercut portion 16 as a passivation film is formed.
A first insulating film and a second insulating film of plasma nitride film 14 are formed. Furthermore, a plasma nitride film 17 is formed as a third insulating film on the side surface of the passivation film on the bonding pad 13.

このように構成された第2の実施例によれば、ボンディ
ングパッド13を構成するへl膜がアルミナ膜24によ
り覆われているなめ、窒化シリコン膜で直接覆われる場
合に比べ、耐湿性が向トすると共に、ストレスマイグレ
ーションによるへ!消−失の発生が極めて少くなるとい
う利点がある。
According to the second embodiment configured as described above, since the aluminum film constituting the bonding pad 13 is covered with the alumina film 24, the moisture resistance is improved compared to the case where it is directly covered with the silicon nitride film. At the same time as stress migration! This has the advantage that the occurrence of loss is extremely reduced.

なお、塗布・焼成膜の性質にもよるが、アルミナJI!
 24を無くし、塗布・焼成膜15を直接ボンディング
パッド]3に接触させることも可能である。
Although it depends on the properties of the coated and fired film, alumina JI!
It is also possible to omit 24 and bring the coated and fired film 15 into direct contact with the bonding pad]3.

更に、上記実施例においてはパッシベーション膜として
プラズマ窒化膜を用いた場合について説明したが、酸化
膜、オキシナイトライド膜、リンケイ酸カラス膜など目
的に応じた組合わせを用いることができる。
Furthermore, in the above embodiments, the case where a plasma nitride film is used as the passivation film has been described, but a combination of an oxide film, an oxynitride film, a phosphosilicate glass film, etc. can be used depending on the purpose.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ポンデイ〉′グパッド上
の周辺部に形成する塗布・焼成膜がらなる第1の絶縁膜
と気相成長法による第2の絶縁膜からなるパッシベーシ
ョン膜のうち、第1の絶縁膜にアンダーカット部を設け
ることにより、パッシベーション膜の側面に形成される
気相成長による第3の絶縁膜がこのアンダーカット部に
も形成されるため、半導体装置の耐水性が向上するとい
う効果がある。従って、信頼性の高い半導体装置を得る
ことができる。
As explained above, the present invention provides a passivation film consisting of a first insulating film made of a coated and fired film formed on the periphery of a pump pad and a second insulating film formed by a vapor phase growth method. By providing an undercut part in the first insulating film, the third insulating film formed on the side surface of the passivation film by vapor phase growth is also formed in this undercut part, improving the water resistance of the semiconductor device. There is an effect. Therefore, a highly reliable semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1及び第2の実施例の断
面図、第3図〜第6図は従来例を説明するための半導体
チップの断面図、第7図は耐湿性試験結果を示す図であ
る。 11・・・シリコン基板、12・・・酸化シリコン膜、
13・・・ボンディングパッド、14.14A、14B
・・・プラズマ窒化膜、15・・・塗布・焼成膜、16
・・アンダーカット部、17・・・プラズマ窒化膜、2
3・・・アルミ配線、24・・・アルミナ膜。 I4:9北シリコン膜 I4: アルミカ腺 第2図 I4ニゲ2ズマ窒化膜 拓30 $4 第5図
1 and 2 are cross-sectional views of the first and second embodiments of the present invention, FIGS. 3 to 6 are cross-sectional views of semiconductor chips for explaining conventional examples, and FIG. It is a figure showing a test result. 11... Silicon substrate, 12... Silicon oxide film,
13... Bonding pad, 14.14A, 14B
...Plasma nitride film, 15...Coating/baking film, 16
... Undercut portion, 17... Plasma nitride film, 2
3...Aluminum wiring, 24...Alumina film. I4:9 North silicon film I4: Aluminum gland Figure 2 I4 Nige 2 Zuma Nitride film 30 $4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に絶縁膜を介して形成されたボンディング
パッドと、前記ボンディングパッド上の周辺部に形成さ
れたシリコンを主成分とする溶液を塗布・焼成した第1
の絶縁膜と気相成長法により形成した第2の絶縁膜から
なるパッシベーション膜と、前記ボンディングパッド上
の前記パッシベーション膜の側面に形成された気相成長
法による第3の絶縁膜とを有する半導体装置において、
前記パッシベーション膜の側面における前記第1の絶縁
膜は前記第2の絶縁膜に対してアンダーカット部を有す
ることを特徴とする半導体装置。
A bonding pad formed on a semiconductor substrate via an insulating film, and a first silicon-based solution formed on the periphery of the bonding pad coated and fired.
a passivation film consisting of an insulating film and a second insulating film formed by vapor phase growth; and a third insulating film formed by vapor growth on the side surface of the passivation film on the bonding pad. In the device,
A semiconductor device, wherein the first insulating film on a side surface of the passivation film has an undercut portion with respect to the second insulating film.
JP63311204A 1988-12-09 1988-12-09 Semiconductor device Expired - Lifetime JP2751274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311204A JP2751274B2 (en) 1988-12-09 1988-12-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311204A JP2751274B2 (en) 1988-12-09 1988-12-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH02156640A true JPH02156640A (en) 1990-06-15
JP2751274B2 JP2751274B2 (en) 1998-05-18

Family

ID=18014356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311204A Expired - Lifetime JP2751274B2 (en) 1988-12-09 1988-12-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2751274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702120B1 (en) * 2001-06-30 2007-03-30 주식회사 하이닉스반도체 Bonding PAD of semiconductor device and method for forming the same
KR100869112B1 (en) * 2002-01-14 2008-11-17 삼성전자주식회사 Reflective type liquid crystal display device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702120B1 (en) * 2001-06-30 2007-03-30 주식회사 하이닉스반도체 Bonding PAD of semiconductor device and method for forming the same
KR100869112B1 (en) * 2002-01-14 2008-11-17 삼성전자주식회사 Reflective type liquid crystal display device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2751274B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US4613888A (en) Semiconductor device of multilayer wiring structure
US4791465A (en) Field effect transistor type semiconductor sensor and method of manufacturing the same
US20050034526A1 (en) Semiconductor sensor and method of plating semiconductor devices
US5719087A (en) Process for bonding pad protection from damage
JPS594853B2 (en) semiconductor equipment
JPH02156640A (en) Semiconductor device
JPH0582581A (en) Manufacture of semiconductor device
JPS60224231A (en) Semiconductor device
JPH05234991A (en) Semiconductor device
JPH0555199A (en) Semiconductor device
JPS58135645A (en) Manufacture of semiconductor device
JPH0419707B2 (en)
JPH05267303A (en) Semiconductor device
JP2663739B2 (en) Method for manufacturing semiconductor device
JPH0219625B2 (en)
JP3116534B2 (en) Method for manufacturing flip chip of integrated circuit device
US5512780A (en) Inorganic chip-to-package interconnection circuit
JPS60150657A (en) Resin molded semiconductor device
JPS62293726A (en) Semiconductor device
JP2727605B2 (en) Semiconductor device and manufacturing method thereof
JPS61196555A (en) Formation for multilayer interconnection
US5828122A (en) Semiconductor body with a substrate glued to a support body
JPS5949687B2 (en) semiconductor equipment
JPH08167634A (en) Semiconductor device
KR100264518B1 (en) Method for fabricating pressure sensor