JPH02156546A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02156546A
JPH02156546A JP31035888A JP31035888A JPH02156546A JP H02156546 A JPH02156546 A JP H02156546A JP 31035888 A JP31035888 A JP 31035888A JP 31035888 A JP31035888 A JP 31035888A JP H02156546 A JPH02156546 A JP H02156546A
Authority
JP
Japan
Prior art keywords
wiring
substrate
semiconductor substrate
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31035888A
Other languages
Japanese (ja)
Inventor
Toshiro Yamamoto
俊郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31035888A priority Critical patent/JPH02156546A/en
Publication of JPH02156546A publication Critical patent/JPH02156546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To prevent disconnection and short-circuit in a wiring metallic film and to decrease parasitic capacity by bonding electrodes to metallic bumps with projections and recesses on the wiring metallic film opposed to corresponding recesses and projections on a semiconductor substrate. CONSTITUTION:A wiring board 7 is provided with projections and recesses complementary with projection and recesses of a semiconductor substrate 1. Then, a wiring metallic film 5 is formed on the wiring board 7. Metallic bumps 11 are provided at positions corresponding to an electrode 61 on the semiconductor substrate 1 and to an electrode 4 on an epitaxial layer formed in an island shape on the semiconductor substrate 1. The projections and recesses of the wiring board 7 are opposed to the recesses and projections on the semiconductor substrate complementary therewith so that electrodes are bonded to the metallic bumps 11. Since the electrodes 4, 61 on the semiconductor substrate 1 are bonded to the metallic wiring film 5 through the metallic bumps 11, they can be bonded with increased power and still with a certain distance therebetween. Accordingly, parasitic capacity between the semiconductor substrate and the metallic wiring film can be decreased substantially.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は計算機の中央演算装置、光通信機及び通信用中
継機器等に用いられる半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device used in a central processing unit of a computer, an optical communication device, a communication relay device, and the like.

〔従来の技術〕[Conventional technology]

第3図は従来のMO3型トランジスタ制御回路を有する
半導体装置の断面構造図である。第3図において1は半
導体基板であるp型Si基板であり、Si基板l上の一
端側にはGaAsバッファ層21.n型GaAs層22
及びp型GaAs層23がこの順に積層され発光ダイオ
ード2を形成している。さらにこれらの層を被覆するよ
うにp型GaAs層23上に適宜幅のギャップを有する
SiO□の絶縁層3が積層され前記ギャップ間には発光
ダイオード電極4が形成されている。
FIG. 3 is a cross-sectional structural diagram of a semiconductor device having a conventional MO3 type transistor control circuit. In FIG. 3, 1 is a p-type Si substrate which is a semiconductor substrate, and a GaAs buffer layer 21 is formed on one end side of the Si substrate 1. n-type GaAs layer 22
and a p-type GaAs layer 23 are stacked in this order to form the light emitting diode 2. Furthermore, an insulating layer 3 of SiO□ having a gap of an appropriate width is laminated on the p-type GaAs layer 23 so as to cover these layers, and a light emitting diode electrode 4 is formed between the gaps.

一方p型Si基板1上の他端側には、MOS )ランジ
スタロが以下のように形成されている。即ちp型Si基
板1上にSing絶縁層65が積層され、その上面には
ポリシリコン層64が積層されている。そして、これら
の層を被覆するようにポリシリコン層64上に適宜幅の
ギャップを有するSiO□絶縁層3が積層形成され、前
記ギヤツブ間を含んで前記ポリシリコン層64上には、
ゲート電極62が形成されている。ゲート電極62を有
する層の両側のp型Si基板1内には、発光ダイオード
2側にソース領域であるn°埋没層66が、またゲート
電極62を有する層を挾んでそれと対向する側にドレイ
ン領域であるn゛埋没層67が形成されている。前記n
゛埋没層66と対応するp型Si基板1上面には、発光
ダイオード2上の絶縁層3とポリシリコン層64上の絶
縁層3との上面を一部含んでソース電極61が形成され
、前記n°埋没層67と対応するp型Si基板1上面に
は、ポリシリコン層64上の絶縁N3とこの層と適宜幅
のギャップを隔ててp型St基板1.1:に積層する絶
縁層3との上面を一部含んでドレイン電極63が形成さ
れている。また、発光ダイオード電極4を含む絶縁N3
上にはAl薄膜から成る配線用金属膜5が積層され、こ
れによってドレイン電極61と接続されている。
On the other hand, on the other end side of the p-type Si substrate 1, a MOS transistor is formed as follows. That is, a Sing insulating layer 65 is laminated on the p-type Si substrate 1, and a polysilicon layer 64 is laminated on the upper surface thereof. Then, a SiO□ insulating layer 3 having a gap of an appropriate width is laminated on the polysilicon layer 64 so as to cover these layers, and on the polysilicon layer 64 including between the gears,
A gate electrode 62 is formed. In the p-type Si substrate 1 on both sides of the layer having the gate electrode 62, there is an n° buried layer 66 which is a source region on the light emitting diode 2 side, and a drain layer 66 on the side opposite to the layer having the gate electrode 62 between them. An n-buried layer 67, which is a region, is formed. Said n
``A source electrode 61 is formed on the upper surface of the p-type Si substrate 1 corresponding to the buried layer 66, including a part of the upper surface of the insulating layer 3 on the light emitting diode 2 and the insulating layer 3 on the polysilicon layer 64. On the upper surface of the p-type Si substrate 1 corresponding to the n° buried layer 67, there is an insulating layer 3 laminated on the p-type St substrate 1.1 with an insulating N3 on the polysilicon layer 64 and a gap of an appropriate width from this layer. A drain electrode 63 is formed including a part of the upper surface of. In addition, the insulation N3 including the light emitting diode electrode 4
A wiring metal film 5 made of an Al thin film is laminated thereon, and is connected to a drain electrode 61.

このような構成の半導体装置の製造方法は以下の如くで
ある。まず、後述するMOS  トランジスタ6が形成
されるp型Si基板1の内側には適宜幅のギャップを有
して後述する発光ダイオード2の層が形成される側にソ
ース領域であるn°埋没層66が、前記ギャップを挾ん
でそれと対向する側にドレイン領域であるn°埋没層6
7が夫々拡散により形成される。そしてp型St基板1
上の一端側にGaAsバッファ層21.p型GaAs層
22及びn型GaAs層23をこの順にエピタキシャル
成長させ、得られたエピタキシャル層を島状にエツチン
グして発光ダイオード2を形成する。またp型St基板
1上の他端側には、n+埋没層66とn°埋没層67と
のギャップと対応する位置にSiO□絶縁膜65、ポリ
シリコン層64をこの順にCVD法で積層する。こうし
て得られたp型Si基板1上全体に絶縁層3を気相成長
法等の方法で積層した後、n型GaAs層23上の発光
ダイオード電極4が形成される部分、p型Sil板1上
のソース電極61及びドレイン電極63が形成される部
分、並びにポリシリコン層64上のゲート電極62が形
成される部分を所定形状にエツチングして絶縁層3を除
去する。
A method for manufacturing a semiconductor device having such a configuration is as follows. First, on the inside of a p-type Si substrate 1 on which a MOS transistor 6 (described later) is formed, there is an n° buried layer 66, which is a source region, on the side where a layer of a light emitting diode 2 (described later) is formed, with a gap of an appropriate width. However, on the opposite side of the gap, there is an n° buried layer 6 which is a drain region.
7 are respectively formed by diffusion. and p-type St substrate 1
A GaAs buffer layer 21. A p-type GaAs layer 22 and an n-type GaAs layer 23 are epitaxially grown in this order, and the resulting epitaxial layer is etched into an island shape to form a light emitting diode 2. Further, on the other end side of the p-type St substrate 1, a SiO□ insulating film 65 and a polysilicon layer 64 are laminated in this order by the CVD method at a position corresponding to the gap between the n+ buried layer 66 and the n° buried layer 67. . After laminating an insulating layer 3 on the entire p-type Si substrate 1 obtained in this way by a method such as vapor growth, a portion on the n-type GaAs layer 23 where the light emitting diode electrode 4 is formed, The portions where the upper source electrode 61 and drain electrode 63 are to be formed and the portion on the polysilicon layer 64 where the gate electrode 62 is to be formed are etched into predetermined shapes, and the insulating layer 3 is removed.

そして絶縁層3が除去された部分に発光ダイオード電極
4.ソース電極61.ドレイン電極63及びゲート電極
62を夫々電子ビーム蒸着法等の方法により蒸着する。
Then, a light emitting diode electrode 4 is formed on the part where the insulating layer 3 is removed. Source electrode 61. A drain electrode 63 and a gate electrode 62 are each deposited by a method such as an electron beam evaporation method.

さらに、前記発光ダイオード電極4を含む絶縁層3上に
リフトオフ法を用いAβを真空蒸着させてAf薄膜から
成る配線用金属膜5を成膜しソース電極61と接続させ
る。
Furthermore, Aβ is vacuum-deposited on the insulating layer 3 including the light emitting diode electrode 4 using a lift-off method to form a wiring metal film 5 made of an Af thin film and connected to the source electrode 61.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の製造方法では、GaAsか
ら成るエピタキシャル層を島状にエツチングするときに
、エピタキシャル層の端面が逆メサ状になることが多く
、またGaAsエピタキシャル層を高温で熱処理するこ
とができないため絶縁層3のステノプカバレソジが十分
でないことが多かった。
In the conventional semiconductor device manufacturing method described above, when an epitaxial layer made of GaAs is etched into an island shape, the end face of the epitaxial layer often becomes an inverted mesa shape, and the GaAs epitaxial layer is not heat-treated at high temperatures. Therefore, the stenop coverage method of the insulating layer 3 was often insufficient.

そのため配線用金属膜であるA1薄膜が第3図のA部分
即ちp型Si基板lから発光ダイオード2のエピタキシ
ャル層22.23に立ち上がっている部分が断線し、ま
た蒸着したA1gt膜がGaAsエピタキシャル層と短
絡して半導体装置の製作歩留りが著しく減少するという
問題を有していた。
As a result, the A1 thin film, which is a metal film for wiring, is disconnected at the part A in FIG. This has caused a problem in that the manufacturing yield of semiconductor devices is significantly reduced due to short circuits.

また従来の半導体装置に用いられている絶縁層の比誘電
率は通常大きいため配線に伴う寄生容量が大きくなり、
過渡応答特性が劣化するという問題も有していた。
Furthermore, since the dielectric constant of the insulating layer used in conventional semiconductor devices is usually large, the parasitic capacitance associated with wiring becomes large.
Another problem was that the transient response characteristics deteriorated.

本発明は係る事情に鑑みてなされたものであり、発光ダ
イオード電極とソース電極とを結線している配線用金属
膜の断線及び短絡を少なくでき、しかも寄生容量を減少
させることができる半導体装置の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and provides a semiconductor device that can reduce disconnections and short circuits in the wiring metal film connecting a light emitting diode electrode and a source electrode, and can also reduce parasitic capacitance. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る半導体装置の製造方法は、半導体基板上に
電極と前記半導体基板に島状に形成されたエピタキシャ
ル層上の電極とを配線用基板を用いて接続する半導体装
置の製造方法であって、前記配線用基板に前記半導体基
板の凹凸と相補する関係にある凹凸を形成する過程と、
その上面に配線用金属膜を成膜する過程と、前記半導体
基板の電極の夫々と対応する前記配線用金属膜上の位置
に金属バンプを形成する過程と、配線用金属膜の凹凸と
半導体基板の凹凸とを対向させて前記電極及び前記金属
バンプを接合する過程とを含むことを特徴とする特 〔作用〕 本発明の半導体装置の製造方法にあっては、まず半導体
基板の凹凸と相補する関係にある凹凸を配線用基板に形
成した後、配線用金属膜を成膜する。そして半導体基板
上の電極及び前記半導体基板上に島状に形成されたエピ
タキシャル層上の電極の夫々に対応する位置に金属バン
プを形成し、配線用基板の凹凸とそれに相補する前記半
導体基板の凹凸とを対向させて前記電極と前記金属バン
プとを接合する。
A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device in which an electrode on a semiconductor substrate and an electrode on an epitaxial layer formed in an island shape on the semiconductor substrate are connected using a wiring substrate. , forming unevenness on the wiring substrate in a complementary relationship with the unevenness on the semiconductor substrate;
A process of forming a metal film for wiring on the upper surface thereof, a process of forming metal bumps at positions on the metal film for wiring corresponding to each of the electrodes of the semiconductor substrate, and an unevenness of the metal film for wiring and the semiconductor substrate. In the method for manufacturing a semiconductor device of the present invention, first, the method for manufacturing a semiconductor device includes the step of bonding the electrode and the metal bump with the unevenness of the semiconductor substrate facing each other. After forming related irregularities on the wiring substrate, a wiring metal film is formed. Then, metal bumps are formed at positions corresponding to the electrodes on the semiconductor substrate and the electrodes on the epitaxial layer formed in an island shape on the semiconductor substrate, so that the unevenness on the wiring substrate and the unevenness on the semiconductor substrate are complementary to the unevenness on the wiring substrate. The electrode and the metal bump are bonded so that they face each other.

そうすると、前記半導体基板の表面形状に応じた形状の
金属配線膜が形成できる。また金属バンプを介して前記
半導体基板の電極と前記金属配線膜とが結合するので、
前者と後者の結合力が大きくなり、しかも前記金属配線
膜を前記半導体基板上に一定の間隔を保って配置でき、
半導体基板と配線用金属膜間の配線に伴う寄生容量を小
さくできる。
In this way, a metal wiring film having a shape corresponding to the surface shape of the semiconductor substrate can be formed. Furthermore, since the electrodes of the semiconductor substrate and the metal wiring film are coupled via the metal bumps,
The bonding force between the former and the latter is increased, and the metal wiring film can be arranged on the semiconductor substrate with a constant spacing,
The parasitic capacitance associated with the wiring between the semiconductor substrate and the metal film for wiring can be reduced.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて詳述す
る。第1図は本発明に係る製造方法で製造される半導体
装置を模式的に示した構造断面図である。第1図におい
て1は半導体基板としてのp型Si基板であり、その上
面の一端側にはバッフ7 GaAs層21.  n型G
aAs層22.n型GaAs層23がこの順に積層形成
されている。n型GaAs層23上面にはさらにAu−
Zn/Inから成る発光ダイオード電極4が積層し、そ
の上面にはAu、 Sn又はPb−3n系等の半田等の
金属バンプ11が形成されている。一方p型Si基板I
上の他端側には、SiO□から成る絶縁膜65が積層さ
れており、その上面にはポリシリコン層64が形成され
ている。ポリシリコン層64上面にはAJRInから成
るゲート電極62が形成されており、このゲート電極6
2を有する層の両側のp型Si基板l内には発光ダイオ
ード2側にソース領域であるn゛埋没層66が、ゲート
電極62を有する層を挾んでそれと対向する側にドレイ
ン領域であるn゛埋没層67が夫々形成されている。前
記n゛埋没m66及び前記n°埋没層67の夫々に対応
するp型Si基板1上面の位置には、A E /Inか
ら成るソース電極61.A j2 /Inから成るドレ
イン電極63が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a structural cross-sectional view schematically showing a semiconductor device manufactured by the manufacturing method according to the present invention. In FIG. 1, reference numeral 1 denotes a p-type Si substrate as a semiconductor substrate, and on one end side of the upper surface thereof, a buffer 7, a GaAs layer 21. n-type G
aAs layer 22. N-type GaAs layers 23 are laminated in this order. Further, on the upper surface of the n-type GaAs layer 23, Au-
Light emitting diode electrodes 4 made of Zn/In are laminated, and metal bumps 11 made of Au, Sn, Pb-3n solder or the like are formed on the upper surface thereof. On the other hand, p-type Si substrate I
An insulating film 65 made of SiO□ is laminated on the other end side of the top, and a polysilicon layer 64 is formed on the upper surface thereof. A gate electrode 62 made of AJRIn is formed on the upper surface of the polysilicon layer 64.
In the p-type Si substrate l on both sides of the layer having the gate electrode 62, there is a buried layer 66 which is a source region on the side of the light emitting diode 2, and a buried layer 66 which is a drain region on the side opposite to the layer having the gate electrode 62. ``A buried layer 67 is formed respectively. At positions on the upper surface of the p-type Si substrate 1 corresponding to the n° buried layer 66 and the n° buried layer 67, there are source electrodes 61. made of A E /In. A drain electrode 63 made of A j2 /In is formed.

また、ソース電極61上面には金属バンプ11が接合さ
れ、この金属バンプ11の上面と発光ダイオード電極4
上の金属バンプ11の上面にはAl、Cu又はAu等の
金属から成る共通の配線用金属膜5が成膜されており、
前記配線用金属膜5の下面にはSiO2等のパッシベー
ション膜10が成膜されている。
Further, a metal bump 11 is bonded to the upper surface of the source electrode 61, and the upper surface of the metal bump 11 and the light emitting diode electrode 4 are connected to each other.
A common wiring metal film 5 made of a metal such as Al, Cu, or Au is formed on the upper surface of the upper metal bump 11.
A passivation film 10 made of SiO2 or the like is formed on the lower surface of the metal film 5 for wiring.

次にこのような構成の半導体装置の製造方法について、
その工程を示す第2図に基づき説明する。
Next, regarding the method of manufacturing a semiconductor device having such a configuration,
The process will be explained based on FIG. 2 showing the process.

第2図(a)に表されているようにp型Si基板1上の
一端側に発光ダイオード2を、他端側に通常のMO5製
造方法でMOSトランジスタ6を形成させる。
As shown in FIG. 2(a), a light emitting diode 2 is formed on one end of a p-type Si substrate 1, and a MOS transistor 6 is formed on the other end using a normal MO5 manufacturing method.

まずMOS  )ランジスタロを形成させるp型Si基
板1の内側の適宜幅のギャップを有して発光ダイオード
2側にソース領域であるn゛埋没層66が、前記ギャッ
プを挾んでそれと対向する側にドレイン領域であるn°
埋没層67が夫々拡散により形成される。そして、p型
Si基板l上の一端側にMOCVD法等の方法によりバ
ッファGaAs層21.n型GaAs層22及びn型G
aAs層23をこの順にエピタキシャル成長させて積層
し、得られたエピタキシャル層を島状にエツチングして
p型Si基板1上に発光ダイオード2の層を形成する。
First, a buried layer 66, which is a source region, is formed on the light emitting diode 2 side with a gap of an appropriate width inside the p-type Si substrate 1 in which a MOS transistor is formed, and a drain layer 66 is formed on the opposite side across the gap. area n°
A buried layer 67 is formed by diffusion. Then, a buffer GaAs layer 21 is formed on one end side of the p-type Si substrate l by a method such as MOCVD. n-type GaAs layer 22 and n-type G
The aAs layer 23 is epitaxially grown and laminated in this order, and the resulting epitaxial layer is etched into an island shape to form a layer of the light emitting diode 2 on the p-type Si substrate 1.

さらにn型GaAs層23上には発光ダイオード電極4
を形成する。また、p型Si基板1上の他端側には、n
゛埋没層66とn゛埋没層67とのギャップに対応する
位置に絶縁層65゜ポリシリコン層64をこの順に積層
し、その上面にゲート電極62を蒸着する。
Furthermore, a light emitting diode electrode 4 is disposed on the n-type GaAs layer 23.
form. Further, on the other end side of the p-type Si substrate 1, n
An insulating layer 65 and a polysilicon layer 64 are laminated in this order at a position corresponding to the gap between the buried layer 66 and the buried layer 67, and a gate electrode 62 is deposited on the upper surface thereof.

そしてn゛埋没層66及びn゛埋没層67の夫々に対応
するp型St基板1上面の位置に、ソース電極61、 
 ドレイン電極63を蒸着して形成する。このように形
成されたp型Si基板1上面は5μm程度の凹凸が生じ
ている。次に第2図(blの石英から成る配線用基板7
上面に前記p型Si基板1上の凹凸と相補する関係にあ
る凹凸、即ちp型Si基板1上の凹凸を埋め合わせるよ
うな位置及び高さを有する凹凸を燐ガラス8により形成
する。その手順は以下の通りである。石英の配線用基板
7上に燐ガラス8をCVD法で蒸着し、p型Si基板l
の凹凸と相補する関係にある凹凸をエツチングにより形
成させる。エツチング後燐ガラス8を高温で熱処理して
端面を滑らかにし、その上面にアセトンで除去可能な厚
さ2μmのフォトリソグラフィに用いられるレジストの
剥離膜9を成膜する。さらに前記剥離膜9上面にiを蒸
着し、所定形状にエツチングすることにより膜厚が約1
μm1幅が10A!mであるAl薄膜から成る配線用金
属膜5を形成する。
Then, a source electrode 61,
A drain electrode 63 is formed by vapor deposition. The upper surface of the p-type Si substrate 1 formed in this manner has irregularities of about 5 μm. Next, in Fig. 2 (bl) wiring board 7 made of quartz.
On the upper surface, phosphor glass 8 is formed with unevenness that is complementary to the unevenness on the p-type Si substrate 1, that is, has a position and a height that compensates for the unevenness on the p-type Si substrate 1. The procedure is as follows. Phosphorous glass 8 is deposited on a quartz wiring substrate 7 by CVD method, and a p-type Si substrate 1 is formed.
The unevenness complementary to the unevenness is formed by etching. After etching, the phosphor glass 8 is heat-treated at a high temperature to make the end surface smooth, and a peeling film 9 of a resist used in photolithography with a thickness of 2 μm and removable with acetone is formed on the upper surface. Further, by depositing i on the upper surface of the peeling film 9 and etching it into a predetermined shape, the film thickness is reduced to approximately 1.
μm1 width is 10A! A wiring metal film 5 made of an Al thin film having a thickness of m is formed.

そして、前記配線用金属膜5上のp型Si基板1上の発
光ダイオード電極4とソース電極61との夫々に対応す
る位置に、高さが約IOμmのAuから成る金属バンプ
11を電解めっき法等の方法により形成する。このとき
第2図(b)に示されている如く前記配線用金属膜5上
に5iOz等のパッシベーション膜IOを積層させても
良(、前記パッシベーション膜10は後述する金属バン
プ11を介しての配線用金属膜5と発光ダイオード電極
4及びソース電ff161との結線のときに配線用金属
膜5にたるみが生じてもSi基板上の導通部と直接接触
しないよう形成される。石英から成る配線用基板7上の
上述した構造を有する側を第2図(alのp型Si基板
1の積層されている側に夫々の凹凸が相補するように圧
着し、金属バンプ11と発光ダイオード電極4及びソー
ス電極61とを夫々結合する。その後剥離膜9をアセト
ン等の温材で除去する。従ってこのとき配線用法板7も
取り除かれることになる。そして、配線用金属膜5及び
それに積層するパッシベーション膜10だけを残留させ
て、第2図(C1に示ず如くp型Si基板1の発光ダイ
オード2の発光ダイオード電極4と−OSトランジスタ
6のソース電極61とを結線させ半導体装置を製造する
Then, metal bumps 11 made of Au and having a height of about IO μm are formed by electroplating on the wiring metal film 5 at positions corresponding to the light emitting diode electrodes 4 and the source electrodes 61 on the p-type Si substrate 1, respectively. Formed by a method such as At this time, as shown in FIG. 2(b), a passivation film IO of 5 iOz or the like may be laminated on the wiring metal film 5 (the passivation film 10 may be laminated via metal bumps 11, which will be described later). Even if slack occurs in the wiring metal film 5 when connecting the wiring metal film 5 with the light emitting diode electrode 4 and the source electrode ff161, it is formed so as not to come into direct contact with the conductive portion on the Si substrate.The wiring made of quartz The side having the above-described structure on the substrate 7 is crimped to the layered side of the Al p-type Si substrate 1 in FIG. The source electrodes 61 are bonded to each other.Then, the peeling film 9 is removed using a hot material such as acetone.Therefore, the wiring plate 7 is also removed at this time.Then, the wiring metal film 5 and the passivation film laminated thereon are removed. 2 (C1), the light emitting diode electrode 4 of the light emitting diode 2 of the p-type Si substrate 1 and the source electrode 61 of the -OS transistor 6 are connected, leaving only the light emitting diode 10 remaining, to manufacture a semiconductor device.

上述した半導体装置の製造方法において、金属バンプ1
1と発光ダイオード電極4及びソース電極61とを接合
した後に、配線用基板7を除去するのは通常p型Si基
板l上には多数の半導体装置であるチップが配置されて
いるので、チップ分割を容易にするためと、配線用基板
7を再利用させるためである。配線用基板7には透明な
石英が適しており、その理由として金属バンプ等の配線
材が配線用基板7の裏側から見えるので半導体基板であ
るSi基板1との位置合わせをしやすいことが挙げられ
る。
In the method for manufacturing a semiconductor device described above, the metal bumps 1
After bonding 1 to the light emitting diode electrode 4 and source electrode 61, the wiring substrate 7 is removed because a large number of chips, which are semiconductor devices, are usually arranged on the p-type Si substrate 1, so chip division is necessary. This is to facilitate the process and to reuse the wiring board 7. Transparent quartz is suitable for the wiring board 7, and the reason for this is that wiring materials such as metal bumps can be seen from the back side of the wiring board 7, making it easy to align with the Si substrate 1, which is a semiconductor substrate. It will be done.

なお、本実施例では配線用基板7に石英板を用いたがこ
れに限るものではなく半導体分野でよく用いられている
シリコン板等の材料を代わりに用いても良い。
Although a quartz plate is used for the wiring board 7 in this embodiment, the present invention is not limited to this, and materials such as a silicon plate that are commonly used in the semiconductor field may be used instead.

〔効果〕〔effect〕

以上詳述した如く本発明の半導体装置の製造方法におい
ては配線用基板上面に形成された燐ガラスの端面を滑ら
かにすることが出来るので、その上面に成膜される配線
用金属膜は半導体装置の凹凸の差が大きくても断線され
ることなく安価でしかも容易に得られる。また配線用基
板上に成膜された配線用金属膜の形状は半導体基板の凹
凸に相補させたものであるので、金属バンプの高さを調
整することなく半導体基板上に一定の間隔を保って配線
用金属膜を配置できる。このことにより配線に伴う寄生
容量を減少でき、高速の半導体装置が得られる。また発
光ダイオード上面及びMOS  l−ランジスタ上面に
絶縁膜を存在させなくても配線用金属膜と半導体装置の
GaAs及びSiとの短絡を防ぐことが出来るため、製
作歩留りが向上し低価格の半導体装置が得られる等本発
明は優れた効果を奏する。
As detailed above, in the method of manufacturing a semiconductor device of the present invention, the end surface of the phosphor glass formed on the upper surface of the wiring substrate can be made smooth, so that the metal film for wiring formed on the upper surface can be Even if the difference in unevenness is large, the wire will not be disconnected and can be obtained inexpensively and easily. In addition, the shape of the wiring metal film formed on the wiring substrate is complementary to the unevenness of the semiconductor substrate, so it is possible to maintain a constant spacing on the semiconductor substrate without adjusting the height of the metal bumps. A metal film for wiring can be placed. As a result, parasitic capacitance associated with wiring can be reduced, and a high-speed semiconductor device can be obtained. In addition, short circuits between the wiring metal film and the GaAs and Si of the semiconductor device can be prevented without the presence of an insulating film on the top surface of the light emitting diode and the top surface of the MOS l-transistor, which improves manufacturing yield and enables low-cost semiconductor devices. The present invention has excellent effects such as the following.

なお、本実施例においては配線用基板と配線用金属膜と
の間に剥離膜を成膜しであるが、これにより配線用基板
と配線用金属膜の剥離が迅速に、容易に行えるという効
果を有する。
In this example, a peeling film is formed between the wiring board and the wiring metal film, and this has the effect that the wiring board and the wiring metal film can be peeled off quickly and easily. has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で製造される半導体装置を模式的に
示した構造断面図、第2図は本発明方法を工程順に示し
た模式図、第3図は従来の半導体装置の構造断面図であ
る。 1・・・St基板 4・・・発光ダイオード電極5・・
・配線用金属膜 61・・・ソース電極7・・・配線用
基板 8・・・燐ガラス 9・・・剥離膜11・・・金
属バンプ 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  夫第 図 弔 図 第 図
FIG. 1 is a structural cross-sectional view schematically showing a semiconductor device manufactured by the method of the present invention, FIG. 2 is a schematic cross-sectional view showing the method of the present invention in the order of steps, and FIG. 3 is a structural cross-sectional view of a conventional semiconductor device. It is. 1... St substrate 4... Light emitting diode electrode 5...
・Metal film for wiring 61... Source electrode 7... Substrate for wiring 8... Phosphorus glass 9... Peeling film 11... Metal bump patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Kawa No Noboo's funeral map

Claims (1)

【特許請求の範囲】 1、半導体基板上の電極と、前記半導体基板に島状に形
成されたエピタキシャル層上の電極とを配線用基板を用
いて接続する半導体装置の製造方法であって、 前記配線用基板に前記半導体基板の凹凸と 相補する関係にある凹凸を形成する過程と、その上面に
配線用金属膜を成膜する過程と、前記半導体基板の電極
の夫々と対応する前記配線用金属膜上の位置に金属バン
プを形成する過程と、配線用金属膜の凹凸と半導体基板
の凹凸とを対向させて前記電極及び前記金属バンプを接
合する過程とを含むことを特徴とする半導体装置の製造
方法。
[Scope of Claims] 1. A method for manufacturing a semiconductor device in which an electrode on a semiconductor substrate and an electrode on an epitaxial layer formed in an island shape on the semiconductor substrate are connected using a wiring substrate, comprising: A step of forming unevenness on a wiring substrate in a complementary relationship with the unevenness of the semiconductor substrate, a step of forming a metal film for wiring on the upper surface thereof, and a step of forming the metal for wiring corresponding to each of the electrodes of the semiconductor substrate. A semiconductor device comprising the steps of: forming a metal bump at a position on the film; and bonding the electrode and the metal bump with the unevenness of the wiring metal film facing the unevenness of the semiconductor substrate. Production method.
JP31035888A 1988-12-08 1988-12-08 Manufacture of semiconductor device Pending JPH02156546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31035888A JPH02156546A (en) 1988-12-08 1988-12-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31035888A JPH02156546A (en) 1988-12-08 1988-12-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02156546A true JPH02156546A (en) 1990-06-15

Family

ID=18004273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31035888A Pending JPH02156546A (en) 1988-12-08 1988-12-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02156546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078229A1 (en) * 2007-12-18 2009-06-25 Alps Electric Co. Ltd. Semiconductor device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078229A1 (en) * 2007-12-18 2009-06-25 Alps Electric Co. Ltd. Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0182032B1 (en) SoI semiconductor device and method for producing it
US9064947B2 (en) Island matrixed gallium nitride microwave and power switching transistors
JP5154000B2 (en) Semiconductor device
JP2002319658A (en) Semiconductor device
JPH07193070A (en) Compound semiconductor device
JP4230543B2 (en) Manufacturing method of semiconductor device having "chip size package"
JP4837939B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR100203307B1 (en) A method of manufacturing laser diode
JPS6159886A (en) Manufacture of photosemiconductor device
US11037894B2 (en) Semiconductor device having metal bump and method of manufacturing the same
JP3755178B2 (en) Semiconductor laser
JPH02156546A (en) Manufacture of semiconductor device
CN115101634A (en) Manufacturing method of micro light-emitting diode display structure and display device
JPS58143559A (en) Multilayer-structure semiconductor integrated circuit device and its manufacture
JPS60187055A (en) Semiconductor integrated circuit device
US20220247055A1 (en) Semiconductor Switch Device, Manufacturing Method Thereof, and Solid-State Phase Shifter
KR20010002079A (en) Flip Chip Process on III-Nitride Semiconductor Device Fabricated
JP2004253602A (en) Optical waveguide element and method for manufacturing it
US3850710A (en) Method of making a quasi-monolithic integrated circuit structure
JPH08236690A (en) Three-dimensional mounting module and manufacture thereof
JP3601746B2 (en) Method for manufacturing semiconductor integrated device
CN115986030A (en) Light emitting element, method of manufacturing the same, and display device including the same
JP2019149544A (en) Optoelectronic device and method
JPH0897461A (en) Semiconductor light receiving element and manufacturing method therefor
JP2004103819A (en) Monolithic microwave integrated circuit