JPH02156053A - Manufacture of aluminum foil for electrolytic capacitor cathode - Google Patents

Manufacture of aluminum foil for electrolytic capacitor cathode

Info

Publication number
JPH02156053A
JPH02156053A JP31168488A JP31168488A JPH02156053A JP H02156053 A JPH02156053 A JP H02156053A JP 31168488 A JP31168488 A JP 31168488A JP 31168488 A JP31168488 A JP 31168488A JP H02156053 A JPH02156053 A JP H02156053A
Authority
JP
Japan
Prior art keywords
foil
annealing
electrolytic capacitor
aluminum foil
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31168488A
Other languages
Japanese (ja)
Inventor
Kuniaki Matsui
邦昭 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31168488A priority Critical patent/JPH02156053A/en
Publication of JPH02156053A publication Critical patent/JPH02156053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture a high-strength, high-capitance, and high-grade soft Al foil with superior productivity by carrying out annealing at a specific temp. in a continuous annealing furnace at the time of manufacturing an Al foil for electrolytic capacitor cathode. CONSTITUTION:The the time of manufacturing an Al foil for electrolytic capacitor cathode, a slab of Al of 99.8% purity is subjected to soaking treatment and then formed into an Al foil by means of hot rolling and cold rolling, and this Al foil is subjected to short-time annealing by using a continuous heating furnace at 300-500 deg.C for <=3min, cooled down to <=150 deg.C in the continuous heating furnace, and wound up. By this method, the Al foil for cathode having fine crystalline grains and excellent in etching characteristic, strength, and high electrostatic capacity can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は電解コンデンサ陰極用アルミニウム箔の製造方
法に係り、より詳しくは、最終焼鈍の改善により強度及
び静電容量の向上を可能にする方法に関するものである
。 (従来の技術) 一般に電解コンデンサ用のアルミニウム箔は、エツチン
グ処理により表面積を拡大して、静電容量を増大して使
用されている。 特に電解コンデンサ陰極用のアルミニウム箔では、陽極
箔とは異なり、化成処理による耐電被膜を形成する必要
がないので、できるだけ微細なエツチング穴を形成する
ようなエツチング処理が施される。 従来、このような陰極用箔に用いられるアルミニウム材
質は、−船釣に純度99.80%程度。 箔厚20〜60μmのもので、エツチング処理の種類に
より、硬質材(H2S)又は調質された軟質材(0)に
使い分けられている。 このうち、軟質材の場合は、最終焼鈍はバッチ炉を用い
、コイルの形で、酸化被膜の生長を抑制するために真空
又は無酸素雰囲気ガス(DXガスなど)の雰囲気中で実
施される。一方、最近、高圧用陽極アルミニウム箔の製
造に対して連続式焼鈍方法CCAL法)の適用の試みが
報告されているが、(特開昭60−110854号)、
陰極用7 /L/ミニラム箔の製造にCAL法を適用し
たとの報告はない。 (発明が解決しようとする課題) 上記の従来技術により陰極用アルミニウム箔、特に仕上
げ焼鈍を施した軟質材を製造する場合には1次のような
問題がある。 まず、従来のバッチ式焼鈍方法では、 ■ 幅方向でエツチング性のバラツキがあり、エツジが
センターよりも表面酸化がひどく生じ、エツチング性が
悪くなり、静電容量が低くなる傾向がある。 ■ コイル芯部と外周部において、昇温速度、加熱時間
に差異が生じるため1表面酸化状況、内部組織の差から
エツチング性にバラツキが生ずる。 ■加熱、冷却に多くの時間を要し、生産性が悪くなる。 一方、連続式焼鈍方法を仮に適用した場合には、■箔厚
さが前述の高圧用陽極アルミニウム箔(一般に100μ
重程度であり、因みに特開昭60−110854号では
100μIである)よりもかなり薄いため(50μ票程
度又はそれ以下)、1コイル当たりの長さが長くなり1
巻戻し巻取りに時間がかかり、上記生産性の向上に対し
て特にメリットがない。 ■箔厚さが薄くなると、短時間高温焼鈍の場合、冷却時
に熱歪が生じるため、しわが入るなど巻取りに不具合が
生じる。 という開運点かあり、これまでに適用された例は見当ら
ない。 本発明は、上記従来技術の欠点を解消し、電解コンデン
サ陰極用アルミニウム箔を特に連続式焼鈍方法で製造し
、高強度、高容量で高品質の軟質材を得ることができる
方法を提供することを目的とするものである。 (課題を解決するための手段) 前記目的を達成するため1本発明者は、従来試みられて
いなかった連続式焼鈍法を問題なく適用できる方策を見
い出すべく鋭意研究を重ねた。 その結果、連続式加熱炉を使用し、低い温度で焼鈍可能
な条件を見い出すに至り、ここに本発明をなしたもので
ある。 すなわち、本発明に係る電解コンデンサ陰極用アルミニ
ウム箔の製造方法は、アルミニウム箔の最終焼鈍におい
て、連続加熱炉を用い、焼鈍温度300℃〜500℃の
範囲で3分以内保持の短時間焼鈍を行うことを特徴とす
るものである。 以下に本発明を更に詳細に説明する。 (作用) まず、電解コンデンサ陰極用アルミニウム箔の製造に係
る本発明においては、最終焼鈍に連続加熱炉を使用する
ことが前提である。 連続加熱炉では、コイルを巻戻しながら、加熱帯、冷却
帯を通過させて巻取る方式であり、いわゆるCALと称
される設備が用いられる。 連続式焼鈍では、コイルを巻戻しながら加熱帯にて焼鈍
を行うことから、I[方向、コイル芯、外周の品質(酸
化被膜、結晶粒等)のバラツキがなくなる。また、昇温
速度がアップできることから、結晶粒が細かくなり、エ
ツチング性の向上のほか。 強度の向上が得られる。また、加熱時間が短いために酸
化被膜の生成が抑制される等のメリットがある。 次に、焼鈍温度は300〜500℃の範囲とする。軟化
処理を行うために必要最小限の温度を確保する必要があ
り、純度99.80%のアルミが軟化するのに必要な3
00℃以上とする。300℃未満では長時間の保持が必
要であり、生産性に問題がある。一方、酸化被膜の生長
を抑制するためには500℃以下の温度範囲で焼鈍を行
う必要がある。500℃を超えると酸化被膜厚が増大す
ると共に結晶粒の粗大化を生じ、エツチング性の低下が
生じ、また、エネルギー的にも不利になる。 好ましくは、300〜450℃の範囲で行った方が安定
した品質が得られ易く、更に好ましくは350〜430
℃である。 また、加熱時間は3分以内で短時間加熱とする。 CAL式では従来のバッチ式に比べて昇温、冷却時間の
短縮が図られるが、CAL式においてもコイル長さが長
いため、加熱時間が長くなれば酸化皮膜の生成が促進さ
れるので、できるだけ短時間で加熱処理を実施する必要
があり、3分以内、望ましくは1分以内にする。生産性
の向上の点からもラインスピードを上げ、焼鈍加熱時間
を短くするのが好ましい。 短時間高温加熱では箔幅方向に熱歪みが生じ、巻き取り
において不具合が生じるので、冷却帯においては幅方向
に均一な冷却を実施し、150℃以下の低温まで冷却す
るのが好ましい。150℃以下まで幅方向に均一に冷却
すれば、熱歪による形状不良を抑制することができる。 150℃を超えると巻取るまでに大気により、及び通過
するローラにより幅方向で不均一に冷却され易く1巻き
ずれ、巻取り不能等のトラブルが生ずる。生産性の点か
らすれば70℃程度までの冷却で足りる。 この点、従来の一般的なCAL式では冷却部で150℃
を超える比較的高温度までしか冷却されていない。 なお、上記連続焼鈍においては、雰囲気は大気(酸化性
雰囲気)でよく、敢えて真空又は非酸化性にする必要は
ない。また、加熱速度、冷却速度は通常1000℃/w
inであるが、特に制限は必要ないものの、冷却は比較
的速い冷却速度(1500℃/akin以上)である方
が歪防止のうえで望ましい。 箔厚さは電解コンデンサ用陰極に適する厚さであり、−
船釣に60μm以下、20μm程度までの厚さである。 勿論、アルミニウム材質もか)る用途に供し得るもので
あればよく、最終焼鈍を除く他の工程は従来と同様でよ
い。 次に本発明の実施例を示す。 (実施例) 素材として、通常陰極箔に使用されている純度99.8
0%アルミニウム(Si:0.05vt%、Fe:0.
10wt%、Cu:0.002wt%を含む)を用い、
そのスラブに均熱化処理(540℃X6hr)を施し、
直ちに熱間圧延により3.5鳳購の板厚とした。その後
、製品厚さ50μ厘まで冷間圧延を行い、第1表に示す
条件の最終焼鈍を実施した。なお、CALでの加熱速度
は1000℃、/win、冷却速度は1500℃/wi
nとした。 得られたアルミ箔軟質材について、酸化被膜厚さ、強度
、静電容量を調べると共に、板幅方向の歪の発生状況を
調べた。その結果を第1表に併記する。 なお、酸化被膜厚さは、静電容量法により、LCRメー
タを用いて測定した。 強度は、短冊上の15mm幅アルミ箔をインストロン式
引張試験機にて引張速度10a+m/winで引張試験
を行って測定し、従来工程材魔1の値を100%として
相対値で表わした。 静電容量については、液温60℃の水溶液(1a純水中
7.5%塩酸、0.5%しゆう酸)中でAC50Hz交
流により電流密度45A/datで2分間電解エツチン
グしたサンプルについて、液温30℃の水溶液(IQ純
水中はう酸50g、クエン酸50g、アンモニア501
Q)で測定周波数120Hz、万能ブリッジにより静電
容量を測定し、従来工程材No 1の値を100%とし
て相対値で表わした。 第1表より1本発明例Nα3〜胤5及びNO3はいずれ
も、従来例&1と同等以上の高強度、高静電容量を示し
ており、幅方向に不均一な歪の発生がないことがわかる
。これは、酸化被膜にムラがなく、エツチング性が均一
で高品質であることを示したものである。また、パッチ
式に比べて生産性が高い。
(Industrial Application Field) The present invention relates to a method for manufacturing an aluminum foil for an electrolytic capacitor cathode, and more particularly to a method that enables improvement in strength and capacitance by improving final annealing. (Prior Art) Aluminum foil for electrolytic capacitors is generally used by enlarging its surface area through etching treatment to increase its capacitance. In particular, aluminum foil for an electrolytic capacitor cathode does not require the formation of an electrically resistant coating by chemical conversion treatment, unlike anode foil, and therefore is subjected to etching treatment to form as fine etched holes as possible. Conventionally, the aluminum material used for such cathode foils has a purity of about 99.80% for boat fishing. The foil has a thickness of 20 to 60 μm and is used as a hard material (H2S) or a tempered soft material (0) depending on the type of etching process. Among these, in the case of soft materials, the final annealing is performed in a batch furnace in the form of a coil in a vacuum or in an atmosphere of an oxygen-free atmospheric gas (such as DX gas) in order to suppress the growth of an oxide film. On the other hand, recently, an attempt to apply the continuous annealing method (CCAL method) to the production of high-pressure anode aluminum foil has been reported,
There is no report on the application of the CAL method to the production of 7/L/minilam foil for cathodes. (Problems to be Solved by the Invention) When producing an aluminum foil for a cathode, particularly a soft material subjected to finish annealing, using the above-mentioned conventional technology, there is the following problem. First, in the conventional batch annealing method, (1) there is variation in etching properties in the width direction, and surface oxidation occurs more severely at the edges than at the center, resulting in poor etching properties and a tendency to lower capacitance. - Differences in heating rate and heating time occur between the coil core and the outer periphery, resulting in variations in etching performance due to surface oxidation conditions and differences in internal structure. ■It takes a lot of time to heat and cool, which reduces productivity. On the other hand, if the continuous annealing method is applied, ■the foil thickness is the aforementioned high-pressure anode aluminum foil (generally 100μ
(By the way, it is 100μI in JP-A No. 60-110854) (about 50μI or less), so the length per coil is longer.
It takes time to unwind and wind up, and there is no particular advantage in improving the productivity described above. ■When the foil thickness becomes thinner, thermal strain occurs during cooling when the foil is annealed at high temperatures for a short period of time, causing wrinkles and other problems in winding. There is a good luck point, and I can't find any examples of it being applied so far. The present invention solves the above-mentioned drawbacks of the prior art and provides a method for manufacturing an aluminum foil for an electrolytic capacitor cathode, particularly by a continuous annealing method, to obtain a high-strength, high-capacity, and high-quality soft material. The purpose is to (Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention conducted extensive research in order to find a method that would allow the continuous annealing method, which had not been attempted in the past, to be applied without any problems. As a result, we have found conditions that allow annealing at a low temperature using a continuous heating furnace, and hereby the present invention has been made. That is, in the method for manufacturing an aluminum foil for an electrolytic capacitor cathode according to the present invention, in the final annealing of the aluminum foil, a continuous heating furnace is used, and short-time annealing is performed at an annealing temperature in the range of 300 ° C. to 500 ° C. and held for less than 3 minutes. It is characterized by this. The present invention will be explained in more detail below. (Function) First, in the present invention relating to the production of aluminum foil for an electrolytic capacitor cathode, it is a premise that a continuous heating furnace is used for final annealing. In a continuous heating furnace, the coil is wound by passing through a heating zone and a cooling zone while being unwound, and equipment called so-called CAL is used. In continuous annealing, since the coil is annealed in a heating zone while being unwound, there is no variation in I direction, coil core, and quality of the outer periphery (oxide film, crystal grains, etc.). Additionally, since the heating rate can be increased, the crystal grains become finer, which improves etching performance. Improved strength can be obtained. Further, since the heating time is short, there are advantages such as suppressing the formation of an oxide film. Next, the annealing temperature is in the range of 300 to 500°C. It is necessary to secure the minimum necessary temperature to perform the softening process, and the temperature of 3
00℃ or higher. If the temperature is lower than 300°C, it is necessary to hold the temperature for a long time, which causes problems in productivity. On the other hand, in order to suppress the growth of the oxide film, it is necessary to perform annealing at a temperature range of 500° C. or lower. If the temperature exceeds 500° C., the oxide film thickness increases and the crystal grains become coarser, resulting in a decrease in etching performance and also being disadvantageous in terms of energy. Preferably, it is easier to obtain stable quality when the temperature is 300 to 450°C, and more preferably 350 to 430°C.
It is ℃. In addition, the heating time is a short heating time of 3 minutes or less. The CAL type allows for shorter heating and cooling times compared to the conventional batch type, but since the coil length is long in the CAL type as well, the longer the heating time, the more the formation of an oxide film will be promoted. It is necessary to carry out the heat treatment in a short time, preferably within 3 minutes, preferably within 1 minute. Also from the viewpoint of improving productivity, it is preferable to increase the line speed and shorten the annealing heating time. Short-time high-temperature heating causes thermal distortion in the width direction of the foil, which causes problems during winding. Therefore, it is preferable to uniformly cool the foil in the width direction in the cooling zone to a low temperature of 150° C. or lower. By cooling uniformly in the width direction to 150° C. or lower, shape defects due to thermal distortion can be suppressed. If the temperature exceeds 150° C., it is likely to be cooled unevenly in the width direction by the atmosphere and by the passing rollers before winding, resulting in problems such as one winding deviation and unwinding. From the viewpoint of productivity, cooling to about 70°C is sufficient. In this regard, in the conventional general CAL system, the temperature in the cooling section is 150°C.
It is only cooled to a relatively high temperature exceeding . In addition, in the continuous annealing described above, the atmosphere may be air (oxidizing atmosphere), and there is no need to intentionally set it to a vacuum or non-oxidizing atmosphere. In addition, the heating rate and cooling rate are usually 1000℃/w.
Although there is no particular restriction on cooling, it is desirable to have a relatively fast cooling rate (1500° C./akin or more) in order to prevent distortion. The foil thickness is suitable for the cathode for electrolytic capacitors, and -
For boat fishing, the thickness is 60 μm or less, and up to about 20 μm. Of course, the aluminum material may be any material as long as it can be used for the above purpose, and the other steps except the final annealing may be the same as conventional ones. Next, examples of the present invention will be shown. (Example) The material used is purity 99.8, which is usually used for cathode foil.
0% aluminum (Si: 0.05vt%, Fe: 0.
10 wt%, including Cu: 0.002 wt%),
The slab was subjected to soaking treatment (540℃ x 6hr),
Immediately, the plate was hot rolled to a thickness of 3.5 mm. Thereafter, cold rolling was performed to a product thickness of 50 μm, and final annealing was performed under the conditions shown in Table 1. The heating rate at CAL is 1000℃/win, and the cooling rate is 1500℃/wi.
It was set as n. The resulting aluminum foil soft material was examined for oxide film thickness, strength, and capacitance, as well as for the occurrence of strain in the board width direction. The results are also listed in Table 1. Note that the oxide film thickness was measured by the capacitance method using an LCR meter. The strength was measured by performing a tensile test on a 15 mm wide aluminum foil on a strip using an Instron tensile tester at a tensile speed of 10 a+m/win, and expressed as a relative value with the value of conventional process material 1 being 100%. Regarding capacitance, samples were electrolytically etched for 2 minutes at a current density of 45 A/dat using AC 50 Hz alternating current in an aqueous solution (7.5% hydrochloric acid, 0.5% oxalic acid in 1a pure water) at a liquid temperature of 60°C. Aqueous solution with a liquid temperature of 30°C (IQ pure water, 50 g of halonic acid, 50 g of citric acid, 501 g of ammonia)
The capacitance was measured using a universal bridge at a measurement frequency of 120 Hz, and expressed as a relative value with the value of conventional process material No. 1 taken as 100%. From Table 1, inventive examples Nα3 to Seed 5 and NO3 all show high strength and high capacitance equal to or higher than conventional examples &1, and it is confirmed that there is no uneven strain in the width direction. Recognize. This indicates that the oxide film has no unevenness, has uniform etching properties, and is of high quality. In addition, productivity is higher than that of the patch type.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、電解コンデンサ
陰極用アルミニウム箔の製造に連続式焼鈍を適用できる
ので、次のような優れた効果が得られる。 ■ エツチング性が均一であり、品質の安定した陰極箔
が得られる。 ■ 結晶粒が微細になり、エツチング性と共に強度の優
れた陰極箔が得られる。 ■ 高強度、高静電容量であることから薄肉化が可能に
なり、コンデンサの軽小化が得られる。 ■ 高強度であることから、エツチング箔の箔切れが防
止でき、エツチングスピードの向上を図ることができ、
生産性が向上する。 特許出頭人  株式会社神戸lK11所代理人弁理士 
中  村   尚
(Effects of the Invention) As detailed above, according to the present invention, continuous annealing can be applied to the production of aluminum foil for an electrolytic capacitor cathode, so the following excellent effects can be obtained. ■ Etching properties are uniform and a cathode foil of stable quality can be obtained. ■ The crystal grains become fine and a cathode foil with excellent etching properties and strength can be obtained. ■ Due to its high strength and high capacitance, it can be made thinner, making the capacitor lighter and smaller. ■ Due to its high strength, it can prevent the etching foil from breaking and improve the etching speed.
Productivity improves. Patent applicant: Patent attorney representing Kobe lK11 Co., Ltd.
Takashi Nakamura

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム箔の最終焼鈍において、連続加熱炉
を用い、焼鈍温度300℃〜500℃の範囲で3分以内
保持の短時間焼鈍を行うことを特徴とする電解コンデン
サ陰極用アルミニウム箔の製造方法。
(1) A method for manufacturing an aluminum foil for an electrolytic capacitor cathode, characterized in that in the final annealing of the aluminum foil, short-time annealing is performed at an annealing temperature in the range of 300°C to 500°C for no more than 3 minutes using a continuous heating furnace. .
(2)前記連続加熱炉に加熱部と冷却部を設け、該冷却
部において150℃以下に冷却した後、巻取る請求項1
に記載の方法。
(2) Claim 1 in which the continuous heating furnace is provided with a heating section and a cooling section, and after being cooled to 150° C. or less in the cooling section, the winding is performed.
The method described in.
JP31168488A 1988-12-09 1988-12-09 Manufacture of aluminum foil for electrolytic capacitor cathode Pending JPH02156053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31168488A JPH02156053A (en) 1988-12-09 1988-12-09 Manufacture of aluminum foil for electrolytic capacitor cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31168488A JPH02156053A (en) 1988-12-09 1988-12-09 Manufacture of aluminum foil for electrolytic capacitor cathode

Publications (1)

Publication Number Publication Date
JPH02156053A true JPH02156053A (en) 1990-06-15

Family

ID=18020225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31168488A Pending JPH02156053A (en) 1988-12-09 1988-12-09 Manufacture of aluminum foil for electrolytic capacitor cathode

Country Status (1)

Country Link
JP (1) JPH02156053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131972A (en) * 2011-12-01 2013-06-05 湖南晟通科技集团有限公司 Aluminum foil continuous annealing method and aluminum foil continuous annealing furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131972A (en) * 2011-12-01 2013-06-05 湖南晟通科技集团有限公司 Aluminum foil continuous annealing method and aluminum foil continuous annealing furnace
CN103131972B (en) * 2011-12-01 2016-09-28 湖南晟通科技集团有限公司 A kind of aluminium foil continuous annealing method and aluminium foil continuous annealing furnace

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
JPH06181146A (en) Aluminum foil for electrolytic capacitor anode and manufacture thereof
JPH02156053A (en) Manufacture of aluminum foil for electrolytic capacitor cathode
JPH02146718A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JP2002173748A (en) Method for producing high purity aluminum foil
JPH0722094B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode
JP2005174949A (en) Method of producing aluminum foil for electrolytic capacitor
JPH01215959A (en) Manufacture of aluminum foil for electrolytic capacitor cathode
JP4037203B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing the same, and electrolytic capacitor
JPH0436444A (en) Manufacture of aluminum foil for electrolytic capacitor electrode
JPH04179110A (en) Aluminum alloy foil for electrolytic capacitor electrode
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP3835118B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2000144352A (en) Production of aluminum foil for electrode of electrolytic capacitor
JPH05200407A (en) Production of aluminum foil for electrolytic capacitor
EP1698706A1 (en) Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
JPH0133546B2 (en)
JPH028354A (en) Manufacture of aluminum foil for electrolytic capacitor anode
JP3328796B2 (en) Aluminum foil for electrolytic capacitors
JPH11290906A (en) Manufacture of aluminum foil for electrode of electrolytic capacitor
JPH1053826A (en) Hard thin aluminum sheet for electrolytic capacitor and its production
JPH05200406A (en) Production of aluminum foil for electrolytic capacitor
JPH03257147A (en) Production of aluminum foil for electrolytic capacitor