JPH02154987A - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JPH02154987A
JPH02154987A JP30804288A JP30804288A JPH02154987A JP H02154987 A JPH02154987 A JP H02154987A JP 30804288 A JP30804288 A JP 30804288A JP 30804288 A JP30804288 A JP 30804288A JP H02154987 A JPH02154987 A JP H02154987A
Authority
JP
Japan
Prior art keywords
flat
tube
heat exchanger
flat plate
flat tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30804288A
Other languages
Japanese (ja)
Inventor
Osao Kido
長生 木戸
Hiroaki Kase
広明 加瀬
Takashi Nakamura
隆 中邨
Akira Aoki
亮 青木
Osamu Aoyanagi
治 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP30804288A priority Critical patent/JPH02154987A/en
Publication of JPH02154987A publication Critical patent/JPH02154987A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Abstract

PURPOSE:To permit the restriction of the ventilating resistance of airflow as well as the improvement of heat exchanging capacity by a method wherein the title heat exchanger is constituted of flat plate fins, provided with a plurality of stages of flat grooves, notched at both ends of the rims, and hollow flat tubes, inserted into the flat grooves from the side surface thereof and enclosed by long sides and short sides, while the thickness of the flat tube in the direction of the short sides thereof and a pitch in the direction of the steps are specified. CONSTITUTION:Flat tubes 10, inserted into and adhered to the flat grooves 8 of flat plate fins 7 from the side surfaces thereof, are constituted of long sides 10a, short sides 10b and partitioning plates 10c, dividing the inside of the pipes, while a plurality of the flat tubes are arranged with a pitch Pd so that the long sides 10a of the flat tubes 10 are arranged in parallel to the direction of airflow A. The thickness (t) in the direction of the short sides 10b of the flat tube 10 is specified within 1-3mm while the pitch Pd is specified within 8-12mm. According to this method, the density of the flat tube 10 and the flat plate fin 7 may be increased and the remarkable increase of heat exchanging capacity as well as the peak point thereof may be obtained while the increase of the ventilating resistance of airflow, which is generated by the increase of the density of the flat tube 10 and the flat plate fin 7, may be restrained by the employment of thin type flat tubes 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調機器や冷凍機器、自動車機器等に使用きれ
、冷媒と空気等の流体間で熱の授受を行なうフィン付熱
交換器に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a finned heat exchanger that can be used in air conditioning equipment, refrigeration equipment, automobile equipment, etc., and that transfers heat between fluids such as refrigerant and air. .

従来の技術 近年、フィン付熱交換器は機器設計の面からコンパクト
化が要求されており、フィン形状及び管内面形状の改善
による高効率化が取り組まれている。
BACKGROUND OF THE INVENTION In recent years, finned heat exchangers have been required to be more compact in terms of equipment design, and efforts have been made to improve efficiency by improving the fin shape and tube inner surface shape.

以下、図面を参照しながら上述した従来のフィン付熱交
換器について説明を行う。
Hereinafter, the conventional finned heat exchanger mentioned above will be explained with reference to the drawings.

第8図と第9図は従来のフィン付熱交換器の形状を示し
、第10図は従来のフィン付熱交換器を構成するフィン
形状、第11図は円管形状を示す。
8 and 9 show the shape of a conventional finned heat exchanger, FIG. 10 shows a fin shape constituting a conventional finned heat exchanger, and FIG. 11 shows a circular tube shape.

第8図から第11図において、1は一定間隔で平行に並
べられた複数の平板フィンで、一定の段方向ピッチP6
で配列されだ円穴2と気流入方向に分割されたルーパ3
が設けられている。4は前記平板フィンの円穴2に挿入
密着された円管で、両端のベンド5により円管4相互が
接続され管内冷媒R流路を構成すると共に、管内には複
数の螺旋16が設けられている。また従来、性能及び加
工性の面から円管4の外径Doは7〜10mm、円管4
の段方向ピッチPdは21〜25mmの範囲が主に用い
られていた。
In FIGS. 8 to 11, reference numeral 1 indicates a plurality of flat plate fins arranged in parallel at regular intervals, with a constant pitch P6 in the step direction.
Oval holes 2 arranged in
is provided. Reference numeral 4 denotes a circular tube that is inserted into the circular hole 2 of the flat fin and is tightly fitted.The circular tubes 4 are connected to each other by bends 5 at both ends to form a refrigerant R flow path in the tube, and a plurality of spirals 16 are provided in the tube. ing. In addition, conventionally, the outer diameter Do of the circular tube 4 was set to 7 to 10 mm from the viewpoint of performance and workability.
A range of 21 to 25 mm was mainly used for the pitch Pd in the step direction.

以上のように構成されたフィン付熱交換器について、以
下第12図と第13図を用いてその動作を説明する。
The operation of the finned heat exchanger constructed as described above will be described below with reference to FIGS. 12 and 13.

平板フィン1間を流れる気流へと円管4内を流れる冷媒
Rとの間で平板フィン1及び円管4t−介して熱交換が
行なわれる。その際、平板フィン1の表面にはルーパ3
が分割して設けられているため、平板フィン1の表面に
生じる気流への温度境界層の発達が抑えられ、気mAと
平板フィン1との熱伝達率の向上が図られている。また
、円管4内では螺旋溝6によって冷媒Rが乱流促進され
るため、円管4と冷媒Rとの熱伝達率の向上が図られて
いる。
Heat exchange is performed between the airflow flowing between the flat plate fins 1 and the refrigerant R flowing in the circular tube 4 via the flat plate fins 1 and the circular tube 4t. At that time, the looper 3 is placed on the surface of the flat fin 1.
Since they are provided separately, the development of a temperature boundary layer in the airflow generated on the surface of the flat fin 1 is suppressed, and the heat transfer coefficient between the air mA and the flat fin 1 is improved. In addition, since the spiral groove 6 promotes turbulence of the refrigerant R within the circular tube 4, the heat transfer coefficient between the circular tube 4 and the refrigerant R is improved.

発明が解決しようとする課題 しかしながら上記のような構成では、円管4の外径Do
が大きいために円管4を横切る気NaAの通風抵抗が大
きく、円管4の段方向ピッチPdを大きくすることによ
る気流Aの通風抵抗の低下と、段方向ピッチPdを小さ
くすることによるフィン効率の向上及び実通過風速の向
上が相反する作用のため、通風抵抗を考慮すると従来以
上の性能向上が望めないという課題を有していた。
Problems to be Solved by the Invention However, in the above configuration, the outer diameter Do of the circular tube 4
is large, so the ventilation resistance of the air NaA crossing the circular tube 4 is large, and the ventilation resistance of the airflow A is reduced by increasing the stepwise pitch Pd of the circular tube 4, and the fin efficiency is reduced by decreasing the stepwise pitch Pd. Since the improvement of the actual passing wind speed and the improvement of the actual passing wind speed have contradictory effects, there has been a problem in that it is impossible to expect a performance improvement over the conventional one when ventilation resistance is taken into consideration.

本発明は上記課題に鑑み、気流の通風抵抗を従来と同等
に抑えながら大幅に熱交換能力を向上するフィン付熱交
換器を提供するものである。
In view of the above-mentioned problems, the present invention provides a finned heat exchanger that significantly improves heat exchange capability while suppressing airflow resistance to the same level as before.

課題を解決するための手段 上記課題を解決するために本発明のフィン付熱交換器は
、前後縁両端部を切り欠いて構成される偏平溝を複数段
設けた平板フィンと、一定間隔で平行に並べられた前記
平板フィンの偏平溝に測面から挿入され、長辺と短辺に
囲まれた中空状の偏平管とから成り、前記、偏平管は長
辺方向相互を平行にして複数段構成され、偏平管の短辺
方向厚さ(を1〜3mmの範囲にし、かつ偏平管の段方
向ピッチPdを8〜12 m rnの範囲に限定すると
いう構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the heat exchanger with fins of the present invention has a flat plate fin having a plurality of flat grooves formed by cutting out both ends of the front and rear edges, and flat grooves arranged parallel to each other at regular intervals. It consists of a hollow flat tube that is inserted into the flat grooves of the flat plate fins lined up from the measuring surface and surrounded by long sides and short sides, and the flat tubes are arranged in multiple stages with their long sides parallel to each other. The thickness of the flat tube in the short side direction is in the range of 1 to 3 mm, and the pitch Pd in the step direction of the flat tube is limited in the range of 8 to 12 mrn.

作用 本発明は上記した構成によって、偏平管と平板フィンの
高密度化が図れ、伝熱面積の増大と熱伝達率の向上及び
フィン効率の向上により大幅な熱交換能力の向上ができ
、かつ偏平管と平板フィンの高密度化によって生じる気
流の通風抵抗の増大を薄型の偏平管の採用によって抑え
ることができる。
Effect of the present invention With the above-described configuration, the density of the flat tube and the flat plate fin can be increased, and the heat exchange capacity can be greatly improved by increasing the heat transfer area, improving the heat transfer coefficient, and improving the fin efficiency. The increase in airflow resistance caused by the increased density of the tube and flat fins can be suppressed by using thin flat tubes.

実施例 以下本発明の実施例のフィン付熱交換器について図面を
参照しながら説明する。
EXAMPLE Hereinafter, a finned heat exchanger according to an example of the present invention will be described with reference to the drawings.

第1図と第2図は本発明の実施例におけるフィン付熱交
換器の形状を示すもので、第3図は平板フィンの形状、
第4図は偏平管の形状を示す。第1図から第4図におい
て、7は一定間隔で平行に並べられた複数の平板フィン
で、気流入方向の前後縁両端を切り欠いて形成され一定
の段方向ピッチPdで配列された偏平溝8と、気流入方
向に分割されたルーパ9が平板フィン7の表面に設けら
れている。10は前記平板フィンの偏平溝8に測面から
挿入密着された偏平管で、長辺10aと短辺10b及び
管内を分割する分割板10cとから構成され、長辺10
aが気流入方向と。平行となるように段ピツチPdで複
数段設けられている。11は偏平管10の両端に接続し
たヘッダで、偏平管10と共に冷媒Rの管内流路を構成
している。
1 and 2 show the shape of a finned heat exchanger in an embodiment of the present invention, and FIG. 3 shows the shape of a flat fin,
FIG. 4 shows the shape of the flat tube. In FIGS. 1 to 4, reference numeral 7 denotes a plurality of flat plate fins arranged in parallel at regular intervals, and flat grooves formed by cutting out both front and rear edges in the air inflow direction and arranged at a constant pitch Pd in the stepped direction. 8 and a looper 9 divided in the air inflow direction are provided on the surface of the flat plate fin 7. Reference numeral 10 denotes a flat tube that is inserted into the flat groove 8 of the flat plate fin from the measuring surface and is in close contact, and is composed of a long side 10a, a short side 10b, and a dividing plate 10c that divides the inside of the tube.
a is the air inflow direction. A plurality of parallel stages are provided with a stage pitch Pd. 11 is a header connected to both ends of the flat tube 10, and together with the flat tube 10 constitutes an internal flow path for the refrigerant R.

また平板フィン7には偏平溝8の前後に排水路12が確
保されている。更に偏平管10の短辺10b方向厚さt
は1〜3mmの範囲に、段ピツチPdは8〜12mmの
範囲に規定されている。
Further, drain channels 12 are provided in the flat plate fin 7 before and after the flat groove 8. Furthermore, the thickness t of the flat tube 10 in the direction of the short side 10b
is defined in the range of 1 to 3 mm, and the step pitch Pd is defined in the range of 8 to 12 mm.

以上のように構成されたフィン付熱交換器ついて、以下
第5図と第6図を用いてその動作について説明する。
The operation of the finned heat exchanger constructed as above will be described below with reference to FIGS. 5 and 6.

平板フィン7間を流れる気流Aとへラダ11を経て偏平
管10内を流れる冷媒Rとの間で平板フィン7及び偏平
管10を介して熱交換が行なわれる。
Heat exchange is performed between the airflow A flowing between the flat fins 7 and the refrigerant R flowing through the flat tube 10 via the ladder 11 via the flat fins 7 and the flat tube 10.

その際、平板フィン7の表面にはルーパ9が設けられて
いるため、平板フィン7の表面に生じる気流Aの温度境
界層の発達が抑えられ、気流Aと平板フィン7との熱伝
達率の向上が図られている。
At this time, since the looper 9 is provided on the surface of the flat fin 7, the development of a temperature boundary layer of the airflow A generated on the surface of the flat fin 7 is suppressed, and the heat transfer coefficient between the airflow A and the flat fin 7 is reduced. Improvements are being made.

また、偏平管10の管内は分割板10cによって微小流
路化され、偏平管10と冷媒Rとの熱伝達率の向上が図
られている。
Moreover, the inside of the flat tube 10 is made into microchannels by the dividing plate 10c, and the heat transfer coefficient between the flat tube 10 and the refrigerant R is improved.

また薄型の偏平管10の採用により気流Aの通風抵抗を
下げることができ、従来例と同等通風抵抗基準では偏平
管10と平板フィン7の高密度化が可能となり、伝熱面
積の増大と熱伝達率の向上及びフィン効率の向上により
大幅な熱交換能力の向上ができる。
In addition, by adopting the thin flat tube 10, the ventilation resistance of the airflow A can be lowered, and with the same ventilation resistance standard as the conventional example, it is possible to increase the density of the flat tube 10 and the flat plate fins 7, increasing the heat transfer area and increasing the heat transfer area. Heat exchange capacity can be significantly improved by improving the transfer coefficient and fin efficiency.

また、第7図に本発明の実施例におけるフィン付熱交換
器の偏平管10の段ピツチPdと温度効率及び通風抵抗
との関係について解析した結果を示している。この結果
によれば、偏平管10の短径10b方向厚さtが1〜3
mmで段ピツチPdが8〜12mmのときに気流Aの通
風抵抗を増大させずに温度効率の最大範囲を得ることが
できる。
Further, FIG. 7 shows the results of an analysis of the relationship between the stage pitch Pd of the flat tubes 10 of the finned heat exchanger according to the embodiment of the present invention, the temperature efficiency, and the ventilation resistance. According to this result, the thickness t in the short axis 10b direction of the flat tube 10 is 1 to 3
When the step pitch Pd is 8 to 12 mm in mm, the maximum range of temperature efficiency can be obtained without increasing the ventilation resistance of the air flow A.

更に、本熱交換器を蒸発器として使用し、熱交換器外面
に凝縮水が滞留する場合にも、平板フィン7の表面に排
水路12が確保しであるために凝縮水は偏平管10の上
面に溜ることなく排水路12に沿って下段へ落下し、通
風抵抗が増大することもない。
Furthermore, even when this heat exchanger is used as an evaporator and condensed water accumulates on the outer surface of the heat exchanger, since the drainage channel 12 is ensured on the surface of the flat plate fins 7, the condensed water will flow through the flat tubes 10. It does not accumulate on the upper surface and falls to the lower level along the drainage channel 12, so that ventilation resistance does not increase.

以上のように本実施例によれば、前後縁両端部を切り欠
いて構成される偏平溝8を複数段設けた平板フィン7と
、一定間隔で平行に並べられた前記平板フィン7の偏平
溝8に測面から挿入され、長辺10aと短辺10bに囲
まれた中空状の偏平管10とから成り、前記偏平管10
は長辺10a方向相互を平行にして複数段構成され、偏
平管10の短辺10b方向厚さtを1〜3mmの範囲に
し、かつ偏平管10の段方向ピッチPdを8〜12mm
の範囲に限定することにより、偏平管10と平板フィン
7の高密度化が図れ、伝熱面積の増大と熱伝達率の向上
及びフィン効率の向上により大幅な熱交換能力の向上と
そのピーク点を得ることができ、かつ偏平管10と平板
フィン7の高密度化によって生じる気流Aの通風抵抗の
増大を薄型の偏平管10の採用によって抑えることがで
き、従来例と同等通風抵抗レベルに抑えることができる
。また、この効果をフィン付熱交換器の小型化に適用し
た場合には従来のフィン付熱交換器(円管外’tV 7
 m m・段ピツチ21mm)に比べて容積を約2分の
1化できる。更に、偏平管10を平板フィン7の測面か
ら偏平溝8に挿入するために、偏平管10の挿入密着が
極めて容易である。また、本熱交換器を蒸発器として使
用した場合にも凝縮水の排水は良好で通風抵抗が増大す
ることもない。
As described above, according to this embodiment, the flat plate fin 7 has a plurality of flat grooves 8 formed by cutting out both ends of the front and rear edges, and the flat grooves of the flat plate fin 7 are arranged in parallel at regular intervals. It consists of a hollow flat tube 10 that is inserted from the measuring surface into the tube 8 and surrounded by a long side 10a and a short side 10b, and the flat tube 10
is composed of multiple stages with the long sides 10a parallel to each other, the thickness t of the flat tube 10 in the short side 10b direction is in the range of 1 to 3 mm, and the pitch Pd of the flat tube 10 in the step direction is 8 to 12 mm.
By limiting the range to the above range, it is possible to increase the density of the flat tube 10 and the flat plate fin 7, and by increasing the heat transfer area, improving the heat transfer coefficient, and improving the fin efficiency, the heat exchange capacity is significantly improved and its peak point is increased. In addition, by adopting the thin flat tube 10, the increase in ventilation resistance of the airflow A caused by the high density of the flat tube 10 and the flat plate fins 7 can be suppressed, and the ventilation resistance level can be suppressed to the same level as the conventional example. be able to. In addition, when this effect is applied to downsizing the finned heat exchanger, it is possible to reduce the size of the conventional finned heat exchanger (outside the circular tube 'tV 7
The volume can be reduced to about half compared to the 21 mm step pitch. Further, since the flat tube 10 is inserted into the flat groove 8 from the measured surface of the flat plate fin 7, it is extremely easy to insert the flat tube 10 into tight contact. Furthermore, even when this heat exchanger is used as an evaporator, condensed water can be drained well and ventilation resistance does not increase.

発明の効果 以上のように本発明は、前後縁両端部を切り欠いて構成
される偏平溝を複数段設けた平板フィンと、一定間隔で
平行に並べられた前記平板フィンの偏平溝に測面から挿
入され、長辺と短辺に囲まれた中空状の偏平管とから成
り、前記偏平管は長辺方向相互を平行にして複数段構成
され、偏平管の短辺方向厚さtを1〜3 ro mの範
囲にし、かつ偏平管の段方向ピッチPdを8〜12mm
の範囲に限定することにより、偏平管と平板フィンの高
密度化が図れ、伝熱面積の増大と熱伝達率の向上及びフ
ィン効率の向上により大幅な熱交換能力の向上とそのピ
ーク点を得ることができ、かつ偏平管と平板フィンの高
密度化によって生じる気流の通風抵抗の増大を薄型の偏
平管の採用によって抑えることができ、従来例と同等通
風抵抗レベルに抑えることができる。また、この効果を
フィン付熱交換器の小型化に適用した場合には従来のフ
ィン付熱交換器に比べて容積を約2分の1化できる。
Effects of the Invention As described above, the present invention provides a flat plate fin having a plurality of flat grooves formed by cutting out both ends of the front and rear edges, and a flat groove in the flat grooves arranged in parallel at regular intervals. It consists of a hollow flat tube inserted into the tube and surrounded by a long side and a short side, and the flat tube has a plurality of stages with the long sides parallel to each other, and the thickness t of the flat tube in the short side direction is 1. ~3 rom, and the pitch Pd of the flat tubes in the row direction is 8 to 12 mm.
By limiting the range to , it is possible to increase the density of the flat tube and flat plate fin, and by increasing the heat transfer area, improving the heat transfer coefficient, and improving the fin efficiency, it is possible to significantly improve the heat exchange capacity and obtain its peak point. In addition, the increase in airflow resistance caused by the high density of the flat tube and flat plate fins can be suppressed by using thin flat tubes, and the ventilation resistance can be suppressed to the same level as the conventional example. Furthermore, when this effect is applied to downsizing a finned heat exchanger, the volume can be reduced to about half that of a conventional finned heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるフィン付熱交換器の形
状を示す斜視図、第2図は第1図の要部斜視図、第3図
は第1図の平板フィンの形状を示す平面図、第4図は第
1図の偏平管の形状を示す断面図、第5図は第1図の使
用状態における気流の流動状態を示す断面図、第6図は
第1図の冷媒回路を示す斜視図、第7図は第1図の偏平
管の段ピツチと温度効率及び通風抵抗との関係を示すグ
ラフ、第8図は従来のフィン付熱交換器の形状を示す斜
視図、第9図は第8図の要部斜視図、第10図は第8図
の平板フィンの形状を示す平面図、第11図は第8図の
円管の形状を示す断面図、第12図は第8図の使用状態
における気流の流動状!!lを示す断面図、第13図は
第8図の使用状態における冷媒の流動状態を示す断面図
である。 7・・・平板フィン、8・・・偏平溝、10・・・偏平
管。 代理人の氏名 弁理士 粟野重孝 他1名第 図 第 図 畔″/、國 許 条 12−・− 革雁フィ I4   穴 ルーバ 子IF7に路 ン 第 図 第 図 鳥 平 宮 ル ノで 10−−一 偶 乎 鵞 n 第 図 段ピッ千Pd (mrn) 第10図 第 図 纂 図 第12メ
Fig. 1 is a perspective view showing the shape of a finned heat exchanger in an embodiment of the present invention, Fig. 2 is a perspective view of the main part of Fig. 1, and Fig. 3 is a plan view showing the shape of the flat plate fin in Fig. 1. Figure 4 is a cross-sectional view showing the shape of the flat tube in Figure 1, Figure 5 is a cross-sectional view showing the flow state of airflow in the operating condition of Figure 1, and Figure 6 is a cross-sectional view showing the refrigerant circuit in Figure 1. 7 is a graph showing the relationship between the step pitch of the flat tube shown in FIG. 1, temperature efficiency, and ventilation resistance. FIG. 8 is a perspective view showing the shape of a conventional finned heat exchanger. The figure is a perspective view of the main part of FIG. 8, FIG. 10 is a plan view showing the shape of the flat fin in FIG. 8, FIG. 11 is a sectional view showing the shape of the circular tube in FIG. 8, and FIG. The state of air flow in the operating condition shown in Figure 8! ! FIG. 13 is a cross-sectional view showing the flow state of the refrigerant in the operating state of FIG. 8. 7... Flat plate fin, 8... Flat groove, 10... Flat tube. Name of agent: Patent attorney Shigetaka Awano and 1 other person (Fig. 1) /, National Permit Article 12--- Kakuganfi I4 Anare Rubako IF7 Road to Torihiramiya Runo 10--1 Even 乎 鵞n Fig. 10 fig.

Claims (1)

【特許請求の範囲】[Claims]  前後縁両端部を切り欠いて構成される偏平溝を複数段
設けた平板フィンと、一定間隔で平行に並べられた前記
平板フィンの偏平溝に測面から挿入され、長辺と短辺に
囲まれた中空状の偏平管とから成り、前記偏平管は長辺
方向相互を平行にして複数段構成され、偏平管の短辺方
向厚さtを1〜3mmの範囲にし、かつ偏平管の段方向
ピッチPdを8〜12mmの範囲にしたことを特徴とす
るフィン付熱交換器
A flat plate fin has a plurality of flat grooves formed by cutting out both ends of the front and rear edges, and is inserted from the measuring surface into the flat grooves of the flat plate fins arranged in parallel at regular intervals, and is surrounded by long and short sides. The flat tube consists of a plurality of stages with their long sides parallel to each other, and the thickness t of the flat tube in the short side direction is in the range of 1 to 3 mm, and the stages of the flat tube are A finned heat exchanger characterized in that the directional pitch Pd is in the range of 8 to 12 mm.
JP30804288A 1988-12-06 1988-12-06 Finned heat exchanger Pending JPH02154987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30804288A JPH02154987A (en) 1988-12-06 1988-12-06 Finned heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30804288A JPH02154987A (en) 1988-12-06 1988-12-06 Finned heat exchanger

Publications (1)

Publication Number Publication Date
JPH02154987A true JPH02154987A (en) 1990-06-14

Family

ID=17976183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30804288A Pending JPH02154987A (en) 1988-12-06 1988-12-06 Finned heat exchanger

Country Status (1)

Country Link
JP (1) JPH02154987A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769669A1 (en) * 1995-10-17 1997-04-23 Norsk Hydro Technology B.V. Heat exchanger
WO2000019162A1 (en) * 1998-09-30 2000-04-06 Norsk Hydro Asa Heat exchanger fin
EP1174673A2 (en) * 2000-07-18 2002-01-23 Valeo Thermique Moteur Heat exchange module, more particularly for automotive vehicle, and process for manufacturing same
WO2002090856A1 (en) * 2001-05-04 2002-11-14 Calsonic Kansei Uk Limited Heat exchanger system
JP2003262485A (en) * 2002-03-07 2003-09-19 Mitsubishi Electric Corp Fin tube type heat exchanger, its manufacturing method, and refrigeration air conditioner
WO2007028462A1 (en) * 2005-09-02 2007-03-15 Behr Gmbh & Co. Kg Mechanically joined heat exchanger
US20190049185A1 (en) * 2016-04-22 2019-02-14 Mitsubishi Electric Corporation Heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769669A1 (en) * 1995-10-17 1997-04-23 Norsk Hydro Technology B.V. Heat exchanger
WO1997014927A1 (en) * 1995-10-17 1997-04-24 Norsk Hydro Technology B.V. Heat exchanger
WO2000019162A1 (en) * 1998-09-30 2000-04-06 Norsk Hydro Asa Heat exchanger fin
EP1174673A2 (en) * 2000-07-18 2002-01-23 Valeo Thermique Moteur Heat exchange module, more particularly for automotive vehicle, and process for manufacturing same
EP1174673A3 (en) * 2000-07-18 2002-07-31 Valeo Thermique Moteur Heat exchange module, more particularly for automotive vehicle, and process for manufacturing same
WO2002090856A1 (en) * 2001-05-04 2002-11-14 Calsonic Kansei Uk Limited Heat exchanger system
JP2003262485A (en) * 2002-03-07 2003-09-19 Mitsubishi Electric Corp Fin tube type heat exchanger, its manufacturing method, and refrigeration air conditioner
WO2007028462A1 (en) * 2005-09-02 2007-03-15 Behr Gmbh & Co. Kg Mechanically joined heat exchanger
US20190049185A1 (en) * 2016-04-22 2019-02-14 Mitsubishi Electric Corporation Heat exchanger
US10941985B2 (en) * 2016-04-22 2021-03-09 Mitsubishi Electric Corporation Heat exchanger

Similar Documents

Publication Publication Date Title
JP2002318087A (en) Heat exchanger
JPH09133488A (en) Heat exchanger with fin
JPS58217195A (en) Heat exchanger
WO2005024309A1 (en) Finned heat exchanger and method of manufacturing the same
JPH02154987A (en) Finned heat exchanger
JP4068312B2 (en) Carbon dioxide radiator
JPH07109353B2 (en) Heat exchanger with fins
KR20150030201A (en) Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2004019999A (en) Heat exchanger with fin, and manufacturing method therefor
JPS61153498A (en) Finned heat exchanger
JP2568968Y2 (en) Heat exchanger
JPH02251093A (en) Finned heat exchanger
JPH0363499A (en) Heat exchanger with fins
JPH02154986A (en) Finned heat exchanger
JP2006097953A (en) Heat exchanger with fin
JPH02133797A (en) Heat exchanger with fin
JPS62112997A (en) Heat exchanger
JPH07318276A (en) Evaporator with fins
JPH0313794A (en) Heat exchanger with fin
JP2006162183A (en) Heat exchanger with fin
JPH0331693A (en) Finned heat exchanger
JPH05340686A (en) Heat-exchanger
JPH10185359A (en) Finned heat exchanger
JPS58214783A (en) Heat exchanger
JPH02309193A (en) Heat exchanger with fin