JPH07318276A - Evaporator with fins - Google Patents

Evaporator with fins

Info

Publication number
JPH07318276A
JPH07318276A JP10544194A JP10544194A JPH07318276A JP H07318276 A JPH07318276 A JP H07318276A JP 10544194 A JP10544194 A JP 10544194A JP 10544194 A JP10544194 A JP 10544194A JP H07318276 A JPH07318276 A JP H07318276A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
boiling point
flows
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10544194A
Other languages
Japanese (ja)
Inventor
Osao Kido
長生 木戸
Mitsunori Taniguchi
光▲徳▼ 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP10544194A priority Critical patent/JPH07318276A/en
Publication of JPH07318276A publication Critical patent/JPH07318276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent the decrease of the heat transfer coefficient of refrigerant side and to obtain suitable heat exchanging rate by increasing the pitch of fins in which a heat transfer tube in which the refrigerant component having low boiling point of refrigerant flows is passed larger than that of fins in which a heat transfer tube in which the refrigerant component having high boiling point of the refrigerant flows is passed. CONSTITUTION:Air current is indirectly heat exchanged with refrigerant via fins 6a, 6b and heat transfer tubes 7a, 7b. In this case, since single-component refrigerant flows through the channels 9a, 9b in the tubes 7a, 7b, the heat transfer coefficient of refrigerant side can be raised than that of refrigerant which flows to an evaporator with fins flows through the channels 9a, 9b, thereby preventing the decrease of the heat transfer coefficient of the refrigerant side. Further, the pitch of the fins 6b in which the tube 7b in which refrigerant having low boiling point flows is passed is increased larger than that of the fins 6a in which the tubes 7a in which refrigerant having high boiling point is passed. Thus, the decrease of the flow rate of the air current of the part in which the refrigerant having the low boiling point flows and water droplets, frost are easily adhered is suppressed to the same degree as that of the refrigerant having the high boiling point in which water droplets are hardly adhered to suppress the decrease of its heat exchanging rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気調和機や冷凍機器、
自動車機器等の相変化する冷媒と空気等の流体間で熱の
授受を行うフィン付き蒸発器に関するもので、特にオゾ
ン層破壊を防ぐ代替冷媒の候補として近年あげられてい
る非共沸混合冷媒に対応したフィン付き蒸発器に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to an air conditioner, a refrigerating machine,
The present invention relates to a finned evaporator that transfers heat between a phase-changeable refrigerant such as automobile equipment and a fluid such as air. Especially, it is a non-azeotropic mixed refrigerant that has been recently proposed as a candidate for an alternative refrigerant that prevents ozone layer destruction. It relates to a corresponding finned evaporator.

【0002】[0002]

【従来の技術】近年、フィン付き蒸発器は機器設計の面
からコンパクト化が要求されており、フィン表面にスリ
ットやル−バ−などを設けたり、伝熱管の内面に溝やキ
ャビティを設けたり、また伝熱管の細径化を図る等の工
夫により大幅な小型高効率化が図られている。従来のフ
ィン付き蒸発器としては論文「小型高効率熱交換器(Na
tional Technical Report Vol.35 No.6 Dec. 1989 P7
1)」で示している形状が一般的である。
2. Description of the Related Art Recently, finned evaporators have been required to be compact in view of equipment design. For example, slits or louvers are provided on the fin surface, or grooves or cavities are provided on the inner surface of the heat transfer tube. In addition, the size and efficiency of the heat transfer tubes have been greatly reduced by devising measures such as making the heat transfer tubes thinner. As a conventional finned evaporator, the paper "Small and high efficiency heat exchanger (Na
tional Technical Report Vol.35 No.6 Dec. 1989 P7
The shape shown in 1) is common.

【0003】以下、図面を参照しながら従来のフィン付
き蒸発器の概略を説明する。図2は従来のフィン付き蒸
発器の正面図である。図2において、1は一定間隔で平
行に並べられフィンで、2はフィン1を貫通し、上下方
向に複数段設けられた伝熱管である。3は分流器で、伝
熱管2を連結して形成される冷媒の流路4の入口側に連
結され、分流器3によって流路4は流路4aと流路4b
に分岐されている。また5は、分岐された流路4aと流
路4bとを合流する合流器である。
An outline of a conventional finned evaporator will be described below with reference to the drawings. FIG. 2 is a front view of a conventional finned evaporator. In FIG. 2, 1 is a fin that is arranged in parallel at regular intervals, and 2 is a heat transfer tube that penetrates the fin 1 and that is provided in a plurality of stages in the vertical direction. Reference numeral 3 denotes a flow divider, which is connected to an inlet side of a refrigerant flow passage 4 formed by connecting the heat transfer tubes 2. The flow divider 4 divides the flow passage 4 into a flow passage 4a and a flow passage 4b.
Has been branched into. Further, 5 is a confluencer that joins the branched flow paths 4a and 4b.

【0004】以上のように構成されたフィン付き蒸発器
では、フィン1の相互間を気流が流動し、フィン1及び
伝熱管2の外面と気流とが熱交換を行うと同時に、冷媒
は分流器3によって分流された後、伝熱管2の管内の流
路4aと流路4bを流動し、冷媒と伝熱管2の内面とが
熱交換を行う。
In the finned evaporator having the above-described structure, the airflow flows between the fins 1 and the fins 1 and the outer surfaces of the heat transfer tubes 2 exchange heat with the airflow. After the flow is divided by 3, the flow path 4a and the flow path 4b in the heat transfer tube 2 flow, and the refrigerant and the inner surface of the heat transfer tube 2 exchange heat.

【0005】その結果、フィン1及び伝熱管2を介して
気流と冷媒が間接的に熱交換を行う。この際、気流側の
熱伝達率は冷媒側の熱伝達率に比べてかなり小さいた
め、気流側ではフィン1によって伝熱面積を拡大するこ
とにより熱抵抗の低減をはかっている。
As a result, the air flow and the refrigerant indirectly exchange heat via the fins 1 and the heat transfer tubes 2. At this time, the heat transfer coefficient on the air flow side is considerably smaller than the heat transfer coefficient on the refrigerant side. Therefore, on the air flow side, the fins 1 increase the heat transfer area to reduce the heat resistance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、オゾン
層破壊を防ぐ代替冷媒の候補として近年あげられている
非共沸混合冷媒を従来のフィン付き蒸発器の冷媒として
用いると、冷媒側の熱伝達率が単一成分冷媒の熱伝達率
に比べて大きく低下し、その結果、冷媒と気流との熱交
換量が低下するという課題を有していた。
However, when a non-azeotropic mixed refrigerant, which has recently been proposed as a candidate for an alternative refrigerant for preventing ozone depletion, is used as the refrigerant for a conventional finned evaporator, the heat transfer coefficient on the refrigerant side is increased. Is significantly lower than the heat transfer coefficient of the single-component refrigerant, and as a result, the amount of heat exchange between the refrigerant and the air flow is reduced.

【0007】また、上述したフィン付き蒸発器は、フィ
ン表面が気流の露点温度以下で使用されることがほとん
どであり、また場合によってはフィン表面がマイナス温
度で使用されることもある。
In the finned evaporator described above, the fin surface is mostly used at a temperature below the dew point of the air flow, and in some cases, the fin surface is used at a negative temperature.

【0008】このような条件では、フィン表面に水滴や
霜が付着するために、圧力損失が徐々に増大して気流の
流量が低下し、このことによっても熱交換量が低下する
という課題も有していた。
Under these conditions, water drops and frost adhere to the fin surface, so that the pressure loss gradually increases and the flow rate of the air flow decreases, which also causes a problem that the heat exchange amount decreases. Was.

【0009】本発明は上記従来の課題を解決するもの
で、冷媒に非共沸混合冷媒を用いても、冷媒側の熱伝達
率の低下を防ぎ、単一成分冷媒を用いた場合と同等の熱
交換量を得るとともに、フィン表面に水滴や霜が付着す
ることによる熱交換量の低下度合いの小さいフィン付き
蒸発器を提供することを目的とする。
The present invention solves the above-mentioned conventional problems. Even when a non-azeotropic mixed refrigerant is used as the refrigerant, it prevents the reduction of the heat transfer coefficient on the refrigerant side and is equivalent to the case where a single component refrigerant is used. An object of the present invention is to provide a fin-equipped evaporator in which the amount of heat exchange is obtained and the degree of decrease in the amount of heat exchange due to water droplets or frost adhering to the fin surface is small.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に本発明のフィン付き蒸発器は、伝熱管相互を連結して
形成される冷媒の流路の入口側に、充てん塔などの非共
沸混合冷媒を組成比の異なる複数の非共沸混合冷媒、望
ましくは単一成分冷媒に分離する機能を持つ冷媒分離器
を備え、前記冷媒のうち低沸点成分の冷媒が流れる伝熱
管が貫通するフィンのピッチを高沸点成分の冷媒が流れ
る伝熱管が貫通するフィンのピッチよりも大きくする構
成を有している。
In order to achieve this object, the finned evaporator of the present invention is provided with a non-coordinator such as a packing tower at the inlet side of a refrigerant flow path formed by connecting heat transfer tubes to each other. A plurality of non-azeotropic mixed refrigerants having different composition ratios, preferably a single-component refrigerant separator, is provided with a refrigerant separator, and a heat transfer tube through which a low-boiling-point refrigerant flows. The pitch of the fins is made larger than the pitch of the fins through which the heat transfer tubes through which the high boiling point refrigerant flows.

【0011】また、高沸点成分の冷媒が流れる伝熱管を
低沸点成分の冷媒が流れる伝熱管よりも上部に位置する
構成を有している。
Further, the heat transfer tube through which the high boiling point component refrigerant flows is located above the heat transfer tube through which the low boiling point component refrigerant flows.

【0012】[0012]

【作用】この構成によって、本発明のフィン付き蒸発器
は、フィン付き蒸発器に流入する非共沸混合冷媒よりも
組成比が単一成分冷媒に近い非共沸混合冷媒、望ましく
は単一成分冷媒を伝熱管内の流路に流すことができるた
め、フィン付き蒸発器に流入する非共沸混合冷媒がその
ままの組成で流路を流れるよりも冷媒側の熱伝達率を高
くすることができ、フィン付き蒸発器の熱交換量の低下
を防ぐことができる。
With this structure, the finned evaporator of the present invention is a non-azeotropic mixed refrigerant having a composition ratio closer to that of a single-component refrigerant than the non-azeotropic mixed refrigerant flowing into the finned evaporator, preferably a single-component refrigerant. Since the refrigerant can flow in the flow path in the heat transfer tube, the heat transfer coefficient on the refrigerant side can be made higher than that of the non-azeotropic mixed refrigerant flowing into the finned evaporator with the same composition as that in the flow path. It is possible to prevent the heat exchange amount of the finned evaporator from decreasing.

【0013】また、低沸点成分の冷媒が流れる伝熱管が
貫通するフィンのピッチを高沸点成分の冷媒が流れる伝
熱管が貫通するフィンのピッチよりも大きくすることに
より、水滴や霜が付着しやすい低沸点成分の冷媒が流れ
る部分の気流の流量の低下を、水滴や霜が付着しにくい
高沸点成分の冷媒が流れる部分と同程度に抑えることが
できるため、水滴や霜の付着による熱交換量の低下を抑
えることができる。
Further, by making the pitch of the fins through which the heat transfer tubes through which the low boiling point component refrigerant flows penetrate larger than the pitch of the fins through which the heat transfer tubes through which the high boiling point component refrigerant flows passes, water droplets and frost are likely to adhere. Since the flow rate of the air flow in the part where the low boiling point component refrigerant flows can be suppressed to the same level as in the part where the high boiling point component refrigerant where the water droplets or frost does not easily adhere can be suppressed, the amount of heat exchange due to the attachment of water drops or frost Can be suppressed.

【0014】また、高沸点成分の冷媒が流れる伝熱管を
低沸点成分の冷媒が流れる伝熱管よりも上部に位置する
ことにより、低沸点成分の冷媒が流れる伝熱管が貫通す
るフィンの表面に生成された大量の水滴が重力の影響で
流下する際に、高沸点成分の冷媒が流れる伝熱管が貫通
するフィンの表面の熱伝達を阻害することもなく、高沸
点成分冷媒側の熱交換を阻害することもないため、この
ことによっても熱交換量の低下を抑えることができる。
Further, by arranging the heat transfer tube through which the high boiling point component refrigerant flows above the heat transfer tube through which the low boiling point component refrigerant flows, the heat transfer tube through which the low boiling point component refrigerant flows is formed on the surface of the fin. When a large amount of water droplets flow down due to the effect of gravity, they do not hinder the heat transfer on the surface of the high boiling point component refrigerant, without hindering the heat transfer on the surface of the fins through which the heat transfer tubes through which the high boiling point component refrigerant flows. Since this also does not occur, this also makes it possible to suppress the decrease in the heat exchange amount.

【0015】[0015]

【実施例】以下、本発明によるフィン付き蒸発器の実施
例について、図面を参照しながら説明する。
Embodiments of the finned evaporator according to the present invention will be described below with reference to the drawings.

【0016】図1は、本発明の実施例によるフィン付き
蒸発器の正面図である。図1において、6a、6bは一
定間隔で平行に並べられフィンで、重力方向に対して上
部のフィン6aのフィンピッチは下部のフィン6bのフ
ィンピッチよりも小さくなっている。
FIG. 1 is a front view of a finned evaporator according to an embodiment of the present invention. In FIG. 1, 6a and 6b are fins arranged in parallel at regular intervals, and the fin pitch of the upper fin 6a is smaller than the fin pitch of the lower fin 6b in the direction of gravity.

【0017】7a、7bはフィン6a,6bを貫通する
伝熱管で、伝熱管7aが、上部のフィン6aを、また伝
熱管7bが下部のフィン6bをそれぞれ貫通し、熱的に
結合している。
Reference numerals 7a and 7b denote heat transfer tubes penetrating the fins 6a and 6b. The heat transfer tube 7a penetrates the upper fin 6a and the heat transfer tube 7b penetrates the lower fin 6b to be thermally coupled. .

【0018】8は充てん塔などの非共沸混合冷媒を組成
比の異なる複数の非共沸混合冷媒、望ましくは単一成分
冷媒に分離する機能を持つ冷媒分離器であり、伝熱管7
a、7bを連結して形成される冷媒の流路9の入口側に
連結され、冷媒分離器8によって分離される冷媒のうち
高沸点成分の冷媒は上部の流路9aに、また低沸点成分
の冷媒は下部の流路9bへ分岐している。また10は分
岐された流路9aと流路9bとを合流する合流器であ
る。
Reference numeral 8 is a refrigerant separator having a function of separating a non-azeotropic mixed refrigerant such as a packed tower into a plurality of non-azeotropic mixed refrigerants having different composition ratios, preferably a single component refrigerant.
a, 7b are connected to the inlet side of the refrigerant channel 9 formed by connecting them, and the refrigerant having a high boiling point component among the refrigerants separated by the refrigerant separator 8 is in the upper channel 9a and the low boiling point component. The refrigerant is branched into the lower channel 9b. Further, 10 is a confluencer that joins the branched flow passages 9a and 9b.

【0019】以上のように構成されたフィン付き蒸発器
について、冷媒に非共沸混合冷媒を用いた場合の動作を
説明する。フィン6a、6bの相互間を気流が流動し、
フィン6a、6b及び伝熱管7a、7bの外面と気流と
が熱交換を行うと同時に、冷媒は、冷媒分流器8で組成
比が単一成分に近い冷媒、望ましくは単一成分冷媒に分
離された後、分離された冷媒のうち高沸点成分の冷媒は
上部の伝熱管7aの管内の流路9aを流動し、また低沸
点成分の冷媒は下部の伝熱管7bの管内の流路9bを流
動し、伝熱管7a、7bの内面とそれぞれ熱交換を行
う。
The operation of the finned evaporator constructed as described above when a non-azeotropic mixed refrigerant is used as the refrigerant will be described. The airflow flows between the fins 6a and 6b,
At the same time that the fins 6a, 6b and the outer surfaces of the heat transfer tubes 7a, 7b exchange heat with the airflow, the refrigerant is separated into a refrigerant having a composition ratio close to that of a single component, preferably a single component refrigerant, by a refrigerant distributor 8. After that, of the separated refrigerants, the high boiling point component refrigerant flows in the channel 9a inside the upper heat transfer tube 7a, and the low boiling point component refrigerant flows in the channel 9b inside the lower heat transfer tube 7b. Then, heat is exchanged with the inner surfaces of the heat transfer tubes 7a and 7b.

【0020】その結果、フィン6a、6b及び伝熱管7
a、7bを介して気流と冷媒が間接的に熱交換を行う。
As a result, the fins 6a, 6b and the heat transfer tube 7
The airflow and the refrigerant indirectly exchange heat via a and 7b.

【0021】この際、組成比が単一成分冷媒に近い冷
媒、望ましくは単一成分冷媒が伝熱管7a、7b内の流
路9a、9bを流動するために、フィン付き蒸発器に流
入する冷媒が流路9a、9bを流動するよりも冷媒側の
熱伝達率を高くすることができ、冷媒に非共沸混合冷媒
を用いたことによる冷媒側の熱伝達率の低下を防ぐこと
ができる。
At this time, a refrigerant having a composition ratio close to that of a single-component refrigerant, preferably a single-component refrigerant, flows through the flow passages 9a and 9b in the heat transfer tubes 7a and 7b, so that the refrigerant flows into the finned evaporator. The heat transfer coefficient on the refrigerant side can be made higher than that flowing through the flow paths 9a and 9b, and the decrease in the heat transfer coefficient on the refrigerant side due to the use of the non-azeotropic mixed refrigerant as the refrigerant can be prevented.

【0022】また、低沸点成分の冷媒が流れる伝熱管7
bが貫通するフィン6bのピッチを高沸点成分の冷媒が
流れる伝熱管7aが貫通するフィン6aのピッチよりも
大きくすることにより、水滴や霜が付着しやすい低沸点
成分の冷媒が流れる部分の気流の流量の低下を、水滴や
霜が付着しにくい高沸点成分の冷媒が流れる部分と同程
度に抑えることができるため、水滴や霜の付着時による
熱交換量の低下を抑えることができる。
Further, the heat transfer tube 7 through which the refrigerant having a low boiling point flows.
By making the pitch of the fins 6b through which the b penetrates larger than the pitch of the fins 6a through which the heat transfer tubes 7a through which the refrigerant of the high boiling point component flows, the air flow of the portion through which the refrigerant of the low boiling point component where water droplets or frost easily attach flows Since the decrease in the flow rate can be suppressed to the same extent as the portion in which the high boiling point component refrigerant in which water drops or frost hardly adheres can be suppressed, it is possible to suppress the decrease in the heat exchange amount due to the adhesion of water drops or frost.

【0023】また、高沸点成分の冷媒が流れる伝熱管7
aを低沸点成分の冷媒が流れる伝熱管7bよりも上部に
位置することにより、低沸点成分の冷媒が流れる伝熱管
7bが貫通するフィン6bの表面に生成される大量の水
滴が重力の影響で流下する際に、高沸点成分の冷媒が流
れる伝熱管7aが貫通するフィン6aの表面の熱伝達を
阻害することもなく、高沸点成分冷媒側の熱交換を阻害
することもないため、このことによっても熱交換量の低
下を抑えることができる。
Further, the heat transfer tube 7 through which the refrigerant having a high boiling point flows.
Since a is located above the heat transfer tube 7b through which the low boiling point refrigerant flows, a large amount of water droplets generated on the surface of the fin 6b through which the heat transfer tube 7b through which the low boiling point refrigerant flows penetrates due to gravity. When flowing down, the heat transfer on the surface of the fins 6a through which the heat transfer tubes 7a through which the high boiling point component refrigerant flows does not hinder the heat transfer on the high boiling point component refrigerant side. Also, the reduction of the heat exchange amount can be suppressed.

【0024】以上のように本実施例のフィン付き蒸発器
は、伝熱管7a、7b相互を連結して形成される冷媒の
流路9の入口側に、充てん塔などの非共沸混合冷媒を組
成比の異なる複数の非共沸混合冷媒、望ましくは単一成
分冷媒に分離する機能を持つ冷媒分離器8を備え、前記
冷媒のうち低沸点成分の冷媒が流れる伝熱管7bが貫通
するフィン6bのピッチを高沸点成分の冷媒が流れる伝
熱管7aが貫通するフィン6aのピッチよりも大きくす
ることにより、フィン付き蒸発器に流入する冷媒よりも
組成比が単一成分冷媒に近い冷媒、望ましくは単一成分
冷媒を伝熱管7a、7b内の流路9a、9bに流すこと
ができるため、フィン付き蒸発器に流入する冷媒がその
ままの組成で流路9a及び流路9bを流れるよりも冷媒
側の熱伝達率を高くすることができ、フィン付き蒸発器
の熱交換量の低下を防ぐことができるとともに、水滴や
霜が付着しやすい低沸点成分の冷媒が流れる部分の気流
の流量の低下を、水滴や霜が付着しにくい高沸点成分の
冷媒が流れる部分と同程度に抑えることができるため、
水滴や霜の付着による熱交換量の低下を抑えることがで
きる。
As described above, in the finned evaporator of this embodiment, a non-azeotropic mixed refrigerant such as a packing tower is provided at the inlet side of the refrigerant passage 9 formed by connecting the heat transfer tubes 7a and 7b. A fin 6b provided with a refrigerant separator 8 having a function of separating into a plurality of non-azeotropic mixed refrigerants having different composition ratios, preferably a single component refrigerant, and through which a heat transfer pipe 7b through which a refrigerant having a low boiling point component flows is penetrated. By making the pitch of the fins larger than the pitch of the fins 6a through which the heat transfer tubes 7a through which the high boiling point component refrigerant flows, the refrigerant having a composition ratio closer to that of the single component refrigerant than the refrigerant flowing into the finned evaporator, desirably, Since the single-component refrigerant can flow through the flow passages 9a and 9b in the heat transfer tubes 7a and 7b, the refrigerant flowing into the finned evaporator has the same composition as that of the flow passages 9a and 9b. High heat transfer rate It is possible to prevent the decrease of the heat exchange amount of the evaporator with fins, and to reduce the flow rate of the air flow in the portion where the refrigerant of the low boiling point component where water droplets and frost easily adhere is attached to water droplets and frost. Because it can be suppressed to the same level as the part where the refrigerant of the high boiling point component is difficult to flow,
It is possible to suppress a decrease in heat exchange amount due to adhesion of water drops or frost.

【0025】また、高沸点成分の冷媒が流れる伝熱管7
aを低沸点成分の冷媒が流れる伝熱管7bよりも上部に
位置することにより、低沸点成分の冷媒が流れる伝熱管
7bが貫通するフィン6bの表面に生成された大量の水
滴が重力の影響で流下する際に、高沸点成分の冷媒が流
れる伝熱管7aが貫通するフィン6aの表面の熱伝達を
阻害することもなく、高沸点成分冷媒側の熱交換を阻害
することもないため、このことによっても熱交換量の低
下を抑えることができる。
Further, the heat transfer tube 7 through which the high boiling point component refrigerant flows.
Since a is located above the heat transfer tube 7b through which the low boiling point component refrigerant flows, a large amount of water droplets generated on the surface of the fin 6b through which the heat transfer tube 7b through which the low boiling point component refrigerant flows penetrates due to gravity. When flowing down, the heat transfer on the surface of the fins 6a through which the heat transfer tubes 7a through which the high boiling point component refrigerant flows does not hinder the heat transfer on the high boiling point component refrigerant side. Also, the reduction of the heat exchange amount can be suppressed.

【0026】[0026]

【発明の効果】以上説明したように本発明は、伝熱管相
互を連結して形成される冷媒の流路の入口側に、充てん
塔などの非共沸混合冷媒を組成比の異なる複数の非共沸
混合冷媒、望ましくは単一成分冷媒に分離する機能を持
つ冷媒分離器を備え、前記冷媒のうち低沸点成分の冷媒
が流れる伝熱管が貫通するフィンのピッチを高沸点成分
の冷媒が流れる伝熱管が貫通するフィンのピッチよりも
大きくすることにより、フィン付き蒸発器に流入する冷
媒よりも組成比が単一成分冷媒に近い冷媒、望ましくは
単一成分冷媒を伝熱管内の流路に流すことができるた
め、フィン付き蒸発器に流入する冷媒がそのままの組成
で流路を流れるよりも冷媒側の熱伝達率を高くすること
ができ、フィン付き蒸発器の熱交換量の低下を防ぐこと
ができるとともに、水滴や霜が付着しやすい低沸点成分
の冷媒が流れる部分の気流の流量の低下を、水滴や霜が
付着しにくい高沸点成分の冷媒が流れる部分と同程度に
抑えることができるため、水滴や霜の付着による熱交換
量の低下を抑えることができる。
As described above, according to the present invention, a plurality of non-azeotropic mixed refrigerants having different composition ratios, such as a packed tower, are provided at the inlet side of the refrigerant passage formed by connecting the heat transfer tubes. An azeotropic mixed refrigerant, preferably a refrigerant separator having a function of separating into a single-component refrigerant, in which a refrigerant having a high boiling point flows through a pitch of fins through which a heat transfer tube through which a refrigerant having a low boiling point flows By making the pitch of the fins through which the heat transfer tube penetrates, the refrigerant having a composition ratio closer to that of the single-component refrigerant than the refrigerant flowing into the finned evaporator, preferably the single-component refrigerant is used as a flow path in the heat transfer tube. Since it can flow, the refrigerant flowing into the finned evaporator can have a higher heat transfer coefficient on the refrigerant side than the refrigerant having the same composition as that in the flow path, and prevents a decrease in the heat exchange amount of the finned evaporator. While being able to Since it is possible to suppress the decrease in the flow rate of the air flow in the portion where the refrigerant of the low boiling point component where the droplets or frost easily adheres flows to the same level as the portion where the refrigerant of the high boiling point component where the water droplets or frost hardly adheres flows, It is possible to suppress a decrease in heat exchange amount due to adhesion of frost.

【0027】また、高沸点成分の冷媒が流れる伝熱管を
低沸点成分の冷媒が流れる伝熱管よりも上部に位置する
ことにより、低沸点成分の冷媒が流れる伝熱管が貫通す
るフィンの表面に生成された大量の水滴が重力の影響で
流下する際に、高沸点成分の冷媒が流れる伝熱管が貫通
するフィンの表面の熱伝達を阻害することもなく、高沸
点成分冷媒側の熱交換を阻害することもないため、この
ことによっても熱交換量の低下を抑えることができる。
Further, since the heat transfer tube through which the high boiling point component refrigerant flows is located above the heat transfer tube through which the low boiling point component refrigerant flows, the heat transfer tube through which the low boiling point component refrigerant flows is formed on the surface of the fin. When a large amount of water droplets flow down due to the effect of gravity, they do not hinder the heat transfer on the surface of the high boiling point component refrigerant, without hindering the heat transfer on the surface of the fins through which the heat transfer tubes through which the high boiling point component refrigerant flows. Since this also does not occur, this also makes it possible to suppress the decrease in the heat exchange amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるフィン付き蒸発器の実施例の正面
FIG. 1 is a front view of an embodiment of a finned evaporator according to the present invention.

【図2】従来のフィン付き蒸発器の正面図FIG. 2 is a front view of a conventional finned evaporator.

【符号の説明】[Explanation of symbols]

6a、6b フィン 7a、7b 伝熱管 8 冷媒分離器 9、9a、9b 流路 6a, 6b Fins 7a, 7b Heat transfer tube 8 Refrigerant separator 9, 9a, 9b Flow path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一定間隔で平行に並べられ、相互間を気
体が流動するフィンと、前記フィンを貫通し、内部を冷
媒が流動する伝熱管と、前記伝熱管相互を連結して形成
される冷媒の流路の入口側に、充てん塔などの非共沸混
合冷媒を組成比の異なる複数の非共沸混合冷媒、望まし
くは単一成分冷媒に分離する機能を持つ冷媒分離器とを
備え、さらに前記冷媒のうち低沸点成分の冷媒が流れる
伝熱管が貫通するフィンのピッチを高沸点成分の冷媒が
流れる伝熱管が貫通するフィンのピッチよりも大きくし
たフィン付き蒸発器。
1. Fins that are arranged in parallel at regular intervals and through which gas flows between them, heat transfer tubes that penetrate the fins and through which a refrigerant flows, and the heat transfer tubes are connected to each other. On the inlet side of the flow path of the refrigerant, a plurality of non-azeotropic mixed refrigerants having different composition ratios, such as a non-azeotropic mixed refrigerant such as a packing tower, preferably a refrigerant separator having a function of separating into a single component refrigerant, Further, a finned evaporator in which a pitch of fins through which a heat transfer tube through which a refrigerant having a low boiling point component flows is made larger than a pitch of fins through which a heat transfer tube through which a refrigerant having a high boiling point component flows passes.
【請求項2】 高沸点成分の冷媒が流れる伝熱管を低沸
点成分の冷媒が流れる伝熱管よりも上部に位置した請求
項1記載のフィン付き蒸発器。
2. The finned evaporator according to claim 1, wherein the heat transfer tube through which the high boiling point component refrigerant flows is located above the heat transfer tube through which the low boiling point component refrigerant flows.
JP10544194A 1994-05-19 1994-05-19 Evaporator with fins Pending JPH07318276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10544194A JPH07318276A (en) 1994-05-19 1994-05-19 Evaporator with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10544194A JPH07318276A (en) 1994-05-19 1994-05-19 Evaporator with fins

Publications (1)

Publication Number Publication Date
JPH07318276A true JPH07318276A (en) 1995-12-08

Family

ID=14407688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10544194A Pending JPH07318276A (en) 1994-05-19 1994-05-19 Evaporator with fins

Country Status (1)

Country Link
JP (1) JPH07318276A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0898129A2 (en) * 1997-08-22 1999-02-24 Carrier Corporation Vapor separation of variable capacity heat pump refrigerant
CN100380063C (en) * 2003-10-30 2008-04-09 乐金电子(天津)电器有限公司 Superfine pipeline heat exchanger with different radiating fin spacings
US8151587B2 (en) * 2001-05-04 2012-04-10 Hill Phoenix, Inc. Medium temperature refrigerated merchandiser
CN102759229A (en) * 2012-08-04 2012-10-31 顺德职业技术学院 Novel refrigerator refrigerating evaporator
WO2015178097A1 (en) * 2014-05-19 2015-11-26 三菱電機株式会社 Air-conditioning device
KR20150144833A (en) * 2014-06-17 2015-12-29 두산중공업 주식회사 Heat exchange tube unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0898129A2 (en) * 1997-08-22 1999-02-24 Carrier Corporation Vapor separation of variable capacity heat pump refrigerant
EP0898129A3 (en) * 1997-08-22 2001-08-16 Carrier Corporation Vapor separation of variable capacity heat pump refrigerant
US8151587B2 (en) * 2001-05-04 2012-04-10 Hill Phoenix, Inc. Medium temperature refrigerated merchandiser
CN100380063C (en) * 2003-10-30 2008-04-09 乐金电子(天津)电器有限公司 Superfine pipeline heat exchanger with different radiating fin spacings
CN102759229A (en) * 2012-08-04 2012-10-31 顺德职业技术学院 Novel refrigerator refrigerating evaporator
WO2015178097A1 (en) * 2014-05-19 2015-11-26 三菱電機株式会社 Air-conditioning device
JP6058219B2 (en) * 2014-05-19 2017-01-11 三菱電機株式会社 Air conditioner
US10976085B2 (en) 2014-05-19 2021-04-13 Mitsubishi Electric Corporation Air-conditioning apparatus
KR20150144833A (en) * 2014-06-17 2015-12-29 두산중공업 주식회사 Heat exchange tube unit

Similar Documents

Publication Publication Date Title
US4998580A (en) Condenser with small hydraulic diameter flow path
CA1340218C (en) Evaporator with improved condensate collection
JPH0587752B2 (en)
JP2009156532A (en) Heat exchanger
WO2017073715A1 (en) Aluminum extruded flat perforated tube and heat exchanger
JPS58217195A (en) Heat exchanger
JPH07318276A (en) Evaporator with fins
KR100479781B1 (en) Evaporator and refrigerator
JP3359466B2 (en) Evaporator for room air conditioner
JP2005201492A (en) Heat exchanger
EP3699538B1 (en) Heat exchanger and refrigeration cycle device
JPS58214793A (en) Heat exchanger
JPH10197173A (en) Flat tube for heat exchanger and heat exchanger
JPH02154987A (en) Finned heat exchanger
JP3430909B2 (en) Air conditioner
JP2014137172A (en) Heat exchanger and refrigerator
JPS58214783A (en) Heat exchanger
JPH06147784A (en) Heat exchanger tube
WO2019219076A1 (en) Heat exchanger
JPH0331693A (en) Finned heat exchanger
JPH07318200A (en) Heat exchanger with fins
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JP2004332958A (en) Heat exchanger of air conditioner
JPH0666458A (en) Refrigerator evaporator
JP2001141382A (en) Air heat exchanger