JPH02154485A - Josephson element - Google Patents

Josephson element

Info

Publication number
JPH02154485A
JPH02154485A JP63309322A JP30932288A JPH02154485A JP H02154485 A JPH02154485 A JP H02154485A JP 63309322 A JP63309322 A JP 63309322A JP 30932288 A JP30932288 A JP 30932288A JP H02154485 A JPH02154485 A JP H02154485A
Authority
JP
Japan
Prior art keywords
ion
superconductor
high temperature
oxide
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63309322A
Other languages
Japanese (ja)
Inventor
Chiyoushin Sai
兆申 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63309322A priority Critical patent/JPH02154485A/en
Publication of JPH02154485A publication Critical patent/JPH02154485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To perform a high temperature oxide superconducting S-N-S Josephson junction having no parasitic resistance in a boundary and an optimum current density by composing a normal conducting part of a S-N-F Josephson junction of ion damaged oxide high temperature superconductor. CONSTITUTION:In an S-R-S Josephson junction in which oxide high temperature conductors 1 are used at both electrodes, the normal conducting part 7 of the junction is composed of ion damaged oxide high temperature superconductor 1. The superconductivity of the oxide superconductor 1 can be destroyed by damaging it by ion implanting. An ion implanting amount is regulated to make the damaged part 7 metallic or insulative. An N-S boundary 5 between the thus formed normal conductive damaged part 7 and the superconductor does not form a high resistance contaminant layer due to the presence in the film from the first. Thus, an ideal clean N-S boundary is obtained, and no parasitic resistance is generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化物超伝導を電極に持つ薄膜5−N−8ジ
ョセフソン接合に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film 5-N-8 Josephson junction having an oxide superconductor as an electrode.

(従来の技術) Y−Ba−Cu−0,B1−8r−Ca−Cu−0,T
l−Ba−Ca−Cu−0などの高温酸化物超伝導体は
、ローヒレンス長が約数10人しかなく、トンネル型及
びS−5−Sマイクロブノソジ型のジョセフソン接合を
人工的に作り出すのは大変困難である。その点5−N−
8型のジョセフソン接合は超伝導電極のローヒレンス長
に関係なく中間の常伝導体より成る接合部の長さを選ぶ
事が出来るので、比較的作りやすい事がわかっている。
(Prior art) Y-Ba-Cu-0,B1-8r-Ca-Cu-0,T
High-temperature oxide superconductors such as l-Ba-Ca-Cu-0 have loherence lengths of only about a few tens of nanometers, and it is difficult to artificially create tunnel-type and S-5-S microbunosode type Josephson junctions. It is very difficult. That point 5-N-
It is known that type 8 Josephson junctions are relatively easy to make because the length of the junction made of the intermediate normal conductor can be selected regardless of the loherence length of the superconducting electrode.

第3図(aXb)にそれぞれ従来使われている5−N−
8接合の平面図及び断面図を示した。第3図中1.は上
記のような高温酸化物超伝導体、2.は常伝導体、3゜
は常伝導体より成る接合部の接合長、4.は基板、5゜
は常伝導体と超伝導体間のN−8界面を表わす。このよ
うな5−N−8接合では、接合長1ミクロン程度でも4
.2にでジョセフソン効果を観測する事が出来る。
The conventionally used 5-N-
A plan view and a cross-sectional view of 8 junctions are shown. 1 in Figure 3. is a high temperature oxide superconductor as described above; 2. is a normal conductor, 3° is the joint length of a joint made of a normal conductor, and 4. represents the substrate, and 5° represents the N-8 interface between the normal conductor and the superconductor. In such a 5-N-8 junction, even with a junction length of about 1 micron, the
.. The Josephson effect can be observed in 2.

(発明が解決しようとする課題) このような5−N−8接合が動作する。または大きなジ
ョセフソン電流を作り出すためには常伝導体と超伝導体
のN−8界面が清浄でないといけない。このN−8界面
に大きな表面抵抗が存在すると、ジョセフソン電流は減
少し接合の出力電圧であるIcRN積も低下し、最悪の
場合はジョセフソン効果自体をも失う事になる。一方高
温酸化物超伝導体の表面は大変汚染されやすい事がわか
っている。この汚染層は数100人の厚さを有し、場合
により、金属的、半導体的または絶縁体的特性を持つ。
(Problems to be Solved by the Invention) Such a 5-N-8 junction operates. Alternatively, in order to create a large Josephson current, the N-8 interface between the normal conductor and the superconductor must be clean. If a large surface resistance exists at this N-8 interface, the Josephson current will decrease and the IcRN product, which is the output voltage of the junction, will also decrease, and in the worst case, the Josephson effect itself will be lost. On the other hand, it is known that the surfaces of high-temperature oxide superconductors are highly susceptible to contamination. This contamination layer has a thickness of several 100 nm and may have metallic, semiconducting or insulating properties.

このような汚染層が存在するとN−8界面に大きな寄生
抵抗を生じ、5−N−8接合の特性を著しく劣化させる
The presence of such a contamination layer causes a large parasitic resistance at the N-8 interface, significantly degrading the characteristics of the 5-N-8 junction.

(課題を解決するだめの手段) 上記のような問題を解決する手段にするため、本発明は
酸化物高温超伝導体が両電極に使われている5−N−5
ジョセフソン接合において、接合部の常伝導部がイオン
ダメージを受けた前記酸化物高温超伝導体により構成さ
れている事を特徴としたジョセフソン素子を提供する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a 5-N-5 structure in which an oxide high temperature superconductor is used for both electrodes.
The present invention provides a Josephson element in which a normal conduction part of a Josephson junction is made of the ion-damaged oxide high-temperature superconductor.

(作用) 第2図を用いて本発明の詳細な説明する。第2図中1は
高温酸化物超伝導体膜、4は基板、5はN−8界面、6
はイオンビーム、7は高温超伝導体膜1のうちイオンビ
ームによりダメージを受けた部分である。イオン注入に
よりダメージを与える事により酸化物超伝導体の超伝導
性を破壊する事が出来る。イオンの照射量を調節する事
によりこのダメージ部を金属的にする事も絶縁的にする
事も出来る。例えばYBa2Cu2O7−8では130
KeVのシリコンイオン注入では、注入量5 X 10
 ion/cmで金属的、16.2 IXIOlon/cm以−にで絶縁的なダメージ部を作
る月1が出来る。B1−8r−Ca−Cu−○やTl−
Ba−Ca−Cu−0系の利料では更に低いイオン注入
量で超伝導性が破壊される事が知られている。このよう
にして作られた常伝導のダメージ部と超伝導体間のN−
8界面には、最初から膜内に存在していたために高抵抗
の汚染層は出来ない。したがって理想的な清浄なN−8
界面が得られる。イオンビームにより照射される領域は
、例えばフォーカストイオンビーム源や、リングラフィ
技術を使って作ったマスクなどによりザブミクロンの制
御が十分出来る。
(Operation) The present invention will be explained in detail using FIG. 2. In Figure 2, 1 is a high-temperature oxide superconductor film, 4 is a substrate, 5 is an N-8 interface, and 6 is a high-temperature oxide superconductor film.
is an ion beam, and 7 is a portion of the high temperature superconductor film 1 that has been damaged by the ion beam. The superconductivity of oxide superconductors can be destroyed by damaging them through ion implantation. By adjusting the amount of ion irradiation, this damaged area can be made metallic or insulating. For example, 130 for YBa2Cu2O7-8
In KeV silicon ion implantation, the implantation amount is 5 x 10
At 16.2 IXIOlon/cm, an insulating damaged area is created, which is metallic. B1-8r-Ca-Cu-○ and Tl-
It is known that in Ba-Ca-Cu-0 based materials, superconductivity is destroyed at an even lower ion implantation dose. N- between the normal conducting damaged part and the superconductor created in this way
8 interface, no high-resistance contaminant layer is formed because it was present in the film from the beginning. Therefore, the ideal clean N-8
An interface is obtained. The area irradiated by the ion beam can be sufficiently controlled in submicron terms using, for example, a focused ion beam source or a mask made using phosphorography technology.

(実施例) 本発明の実施例を第1図により説明する。本図はこの実
施例の平面図である。11はYBa2Cu307−6超
伝導体膜、3は接合長、5はN−8界面、7はイオンダ
メージを受けて常伝導的になったYBa2Cu30−t
8膜、8は電極のパッド部である。イオン照射によりイ
オンダメージ部は金属的に変質されている。これはシリ
コンイオンを用いた場合、130KeVの加速エネルギ
ーで約5X10 ion/cmで実現出来る。このダメ
ージ部のギヤリア密度はほとんど変化しでいないので接
合長は約0.5ミクロン程度でも4.2にでのジョセフ
ソン接合としての動作は十分可能である。
(Example) An example of the present invention will be described with reference to FIG. This figure is a plan view of this embodiment. 11 is the YBa2Cu307-6 superconductor film, 3 is the junction length, 5 is the N-8 interface, and 7 is the YBa2Cu30-t that has become normal conductive due to ion damage.
8 membrane, 8 is a pad part of an electrode. The ion-damaged area has been transformed into a metal by ion irradiation. When silicon ions are used, this can be achieved at approximately 5×10 ion/cm with an acceleration energy of 130 KeV. Since the gear density in this damaged area hardly changes, even if the bond length is approximately 0.5 microns, operation as a Josephson bond at 4.2 mm is sufficiently possible.

パッド部のパターニングは通常のりソグラフィを用いて
もよいが、イオン照射量を十分増して周辺部を絶縁化し
ても簡単に作れる。
The pad portion may be patterned using ordinary lithography, but it can also be easily formed by insulating the peripheral portion by sufficiently increasing the amount of ion irradiation.

本実施例ではY−Ba−Cu−0系の材料を選んでイオ
ンダメージの条件などを示したが、B1−8r−Ca−
Cu−○、Tl−Ba−Ca−Cu−0.B1−Pb−
Ba−0などの他の酸化物超伝導体でも同様である。
In this example, Y-Ba-Cu-0 material was selected to demonstrate the ion damage conditions, but B1-8r-Ca-
Cu-○, Tl-Ba-Ca-Cu-0. B1-Pb-
The same applies to other oxide superconductors such as Ba-0.

(発明の効果) 以上説明したように、本発明により寄生抵抗が界面に存
在しない最適な電流密度を持つ高温酸化物超伝導5−N
−5ジョセフソン接合が出来る。またフォーカストイオ
ンビーム源などを使用すると、煩雑なりソゲラフイエ程
を必要としない直接イオン描画で簡単に接合を作る事が
出来る。
(Effects of the Invention) As explained above, the present invention provides high-temperature oxide superconducting 5-N with optimal current density without parasitic resistance at the interface.
−5 Josephson junction is created. Furthermore, if a focused ion beam source or the like is used, it is possible to easily create a bond by direct ion writing, which does not require a complicated sockeye beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す平面図、第2図は本発明
の作用を示す断面図、第3図(aXb)はそれぞれ従来
の5−N−8接合の平面図と断面図。 1 高温酸化物超伝導体膜 11YBa2Cu307−8膜 3 接合長 4 基板 5  N−8界面 6 イオンビーム 7 イオンダメージ部 8 パッド部
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the effect of the present invention, and FIG. 3 (aXb) is a plan view and a cross-sectional view of a conventional 5-N-8 junction, respectively. 1 High temperature oxide superconductor film 11YBa2Cu307-8 film 3 Bonding length 4 Substrate 5 N-8 interface 6 Ion beam 7 Ion damaged part 8 Pad part

Claims (1)

【特許請求の範囲】[Claims] 酸化物高温超伝導体が両電極に使われているS−N−S
ジョセフソン接合において、接合部の常伝導部がイオン
ダメージを受けた前記酸化物高温超伝導体により構成さ
れている事を特徴としたジヨセフン素子。
S-N-S where oxide high temperature superconductors are used for both electrodes
1. A Josephson element, characterized in that, in a Josephson junction, a normal conduction part of the junction is made of the ion-damaged oxide high-temperature superconductor.
JP63309322A 1988-12-06 1988-12-06 Josephson element Pending JPH02154485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63309322A JPH02154485A (en) 1988-12-06 1988-12-06 Josephson element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63309322A JPH02154485A (en) 1988-12-06 1988-12-06 Josephson element

Publications (1)

Publication Number Publication Date
JPH02154485A true JPH02154485A (en) 1990-06-13

Family

ID=17991623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63309322A Pending JPH02154485A (en) 1988-12-06 1988-12-06 Josephson element

Country Status (1)

Country Link
JP (1) JPH02154485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017382A1 (en) * 1997-09-30 1999-04-08 Yoichi Okabe Method for manufacturing coplanar josephson device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283176A (en) * 1987-05-15 1988-11-21 Fujikura Ltd Josephson device
JPS6450581A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Manufacture of thin film superconducting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283176A (en) * 1987-05-15 1988-11-21 Fujikura Ltd Josephson device
JPS6450581A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Manufacture of thin film superconducting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017382A1 (en) * 1997-09-30 1999-04-08 Yoichi Okabe Method for manufacturing coplanar josephson device

Similar Documents

Publication Publication Date Title
AU606673B2 (en) Devices using high Tc superconductors and method for making the same
EP0329603A2 (en) Grain boundary junction devices using high-TC superconductors
JPS61114585A (en) Electric connection structure and formation thereof
JP3382588B2 (en) Use of ion implantation to create normal layers during superconducting-normal-superconducting Josephson junctions
JPH02154485A (en) Josephson element
US5637555A (en) Method for manufacturing a three-terminal superconducting device having an extremely short superconducting channel
US6353234B1 (en) Layered arrangement and component containing the latter
JP3995810B2 (en) High temperature single electron pair tunneling device manufacturing method using layered oxide superconductor
JP3402905B2 (en) Semiconductor element
US5773843A (en) Metal electrode for superconducting current path formed of oxide superconductor material and superconducting device utilizing thereof
EP0618626A1 (en) Josephson junction device of oxide superconductor having low noise level at liquid nitrogen temperature
JP2641969B2 (en) Superconducting element and fabrication method
JP2994304B2 (en) Superconducting integrated circuit and method of manufacturing superconducting integrated circuit
CA2052379C (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JP2641971B2 (en) Superconducting element and fabrication method
JP2614941B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JP2738144B2 (en) Superconducting element and fabrication method
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JP2641975B2 (en) Superconducting element and fabrication method
JPH04134882A (en) Superconducting device and manufacture thereof
JPH069261B2 (en) Semiconductor coupled superconducting device
JPH0590652A (en) Superconducting device
JPS63310184A (en) Superconductive quantum interference device
JPS59119880A (en) Superconducting switch element