JPH02154404A - Multilayer magnetic film - Google Patents

Multilayer magnetic film

Info

Publication number
JPH02154404A
JPH02154404A JP30824188A JP30824188A JPH02154404A JP H02154404 A JPH02154404 A JP H02154404A JP 30824188 A JP30824188 A JP 30824188A JP 30824188 A JP30824188 A JP 30824188A JP H02154404 A JPH02154404 A JP H02154404A
Authority
JP
Japan
Prior art keywords
magnetic
film
films
multilayer
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30824188A
Other languages
Japanese (ja)
Inventor
Yutaka Sakurai
豊 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP30824188A priority Critical patent/JPH02154404A/en
Publication of JPH02154404A publication Critical patent/JPH02154404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the deterioration of performance (dynamic magnetization characteristics)of a magnetic film in a radio frequency range by a method wherein the magnetic films and a magnetic insulating film is alternately laminated to suppress the degradation of a permeance in the radio frequency range. CONSTITUTION:A magnetic film 1 is built up on a substrate made of ceramics or the like by a method such as sputtering to form a multilayer structure. Then a magnetic insulating film 2 is selectively built up by a method such as sputtering on the magnetic film 1 so as not to be formed on the edge parts of the magnetic film 1. After that, a magnetic film 1 is built up again on the same region as the first magnetic film 1 by a method such as sputtering. The multilayered respective magnetic films 1 and 1 are joined with each other at their edge parts so as to envelope the magnetic insulating film 2. With this constitution, static magnetic energy in the magnetic films 1 becomes almost nil and a magnetic domain structure becomes a stable one similar to a single magnetic domain structure and the deterioration of the dynamic magnetization characteristics of the magnetic film 1 can be avoided and the characteristics of the multilayer film can be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜磁気ヘッドや磁気ストライプ膜等に用い
られる磁性薄膜に関し、特に多層化された磁性薄膜に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetic thin film used for a thin film magnetic head, a magnetic stripe film, etc., and particularly relates to a multilayer magnetic thin film.

〔従来の技術〕[Conventional technology]

従来、薄膜磁気ヘッド等に用いられる磁性膜は、セラミ
ックス等で作られた基板上に、アモルファス合金14−
 M! 、−Bi金合金パーマロイ等の磁性材をスパッ
タ、蒸着、メツキ等のh法により堆積させて単層に作成
される1、この磁性膜は薄膜化覆ることにより、磁性膜
内の磁界の反転を邪魔する過電流の発生を軽減して、磁
界の反転を容易に覆ると伴に、磁性膜内の異方性によっ
て生じる困難軸励磁を用いることにより、磁性膜の高周
波数対応化(高速動作化)を計っている。
Conventionally, magnetic films used in thin-film magnetic heads and the like are made of amorphous alloy 14-
M! A single layer is created by depositing a magnetic material such as -Bi gold alloy permalloy by h-methods such as sputtering, vapor deposition, plating, etc. 1. This magnetic film is thinned and overlaid to prevent the reversal of the magnetic field within the magnetic film. By reducing the generation of interfering overcurrent and easily overcoming the reversal of the magnetic field, and by using the hard axis excitation caused by the anisotropy within the magnetic film, it is possible to make the magnetic film compatible with high frequencies (high-speed operation). ) is being measured.

しかしながら、上記のような単層の磁性膜にa3いては
、磁性膜内の磁気回路(磁束の流れ)を閉じるために、
磁性膜表面の磁極形成を抑え、そして主に静磁エネルギ
ーを最少にするように磁区構造が形成される1、この磁
区構造を第4図に示づ1゜第4図(イ)は、薄膜磁気ヘ
ッドに用いられる一対の磁性コア層の一方の磁性膜であ
り、(ロ)はMR(磁気抵抗効果)素子のセンシング部
等に用いられる磁性ストライプ膜を示し、共に単層の磁
性膜で形成されている。第5図は、ここでの議論を容易
にするための第4図の要部拡大図である1゜第5図に示
す磁区構造において、第5図中矢印へで示すように、長
軸方向に直角に磁化容易軸を向ける(困難軸動!1)と
、磁性膜1の端部に三角形の磁区すなわち速流磁区B、
B・・・を生ずる1、ここで、外部磁界を第5図中矢印
Cで示すh法に印加すると、流磁区B、B・・・部分の
磁壁E、E・・・に駆動力が生じ、移動が起こる。この
ため、高周波数領域においての磁性膜1の透磁率の低下
、つまり磁性体としての特性の劣化や、これに伴う磁気
ヘッドの出力低下等の性能低重を生じる。
However, in the single-layer magnetic film described above, in order to close the magnetic circuit (flow of magnetic flux) within the magnetic film,
A magnetic domain structure is formed to suppress the formation of magnetic poles on the surface of the magnetic film and mainly to minimize the static magnetic energy1. This magnetic domain structure is shown in Figure 4. This is one magnetic film of a pair of magnetic core layers used in a magnetic head, and (b) shows a magnetic stripe film used in the sensing part of an MR (magnetoresistive effect) element, both of which are made of a single-layer magnetic film. has been done. Figure 5 is an enlarged view of the main part of Figure 4 to facilitate discussion here.In the magnetic domain structure shown in Figure 5, the major axis direction is 1°, as shown by the arrow in Figure 5. When the easy axis of magnetization is oriented at right angles to (difficult axis movement! 1), a triangular magnetic domain, that is, a fast-flowing magnetic domain B, is formed at the end of the magnetic film 1.
1.Here, when an external magnetic field is applied in the h direction shown by arrow C in Fig. 5, a driving force is generated in the domain walls E, E, etc. of the flowing magnetic domain B, B... portion. , movement occurs. This causes a decrease in the magnetic permeability of the magnetic film 1 in a high frequency region, that is, a deterioration of the characteristics as a magnetic material, and a consequent decrease in performance such as a decrease in the output of the magnetic head.

上記の問題点を解決する為に、いわゆる多層膜が開発さ
れている。これは、第6図で示すように、アモルファス
合金、Fe −M−I’m合金、パーマロイ等の磁性体
からなる磁性膜1と、クロム、酸化アルミニウム、匝0
2等の非磁性体の薄い磁気絶縁膜2とを、スパッタ等の
方法により交互に堆積させて形成される。なお、ここで
は説明の簡略化の為に二層の場合を示しである。この膜
構成においては、磁性膜1間の磁気的負結台により、磁
束3が各磁性膜1間を流れて閉磁路を構成するため、磁
性膜1が単層の時にみられた還流磁区の発生を抑制する
ことができ、磁区構造が安定する。この磁束3の流れを
第7図に示す。図かられかるように、磁束が磁気絶縁膜
2を挟んで磁性膜1間を流れているのがわかる。このた
め磁性膜1の高周波数領域における透磁率の低下を抑制
して、磁性膜1の高周波数領域における性能低下(動磁
化特性の劣化)を防止している。
In order to solve the above problems, so-called multilayer films have been developed. As shown in FIG. 6, it consists of a magnetic film 1 made of a magnetic material such as an amorphous alloy, Fe-M-I'm alloy, permalloy, etc.
It is formed by alternately depositing thin magnetic insulating films 2 made of a non-magnetic material such as No. 2 by a method such as sputtering. Note that a two-layer case is shown here to simplify the explanation. In this film configuration, magnetic flux 3 flows between each magnetic film 1 due to the negative magnetic coupling between the magnetic films 1 and forms a closed magnetic path, so that the reflux magnetic domain observed when the magnetic film 1 is a single layer is reduced. generation can be suppressed, and the magnetic domain structure is stabilized. The flow of this magnetic flux 3 is shown in FIG. As can be seen from the figure, it can be seen that magnetic flux flows between the magnetic films 1 with the magnetic insulating film 2 in between. Therefore, a decrease in the magnetic permeability of the magnetic film 1 in the high frequency range is suppressed, thereby preventing a performance drop (deterioration of dynamic magnetization characteristics) of the magnetic film 1 in the high frequency range.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記の多層膜においては、還流磁区の発
生を抑えるために磁性膜1,1間の磁気的負結台を大き
くする必要があり、磁性膜1.1間の磁性絶縁膜2を厚
くしなければならない。
However, in the multilayer film described above, it is necessary to increase the negative magnetic coupling between the magnetic films 1 and 1 in order to suppress the generation of freewheeling magnetic domains, and the magnetic insulating film 2 between the magnetic films 1 and 1 must be made thicker. There must be.

方、第7図に示すごとく、磁性膜1の端部において磁束
3が外部へ洩れており、磁性膜1の端部に磁極が形成さ
れることになる、1このため、静磁1ネルギーが生じる
が、磁性膜1,1間の磁気絶縁膜2を厚くし過ぎると、
磁性膜1.1間の閉磁路が開くことになり、磁極形成に
伴う静磁エネルギーが増大する。元々、磁区構造は、主
に磁極形成に伴う静磁エネルギーを低下させる為に自然
に形成されるものであるが、増大した静磁1ネルギによ
り、不必要な磁区が発生することになる。この静磁エネ
ルギーは単層膜に比べれば相当に小さいものであるが、
有限な値を持っている。単層膜では、磁区構造が全エネ
ルギー内で支配的となる静磁エネルギーの低下を優先し
て決まるので、第4図、第5図の様な単純で幾何学的な
構造をとることになる。
On the other hand, as shown in FIG. 7, the magnetic flux 3 leaks to the outside at the end of the magnetic film 1, and a magnetic pole is formed at the end of the magnetic film 1.1For this reason, the static magnetism 1 energy is However, if the magnetic insulating film 2 between the magnetic films 1 and 1 is made too thick,
The closed magnetic path between the magnetic films 1.1 is opened, and the magnetostatic energy accompanying magnetic pole formation increases. Originally, a magnetic domain structure is naturally formed mainly to reduce the magnetostatic energy associated with magnetic pole formation, but the increased magnetostatic energy causes unnecessary magnetic domains to be generated. This magnetostatic energy is considerably smaller than that of a single layer film, but
have a finite value. In a single-layer film, the magnetic domain structure is determined by prioritizing the decrease in magnetostatic energy, which is dominant within the total energy, so it takes a simple and geometric structure as shown in Figures 4 and 5. .

しかしながら、この多層膜では、静磁エネルギーが全エ
ネルギー内にしめる他のエネルギー、例えば磁気異方性
エネルギー及びそれと交換エネルギーとのバランスで決
まる磁壁エネルギー、磁歪効果を介して膜内の応力の影
響を反映する弾性エネルギー等と拮抗するので、磁区構
造は第4図、第5図の様な単純な形とはならず、膜内部
、外部の種々の影響を受ける事になり、その結果磁区構
造が不安定なものとなって、磁性膜1の動磁化特性が劣
化することがあった。
However, in this multilayer film, magnetostatic energy incorporates other energies within the total energy, such as magnetic anisotropy energy, domain wall energy determined by the balance between it and exchange energy, and the influence of stress within the film through magnetostriction effects. Because the magnetic domain structure competes with the elastic energy etc. shown in Figures 4 and 5, it is affected by various influences inside and outside the film, and as a result, the magnetic domain structure becomes irregular. The magnetic film 1 may become unstable and the dynamic magnetization characteristics of the magnetic film 1 may deteriorate.

また、特に第4図(ロ)に示す磁性ストライブ膜におい
ては、磁性体が長手方向に磁化しやすい性質く形状異方
性)に打ち勝つための誘導異方性を伺らかの形で付与し
ていた。・困難軸励磁に際しでは、透磁率は誘導異方性
に反比例するので、形状異方性を強めることは、透磁率
の低下、すむわち動作効率の低下を余儀なくされていた
In addition, especially in the magnetic striped film shown in Figure 4 (b), induced anisotropy is imparted in a certain way to overcome the tendency of the magnetic material to be magnetized in the longitudinal direction (shape anisotropy). Was. - During hard-axis excitation, magnetic permeability is inversely proportional to induced anisotropy, so increasing shape anisotropy inevitably leads to a decrease in magnetic permeability and, therefore, a decrease in operating efficiency.

本発明はこのような点に鑑みて創・案されたもので、磁
区構造の安定した多層の磁性膜を提供することを目的と
している。
The present invention was created and devised in view of these points, and an object of the present invention is to provide a multilayer magnetic film with a stable magnetic domain structure.

〔問題点を解決するための手段〕[Means for solving problems]

したがって、本発明に係る多層磁性膜においては、磁性
膜1と磁気絶縁膜″2とを交互に積層づることによって
多層膜を構成し、該多層膜の端部において、前記磁性膜
1同士を磁性材により接合したことを特徴とする。
Therefore, in the multilayer magnetic film according to the present invention, the multilayer film is constructed by alternately stacking the magnetic films 1 and the magnetic insulating films ``2'', and the magnetic films 1 are separated from each other at the ends of the multilayer film. It is characterized by being joined by a material.

〔作用〕[Effect]

本発明によれば、多層化された各磁性膜1.1の端部が
磁性体により接合されているため、各磁性膜1,1が端
部において磁気的に結合され、磁極を形成しなくなる。
According to the present invention, since the ends of each multilayered magnetic film 1.1 are joined by a magnetic material, each magnetic film 1.1 is magnetically coupled at the end and does not form a magnetic pole. .

このため、磁性膜1内に、おける静磁エネルギーがほぼ
零となり、磁区構造が単磁区構造に近い安定したものと
なって、磁性膜1の動磁化特性が劣化しなくなり、多層
膜の特性が安定する。
Therefore, the magnetostatic energy in the magnetic film 1 becomes almost zero, and the magnetic domain structure becomes stable, close to a single domain structure, so that the dynamic magnetization characteristics of the magnetic film 1 do not deteriorate, and the characteristics of the multilayer film improve. Stabilize.

(実施例) 本発明の実施例を第1図−第3図を用いて説明する。な
J)、従来例と同様の構成要素には同一番号を付して、
その説明を省略づる。ま1こ、本実施例は説明の簡単化
のために二層化された多層磁性膜を示すが、さらに多層
化された場合も以下と同様である。
(Example) An example of the present invention will be described using FIGS. 1 to 3. J), the same numbers are given to the same components as in the conventional example,
I will omit the explanation. First, although this embodiment shows a two-layered multilayer magnetic film to simplify the explanation, the same applies to the case where the magnetic film is further multilayered.

第2図(イ)に示した磁性g!1の多層構造が、第6図
に示した多層構造と異なる点は、多層化された各磁性膜
1.1が、その端部において接合し、磁気絶縁膜2を包
み込むように形成されていることである1゜ 上記多層構造の作製方法は、まず、セラミック等で形成
された基板(図示せず)十に、スパッタ等の方法により
磁性IFit1をi(I積させる11次に磁気絶縁膜2
を、前記磁性膜1の端部には堆積しないように、スパッ
タ等の方法で磁性膜1上に選択的に形成し、その後、再
び磁性膜1をスパッタ等の方法により前記磁性膜1と同
じ範囲に堆積させて形成される。
The magnetic g! shown in Figure 2 (a)! The multilayer structure of No. 1 differs from the multilayer structure shown in FIG. 6 in that the multilayer magnetic films 1.1 are joined at their ends and are formed to wrap around the magnetic insulating film 2. 1. The method for producing the multilayer structure described above is as follows: First, a magnetic insulating film 2 is deposited on a substrate (not shown) made of ceramic or the like, and then a magnetic insulating film 2 is deposited on it by a method such as sputtering.
is selectively formed on the magnetic film 1 by a method such as sputtering so as not to be deposited on the edge of the magnetic film 1, and then the magnetic film 1 is formed again using a method such as sputtering to form the same layer as the magnetic film 1. It is formed by depositing in a range.

このような構造の多層膜においては、各磁性膜1がその
端部において接合し、磁気的結合を得ている為、第3図
に示すように磁束3が各磁性膜1間を流れ、磁性膜1端
部において磁束が洩れることがない。この為、磁性膜1
端部に!1極形成が起こらf1静磁エネルギーがほぼ零
となり、磁性膜1内に不必要な磁区の発生が抑制され、
磁性膜1内の磁区構造が単磁区に近い安定したものとな
り、動磁化特性が劣化しなくなる。また、第1図([1
)の磁性ストライプ膜においては、長袖方向の形状異方
性をほぼ零に迎えることができ、!l竹ストライプ膜に
伺与する誘導異方性を極限まで小さくツーることができ
る。このため、透磁率の低下を抑えることができ、動作
効率が向上する7、第2図(ロ)は、本発明の第2の実
施例を示す。
In a multilayer film with such a structure, each magnetic film 1 is joined at its end to obtain magnetic coupling, so the magnetic flux 3 flows between each magnetic film 1 as shown in FIG. No magnetic flux leaks at the end of the membrane 1. For this reason, magnetic film 1
At the end! When one pole is formed, the f1 magnetostatic energy becomes almost zero, and the generation of unnecessary magnetic domains in the magnetic film 1 is suppressed.
The magnetic domain structure within the magnetic film 1 becomes stable, close to a single magnetic domain, and dynamic magnetization characteristics do not deteriorate. In addition, Fig. 1 ([1
), the shape anisotropy in the long sleeve direction can be almost zero, and! l The induced anisotropy imparted to the bamboo stripe film can be minimized. Therefore, the decrease in magnetic permeability can be suppressed and the operating efficiency can be improved. 7. FIG. 2 (b) shows a second embodiment of the present invention.

本実施例は、多層膜の平坦化を狙う為に、磁性膜1で挟
まれた磁気絶縁膜2両端に磁性材による接続膜4を形成
して、各磁性膜1,1を磁気的に結合させたものである
。この作製方法は磁性膜1上にスパッタ等により磁気絶
縁膜2と接続膜4をそれぞれ選択的に形成し、その上に
磁性膜1を再びj(l積させて、形成される13なお、
この場合、接続膜4は、磁性材であればよく、また、磁
性11!i!1と同じ月V(てあってもよい。
In this embodiment, in order to flatten the multilayer film, a connecting film 4 made of a magnetic material is formed on both ends of a magnetic insulating film 2 sandwiched between magnetic films 1, and the magnetic films 1, 1 are magnetically coupled. This is what I did. In this manufacturing method, the magnetic insulating film 2 and the connecting film 4 are selectively formed on the magnetic film 1 by sputtering or the like, and the magnetic film 1 is again stacked on top of the magnetic insulating film 2 and the connecting film 4.
In this case, the connecting film 4 may be made of a magnetic material, and may be made of magnetic 11! i! It may be the same month as 1.

なお、本発明においては、磁性材による膜が磁気絶縁膜
2を囲むように形成されていればよく、ぞの形状、作製
方法は本実施例に限定されない。
In the present invention, it is sufficient that the film made of a magnetic material is formed so as to surround the magnetic insulating film 2, and the shape and manufacturing method thereof are not limited to those of this embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上の通り、多層化された各磁性膜1゜1の端
部を磁性材で接合することにより、磁気的結合を得てい
るので、磁性膜1端部における16束の洩れがなく磁極
形成が起こらなくなり、静磁1ネルギーをほぼ零にする
ことができる。1このICめ、磁性膜1内の不必要な磁
区の発生を抑制できるので磁性膜1内の磁区構造がJP
磁1ヌに近い安定したものとなり、多層膜の動磁化特性
が劣化しなくなる。1また、磁気ス1〜ライブ膜におい
ては、長袖方向への形状異方性がなくなるため、磁気ス
トライプ膜に付与する誘導異方性を極限まで小さくでき
、動作効率が飛躍的に向上する。
As described above, in the present invention, magnetic coupling is obtained by joining the ends of each multilayered magnetic film 1°1 with a magnetic material, so that leakage of 16 fluxes at the end of one magnetic film is prevented. Therefore, no magnetic pole formation occurs, and the static magnetic energy can be reduced to almost zero. 1 This IC can suppress the generation of unnecessary magnetic domains in the magnetic film 1, so the magnetic domain structure in the magnetic film 1 is JP.
The magnetic field becomes stable, close to 1, and the dynamic magnetization characteristics of the multilayer film do not deteriorate. In addition, in the magnetic strip film 1 to live, the shape anisotropy in the long sleeve direction is eliminated, so that the induced anisotropy imparted to the magnetic stripe film can be minimized, and the operating efficiency is dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・〜第3図は本発明の実施例を示し、第1図(イ
〉は、薄膜磁気ヘッドに用いられる磁性」ア層の全体斜
視図、第1図([1)は、M RX ’j’の磁場セン
シング部智に用いられる磁性ス1〜ライブ膜の全体斜視
図、第2図(イ)は、第1図の葭部端面図、第2図(ロ
)は本発明の第2の実施例における要部断面図、第3図
(イ)は本発明の磁場シミュレーション図、第4図へ・
第7図は従来例を示し、第4図(イ)は薄膜磁気ヘッド
に用いられる単層の磁性コア層におりる磁区構造図、第
4図(ロ)は単層の11竹ストライプ膜におt−16磁
区構造図、第5図は第4図の要部拡大図、第6図は多層
膜の要部断面図、第7図は、多層膜の磁場シミュレーシ
ョン図である。 1・・・磁性膜、2・・・磁気絶縁膜、3・・1i東、
4接続躾。 特許出願人  アルプス電気株式会ネ1代  表  者
     片   岡    政   隆手続補正書 (方式) l、事件の表示 特願昭63−308241号 2、発明の名称 多層磁性膜 3、補正をする者 事件との関係 住所 〒145 名称 AO9
1 to 3 show embodiments of the present invention, FIG. 1 (A) is an overall perspective view of a magnetic layer used in a thin film magnetic head, and FIG. An overall perspective view of the magnetic strip 1 to the live film used in the magnetic field sensing part of RX 'j', FIG. 2(a) is an end view of the reel part of FIG. The main part sectional view in the second embodiment, FIG. 3 (A), is a magnetic field simulation diagram of the present invention, and FIG.
Figure 7 shows a conventional example, Figure 4 (a) is a diagram of the magnetic domain structure in a single-layer magnetic core layer used in a thin-film magnetic head, and Figure 4 (b) shows a single-layer 11 bamboo stripe film. FIG. 5 is an enlarged view of the main part of FIG. 4, FIG. 6 is a sectional view of the main part of the multilayer film, and FIG. 7 is a magnetic field simulation diagram of the multilayer film. 1... Magnetic film, 2... Magnetic insulating film, 3... 1i East,
4 connection discipline. Patent applicant: Alps Electric Co., Ltd. Representative: Masataka Kataoka Procedural amendment (method) l, Indication of the case Japanese Patent Application No. 63-308241 2, Name of the invention Multilayer magnetic film 3, Person making the amendment Case and Related address: 145 Name: AO9

Claims (1)

【特許請求の範囲】[Claims]  磁性膜と磁気絶縁膜とを交互に積層することによって
多層膜を構成し、該多層膜の端部において、前記磁性膜
同士を磁性材により接合したことを特徴とする多層磁性
膜。
A multilayer magnetic film, characterized in that a multilayer film is constructed by alternately laminating magnetic films and magnetic insulating films, and the magnetic films are bonded to each other with a magnetic material at the ends of the multilayer film.
JP30824188A 1988-12-06 1988-12-06 Multilayer magnetic film Pending JPH02154404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30824188A JPH02154404A (en) 1988-12-06 1988-12-06 Multilayer magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30824188A JPH02154404A (en) 1988-12-06 1988-12-06 Multilayer magnetic film

Publications (1)

Publication Number Publication Date
JPH02154404A true JPH02154404A (en) 1990-06-13

Family

ID=17978637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30824188A Pending JPH02154404A (en) 1988-12-06 1988-12-06 Multilayer magnetic film

Country Status (1)

Country Link
JP (1) JPH02154404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786032A (en) * 1993-09-02 1995-03-31 Internatl Business Mach Corp <Ibm> Magnetic film structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786032A (en) * 1993-09-02 1995-03-31 Internatl Business Mach Corp <Ibm> Magnetic film structure

Similar Documents

Publication Publication Date Title
KR100238912B1 (en) Magnetoresistive head
JP2005044490A (en) Cpp type giant magnetoresistance head
JP3200060B2 (en) Thin film magnetic head
KR960025372A (en) Exchange coupling membrane and magnetoresistive element
JPH11110717A (en) Thin film single magnetic pole head
JP2004335071A (en) Cpp giant magnetoresistive head
JPS60237615A (en) Magnetic head
JP2001167410A (en) Spin valve type thin-film magnetic element and thin-film magnetic head
JPH02154404A (en) Multilayer magnetic film
JP2008123587A (en) Thin-film magnetic head
JPH087229A (en) Magnetoresistance effect type magnetic head
JPS58220241A (en) Magneto-resistance effect type magnetic head
JPH01251412A (en) Magneto-resistance effect type magnetic head
JPH05242429A (en) Thin-film magnetic head
JPS59221824A (en) Magnetoresistance effect type magnetic head
JPH0391109A (en) Thin-film magnetic head
JP2001176031A (en) Thin-film magnetic head
JP2806549B2 (en) Magnetoresistance effect element
JP2000331310A (en) Thin film magnetic head and its manufacture
JP2522318B2 (en) Transformer
JP2650890B2 (en) Multilayer magnetic film
JPS626421A (en) Thin film magnetic head
JPS6050607A (en) Vertical magnetic recording and reproducing head
JPS63181108A (en) Magneto-resistance effect type magnetic head
JPH02151088A (en) Compound magnetoresistance effect element