JPH02151088A - Compound magnetoresistance effect element - Google Patents

Compound magnetoresistance effect element

Info

Publication number
JPH02151088A
JPH02151088A JP63304107A JP30410788A JPH02151088A JP H02151088 A JPH02151088 A JP H02151088A JP 63304107 A JP63304107 A JP 63304107A JP 30410788 A JP30410788 A JP 30410788A JP H02151088 A JPH02151088 A JP H02151088A
Authority
JP
Japan
Prior art keywords
film
soft magnetic
bias
magnetoresistance
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63304107A
Other languages
Japanese (ja)
Inventor
Masahiro Kitada
北田 正弘
Noboru Shimizu
昇 清水
Yoshihiro Hamakawa
濱川 佳弘
Hideo Tanabe
英男 田辺
Hitoshi Nakamura
斉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63304107A priority Critical patent/JPH02151088A/en
Publication of JPH02151088A publication Critical patent/JPH02151088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To increase head output and improve reliability by a method wherein a soft magnetic film exhibiting no magnetoresistance effects is stacked on a magnetoresistance effect film, and bias magnetic field application by a branching current to the soft magnetic film and bias effect by magnetic junction of the soft magnetic film and the magnetoresistance film are compounded. CONSTITUTION:A soft magnetic film 6 electrically joined to a magnetoresistance film 1 is arranged. In the case where the soft magnetic film 6 is metal, the amount of branching current is determined by electric resistivity and thickness of each film. The soft magnetic film 6 exhibiting no magnetoresistance effects is stacked on the magnetoresistance effect film 1, and shunt bias method and soft magnetic material proximity method are compounded. In order to adjust the amount of branching current to the soft magnetic metal film serving as a shunt bias film, the electric resistivity of the soft magnetic film 6 is made larger than that of the magnetoresistance effect film 1. Further a differential structure is adopted. Thereby, the output is increased up to twice as compared with conventional shunt bias type elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク、磁気テープ装置等の磁気ヘッド
の構造とその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a magnetic head of a magnetic disk, magnetic tape device, etc., and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来、磁気抵抗効果膜へのバイアス磁界印加法には多く
の方法が考案されているが1本発明に近い発明には軟磁
性体近接法(米国特許第3940797号)磁気抵抗膜
とバイアス電流線を2層にしたシャントバイアス法(特
開昭49−74522 )がある。
Conventionally, many methods have been devised for applying a bias magnetic field to a magnetoresistive film, but one invention that is close to the present invention is the soft magnetic material proximity method (US Pat. No. 3,940,797), magnetoresistive film and bias current line. There is a shunt bias method (Japanese Unexamined Patent Publication No. 74522/1983) that uses two layers.

シャントバイアス法では、第2図で示すように磁気抵抗
膜1とバイアス電流用非磁性金属膜2を一体化して用い
る。したがって、バイアス膜2へ電流が分流するため、
磁気抵抗膜1への実効電流が減少し、出力電圧が低くな
るという欠点がある。
In the shunt bias method, as shown in FIG. 2, a magnetoresistive film 1 and a nonmagnetic metal film 2 for bias current are used integrally. Therefore, since the current is shunted to the bias film 2,
This has the disadvantage that the effective current to the magnetoresistive film 1 decreases and the output voltage decreases.

他方、軟磁性体近接法では、第3図で示すように、磁気
抵抗膜1に対して軟磁性膜5を絶縁膜3を介して設置す
る。この方法では磁気抵抗効果膜1の実効電流値は10
0%であるから、シャントバイアス法に比較して出力電
圧は高いが、磁気抵抗効果膜1と軟磁性膜5の間による
絶縁膜を数10nm以下の厚さとするため、両者間の短
絡を生ずるといった欠点があった。
On the other hand, in the soft magnetic material proximity method, as shown in FIG. 3, a soft magnetic film 5 is placed on the magnetoresistive film 1 with an insulating film 3 interposed therebetween. In this method, the effective current value of the magnetoresistive film 1 is 10
0%, the output voltage is higher than that of the shunt bias method, but since the thickness of the insulating film between the magnetoresistive film 1 and the soft magnetic film 5 is several tens of nanometers or less, a short circuit occurs between the two. There were some drawbacks.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はシャントバイアス法では出力向上の点、
軟磁性体近接法では信頼性の点が配慮されていなかった
The above conventional technology has the points of improving output in the shunt bias method.
Reliability was not considered in the soft magnetic material proximity method.

本発明はヘッド出力が高く、かつ高信頼度の磁気ヘッド
を提供すること目的とする。
An object of the present invention is to provide a magnetic head with high head output and high reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、磁気抵抗効果膜に
磁気抵抗効果を示さない軟磁性膜を重ね合せて、シャン
トバイアス法と軟磁性体近接法とを複合化したものであ
る。
In order to achieve the above object, the present invention combines a shunt bias method and a soft magnetic material proximity method by superimposing a soft magnetic film that does not exhibit a magnetoresistive effect on a magnetoresistive film.

また、本発明に於てはシャントバイアス膜を兼ねる軟磁
性金属膜への電流の分流量の調整のために、磁気抵抗効
果膜の電気抵抗率より軟磁性膜の電気抵抗率を高くした
ものである。
Furthermore, in the present invention, in order to adjust the amount of current shunted to the soft magnetic metal film that also serves as the shunt bias film, the electrical resistivity of the soft magnetic film is made higher than the electrical resistivity of the magnetoresistive film. be.

さらに、素子出力の直線性の改善と出力向上のために、
差動構造としたものである。
Furthermore, in order to improve the linearity of the element output and increase the output,
It has a differential structure.

〔作用〕[Effect]

本発明の複合磁気抵抗効果素子の構造は第1図で示すよ
うに、磁気抵抗膜1に対して電気的に接合された軟磁性
膜6が配置されており、軟磁性膜6が金属であれば、そ
れぞれの電気抵抗率と膜厚によって分流量が決まる。
As shown in FIG. 1, the structure of the composite magnetoresistive element of the present invention includes a soft magnetic film 6 electrically connected to a magnetoresistive film 1. For example, the divided flow rate is determined by each electrical resistivity and film thickness.

磁気抵抗膜1に印加されるバイアス磁界は軟磁性膜に流
れる電流による電流バイアスおよび軟磁性膜と磁気抵抗
効果膜の磁気的結合によるバイアス磁界の和である。し
たがって、磁気的結合によるバイアス磁界分だけ電流バ
イアスは少なくてすむ。これによって、磁気抵抗効果膜
への分流量が実効的に増大するので、素子の出力も増大
する。
The bias magnetic field applied to the magnetoresistive film 1 is the sum of the current bias caused by the current flowing through the soft magnetic film and the bias magnetic field caused by the magnetic coupling between the soft magnetic film and the magnetoresistive film. Therefore, the current bias can be reduced by the bias magnetic field due to magnetic coupling. This effectively increases the amount of diversion to the magnetoresistive film, thereby increasing the output of the element.

−例としてシャント膜にTi(電気抵抗率60μΩG)
、Nb(電気抵抗率30μΩ■)、C。
-For example, the shunt film is made of Ti (electrical resistivity 60μΩG)
, Nb (electrical resistivity 30 μΩ■), C.

T a −Z rアモルファス軟磁性体(電気抵抗率3
0μΩ印)を使用した場合、磁気抵抗効果膜の電気抵抗
率が20μΩ〔、厚さが45nmであれば、Tiは13
0nm、Nbは60nmの厚さで最適バイアス磁界とな
る。これに対し上記のアモルファス軟磁性体をバイアス
膜に使用すれば20nmで最適バイアス磁界を得られる
ので、バイアス膜への分流量が減少し、このため素子の
出力は約2倍となる。
T a -Z r amorphous soft magnetic material (electrical resistivity 3
0 μΩ mark), the electrical resistivity of the magnetoresistive film is 20 μΩ [and the thickness is 45 nm, Ti is 13
The optimum bias magnetic field is obtained with a thickness of 0 nm and a thickness of 60 nm for Nb. On the other hand, if the amorphous soft magnetic material described above is used for the bias film, an optimum bias magnetic field can be obtained at 20 nm, so the amount of shunt to the bias film is reduced, and the output of the device is approximately doubled.

しかし、アモルファス磁性体の電気抵抗率が磁気抵抗効
果膜の電気抵抗率より低くなると、磁気的結合によるバ
イアス磁界が急激に減少する。これは、磁気的結合にバ
イアス膜の空間的配置条件があり、軟磁性膜の電気抵抗
率が低くなると、必要とする膜厚が減少し、軟磁性膜に
侵入する磁界が十分でなくなるためである。この条件は
、軟磁性体の飽和磁束密度および透磁率によっても大き
な影響を受ける。
However, when the electrical resistivity of the amorphous magnetic material becomes lower than that of the magnetoresistive film, the bias magnetic field due to magnetic coupling rapidly decreases. This is because there are spatial arrangement conditions for the bias film for magnetic coupling, and as the electrical resistivity of the soft magnetic film decreases, the required film thickness decreases and the magnetic field penetrating the soft magnetic film becomes insufficient. be. This condition is also greatly influenced by the saturation magnetic flux density and magnetic permeability of the soft magnetic material.

一方、当該素子の出力の直線性を改善し、出力を増大す
るためには、差動化が極めて効果的である。
On the other hand, differentialization is extremely effective in improving the linearity of the output of the device and increasing the output.

差動素子は第4図で示すような構造で、磁気抵抗効果膜
1と軟磁性膜6の2層膜に7.8.9で示す電極および
リード線を設けたものである。電流によるバイアス磁界
は通電の向きを矢印10゜11のように逆向きとすれば
電極7と8、および8と9間の素子には逆のバイアス磁
界が印加され、画素子の軟磁性体によるバイアス磁界も
通電による発生磁界が保磁力以上であれば互いに逆向き
に磁化され、磁気抵抗効果膜には等しいバイアス磁界が
印加される。
The differential element has a structure as shown in FIG. 4, in which a two-layer film of a magnetoresistive film 1 and a soft magnetic film 6 is provided with electrodes and lead wires shown at 7.8.9. If the bias magnetic field due to the current is reversed as shown by the arrows 10 and 11, the opposite bias magnetic field will be applied to the element between electrodes 7 and 8 and between electrodes 8 and 9. If the bias magnetic field is greater than or equal to the coercive force, the bias magnetic fields are magnetized in opposite directions, and the same bias magnetic field is applied to the magnetoresistive film.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

実施例1 基板として1本実施例では磁気シールドも兼ねるN i
 −Z nフェライト上にAQzOs膜を用いた。
Example 1 In this example, Ni was used as a substrate and also served as a magnetic shield.
-AQzOs film was used on Zn ferrite.

磁気ギャップ膜としてはスパッタ法で形成した基板上に
、Ni−19%Feのパーマロイ膜を50nm蒸着する
。次にNb−5%T a −3%Zrアモルファス磁性
体を30nmスパッタにより形成する。
As a magnetic gap film, a Ni-19% Fe permalloy film is deposited to a thickness of 50 nm on a substrate formed by sputtering. Next, a 30 nm thick Nb-5% Ta-3% Zr amorphous magnetic material is formed by sputtering.

これを例えば第4図で示すような形状に加工し、次に磁
気ギャップ用のA Q x○3膜を形成したのち。
After processing this into a shape as shown in FIG. 4, for example, and then forming an A Q x○3 film for a magnetic gap.

磁気シールド用のパーマロイ膜あるいはフェライトを形
成する。
Form a permalloy film or ferrite for magnetic shielding.

以上のようにして作製した複合磁気抵抗効果素子の電圧
−磁界特性を第5図の曲線12に示す6第5図から明ら
かなように本実施例ではバイアス磁界は最適となってい
るが、同時に比較のために作製したNb/パーマロイ複
合膜でNbを30nm、パーマロイを50nmとした素
子では、曲線13で示すように、電流バイアスによる効
果だけしかないので、バイアス磁界は本発明の約1/3
で、不十分なバイアス強度である。
The voltage-magnetic field characteristics of the composite magnetoresistive element fabricated as described above are shown in curve 12 of FIG. 5.6 As is clear from FIG. In the device fabricated for comparison with a Nb/permalloy composite film in which Nb is 30 nm and permalloy is 50 nm, as shown by curve 13, there is only an effect due to current bias, so the bias magnetic field is about 1/3 of that of the present invention.
Therefore, the bias strength is insufficient.

実施例2 実施例1と同じ素子構造でアモルファス磁性体の代りに
軟磁性体であるセンタスト合金を用いた素子でも同様な
バイアス磁界強度を示す素子が得られた。本実施例にお
いても、センタストと同じ電気抵抗率の金属膜を用いた
素子では、バイアス強度が不十分であった。
Example 2 An element having the same element structure as Example 1 but using a centast alloy, which is a soft magnetic material, instead of an amorphous magnetic material, was also obtained, showing a similar bias magnetic field strength. In this example as well, the bias strength was insufficient in an element using a metal film having the same electrical resistivity as Centast.

実施例3 実施例1に於て、本発明の第5図12で示した特性を得
るためには、Nbをシャント膜に用いた場合、60nm
の厚さが必要であった。Nbの厚さを増大することによ
って磁気抵抗膜への分流は約315となり、素子出力も
315となった。すなわち、本発明により、最適バイア
ス状態で素子出力は従来の約2倍となる。
Example 3 In Example 1, in order to obtain the characteristics shown in FIG. 5 and 12 of the present invention, when Nb is used for the shunt film,
thickness was required. By increasing the thickness of Nb, the shunt to the magnetoresistive film became approximately 315, and the device output also became 315. That is, according to the present invention, the element output in the optimum bias state is approximately twice that of the conventional device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁気抵抗効果素子の出力が従来のシャ
ントバイアス型素子に比較して、出力が約2倍に向上す
る。従って磁気ヘッドのトラック幅の減少によって出力
が低下する高密度磁気記録装置においても、シャント型
磁気抵抗ヘッドの実用化が可能となる。
According to the present invention, the output of the magnetoresistive element is approximately twice as high as that of a conventional shunt bias type element. Therefore, the shunt type magnetoresistive head can be put to practical use even in high-density magnetic recording devices where the output decreases due to a decrease in the track width of the magnetic head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の複合型ヘッドの断面図、第
2図は従来のシャントバイアス型磁気抵抗効果ヘッドの
断面図、第3図は従来の軟磁性体近接バイアス型ヘッド
の断面図、第4図は本発明の実施例の差動型素子の斜視
図、第5図は本発明と従来のシャント型素子の出力特性
図である。 毛 l 旧 第 2 口 ”Js  口
FIG. 1 is a sectional view of a composite head according to an embodiment of the present invention, FIG. 2 is a sectional view of a conventional shunt bias type magnetoresistive head, and FIG. 3 is a sectional view of a conventional soft magnetic proximity bias type head. 4 is a perspective view of a differential type element according to an embodiment of the present invention, and FIG. 5 is an output characteristic diagram of a shunt type element of the present invention and a conventional shunt type element. Hair l old second mouth”Js mouth

Claims (1)

【特許請求の範囲】 1、磁気抵抗効果型素子において、磁気抵抗効果を示す
合金膜に磁気抵抗効果を示さない軟磁性膜を重ね合せた
2層膜を用い、軟磁性膜への電流の分流によるバイアス
磁界印加と軟磁性膜と磁気抵抗膜の磁気的結合によるバ
イアス効果とを複合させたことを特徴とする複合磁気抵
抗効果素子。 2、請求項第1項記載の磁気抵抗素子に於て、差動型構
造になつていることを特徴とする複合磁気抵抗効果素子
。 3、磁気ヘッドのセンサ部とこれに群がるリード線部分
まで磁気抵抗膜と軟磁性金属膜との2層膜となつている
ことを特徴とする複合磁気抵抗効果素子。 4、前記軟磁性膜がアモルファス磁性体であることを特
徴とする請求項第1項記載の複合磁気抵抗効果素子。 5、軟磁性膜がセンタスト合金であることを特徴とする
請求項第1項記載の複合磁気抵抗効果素子。
[Claims] 1. In a magnetoresistive element, a two-layer film in which a soft magnetic film that does not show a magnetoresistive effect is superimposed on an alloy film that shows a magnetoresistive effect is used, and current is shunted to the soft magnetic film. What is claimed is: 1. A composite magnetoresistive element characterized by combining the application of a bias magnetic field by a magnetic field and a bias effect by magnetic coupling between a soft magnetic film and a magnetoresistive film. 2. A composite magnetoresistive element according to claim 1, characterized in that it has a differential structure. 3. A composite magnetoresistive element characterized in that the sensor part of the magnetic head and the lead wires clustered around the sensor part are made of a two-layer film of a magnetoresistive film and a soft magnetic metal film. 4. The composite magnetoresistive element according to claim 1, wherein the soft magnetic film is an amorphous magnetic material. 5. The composite magnetoresistive element according to claim 1, wherein the soft magnetic film is a centast alloy.
JP63304107A 1988-12-02 1988-12-02 Compound magnetoresistance effect element Pending JPH02151088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304107A JPH02151088A (en) 1988-12-02 1988-12-02 Compound magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304107A JPH02151088A (en) 1988-12-02 1988-12-02 Compound magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPH02151088A true JPH02151088A (en) 1990-06-11

Family

ID=17929115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304107A Pending JPH02151088A (en) 1988-12-02 1988-12-02 Compound magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPH02151088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909344A (en) * 1995-11-30 1999-06-01 International Business Machines Corporation Magnetoresistive sensor with high resistivity flux guide
US7746207B2 (en) 2003-11-05 2010-06-29 Tdk Corporation Coil device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909344A (en) * 1995-11-30 1999-06-01 International Business Machines Corporation Magnetoresistive sensor with high resistivity flux guide
US7746207B2 (en) 2003-11-05 2010-06-29 Tdk Corporation Coil device

Similar Documents

Publication Publication Date Title
US6952328B2 (en) Magnetic sensing element having second antiferromagnetic layer on edge sections and rear end of a middle section of free magnetic layer
US20010014001A1 (en) Magnetoresistance effect magnetic head and magnetic effect reproducing apparatus
JP3362818B2 (en) Spin valve magnetoresistive transducer and magnetic recording device
JP3640230B2 (en) Thin film magnetic field sensor
US6635366B2 (en) Spin valve thin film magnetic element and thin film magnetic head
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
JPH07221363A (en) Magnetoresistive element
JPH02151088A (en) Compound magnetoresistance effect element
KR19990045422A (en) Magnetoresistance effect magnetic head
US6031691A (en) Magnetoresistance effect magnetic head and manufacturing method therefor
JP3206582B2 (en) Spin polarization element
JP3952515B2 (en) Magnetoresistive element, magnetic recording apparatus, and method of manufacturing magnetoresistive element
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JP3243092B2 (en) Thin film magnetic head
JP2004178659A (en) Spin valve head and magnetic recorder
JPH0498608A (en) Magnetic head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH11112055A (en) Magnetic sensor
JP2806549B2 (en) Magnetoresistance effect element
JP2596010B2 (en) Magnetoresistive magnetic head
JPH01116912A (en) Magneto-resistance effect type magnetic head
JP3175176B2 (en) Magnetoresistive head
JPH07312449A (en) Magneto resistance effect element
JPS6112593Y2 (en)
US6706156B1 (en) Method of making an improved MR sensor