JPH02153140A - Vibration-proof, vibration-controlling device - Google Patents

Vibration-proof, vibration-controlling device

Info

Publication number
JPH02153140A
JPH02153140A JP30704688A JP30704688A JPH02153140A JP H02153140 A JPH02153140 A JP H02153140A JP 30704688 A JP30704688 A JP 30704688A JP 30704688 A JP30704688 A JP 30704688A JP H02153140 A JPH02153140 A JP H02153140A
Authority
JP
Japan
Prior art keywords
foundation
sliding support
fluid
seismic
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30704688A
Other languages
Japanese (ja)
Other versions
JP2791778B2 (en
Inventor
Shunji Fujii
俊二 藤井
Masayoshi Kuno
久野 雅祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP63307046A priority Critical patent/JP2791778B2/en
Publication of JPH02153140A publication Critical patent/JPH02153140A/en
Application granted granted Critical
Publication of JP2791778B2 publication Critical patent/JP2791778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce seismic force by installing a sliding bearing body, with a sliding bearing board fixed thereto, between a column base and a foundation with surroundings of the bearing board and the foundation sealed up, and by connecting a fluid pressurizer, which makes a forcible inflow of the pressurized fluid into the sealed-up space. CONSTITUTION:Seismic movement is detected by an accelerometer 15, displacement gauge 16 installed to a column base 1, and accelerometer 17 provided to a foundation 2 and a pressure gauge 18 installed to a sliding bearing board 3a of a sliding bearing body 3, and detected signals are sent to a control device 19. The control device 19 controls a compressor of a fluid pressurizer 13, making the pressurized oil flow into a sealed-up space 12 and makes the building weight partially sustained thereby. As the force applied to the contact surface of the sliding bearing body 3 is relieved thereby, the seismic force is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は構造物の免震、制震構造に係るものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a seismic isolation and damping structure for structures.

(従来の技術) 第2図は従来の滑り支承タイプの免震、制震構造を示し
、建物の柱脚(a)と基礎jb)との間に滑り支承体(
C)が介装され、基礎(h)のF面に層着されたステン
レス鋼板(d) )、に、滑り支承体(C)における下
部滑り支承板(Φの下面に層着された弗素樹脂板(テフ
ロン板)(e)が滑動自在に載架され、また建物の梁(
f)と地中8梁(g)との間に積層ゴムより構成された
水平反力機構(h)が介装されている。
(Prior art) Figure 2 shows a conventional sliding bearing type seismic isolation and damping structure, in which a sliding bearing (
C) is interposed, and the stainless steel plate (d) layered on the F side of the foundation (h) is interposed with the lower sliding support plate (fluororesin layered on the lower surface of Φ) in the sliding support body (C). A board (Teflon board) (e) is slidably mounted, and a building beam (
A horizontal reaction force mechanism (h) made of laminated rubber is interposed between f) and the eight underground beams (g).

図中(+)は柱、0)は床である。In the figure, (+) is a column and 0) is a floor.

(発明が解決しようとする課題) 前記基礎を面に層着されるステンレス鋼と、滑り支承板
の下面に層着される弗素樹脂板(テフロン板)との摩擦
係数は0.1程度であるため、建物に作用する地震力は
、建物重量の0.1倍程度であり、摩擦係数が低減され
ない限り、tI!!震力はこれ以下にはできない。
(Problem to be solved by the invention) The coefficient of friction between the stainless steel layered on the surface of the foundation and the fluororesin plate (Teflon plate) layered on the lower surface of the sliding support plate is about 0.1. Therefore, the seismic force acting on the building is about 0.1 times the weight of the building, and unless the coefficient of friction is reduced, tI! ! The seismic force cannot be lower than this.

しかしながら安定した摩擦面を構成し、摩擦係数がこれ
よりも小さいものが現在ないため、前記従来の免震、制
置方式を採用する限り、これ以下に地震力を低減できな
い。
However, since there is currently no material that constitutes a stable friction surface and has a friction coefficient smaller than this, as long as the conventional seismic isolation and restraint methods are adopted, the seismic force cannot be reduced below this.

また地震力が摩擦力を超えようとすると滑り始め、地震
動と建物の動きとが一致し、たときに滑りが止まる。
Also, when the seismic force tries to exceed the frictional force, the building begins to slide, and when the seismic motion and the movement of the building coincide, the sliding stops.

従って建物の滑る方向や変位を制御することができず、
過大な滑り変位や、残留滑り変位が生起する慣れがある
Therefore, it is not possible to control the sliding direction or displacement of the building,
There is a habit of excessive sliding displacement and residual sliding displacement occurring.

更にまた、建物と基礎との間に複数の支承体があるとき
、各支承毎に荷重は必らずしも一定ではなく、また地震
力による建物の転倒モーメントにより各支承の接地圧が
変動し、従って地震動の継続時間中において各支承毎の
摩擦力のアンバランスを生起し、この結果、建物が滑り
によるねじれ変位を生起する慣れがある。
Furthermore, when there are multiple supports between a building and the foundation, the load on each support is not necessarily constant, and the ground pressure of each support varies due to the overturning moment of the building due to earthquake force. Therefore, during the duration of the seismic motion, an imbalance of frictional force occurs between each support, and as a result, the building tends to undergo torsional displacement due to slipping.

本発明は前記従来技術の有する問題に鑑みて提案された
もので、その目的とする処は、地震力が低減され、過大
な変位や残留変位が回避されるとともに、ねじれ変位が
防止される免震、制置装置を提供する点にある。
The present invention was proposed in view of the problems of the prior art, and its objectives are to reduce seismic force, avoid excessive displacement and residual displacement, and prevent torsional displacement. The point is to provide earthquake and restraining equipment.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係る免震、制置装
置は、柱脚と基礎との間に滑り支承体及び反力機構が介
装された構造物の免震、制震構造において、柱脚と基礎
との間に、下面が開口した凹型の滑り支承板が固着され
た滑り支承体を設置するとともに、前記滑り支承板と前
記基礎の周囲をシールし、同滑り支承板の凹部と基礎と
の間に形成されたシール空間に圧力流体を封入する流体
加圧装置を接続して構成されている。
(Means for Solving the Problem) In order to achieve the above object, the seismic isolation and restraint device according to the present invention has a structure in which a sliding support and a reaction force mechanism are interposed between the column base and the foundation. In the seismic isolation and damping structure of objects, a sliding support to which a concave sliding support plate with an open bottom is fixed is installed between the column base and the foundation, and the surroundings of the sliding support plate and the foundation are It is constructed by connecting a fluid pressurizing device that seals and seals pressurized fluid into the seal space formed between the recess of the sliding support plate and the foundation.

前記流体加圧装置を地震の規模、方向に対応して自動的
に制御するように、本発明の装置は、前記構造物に地震
動のセンサー部材を配設するとともに、同センサー部材
に、同部材による地震動検知信号を受けて前記加圧装置
の流体加圧力を制御する制御装置を接続して構成されて
いる。
In order to automatically control the fluid pressurization device in accordance with the magnitude and direction of an earthquake, the device of the present invention includes a seismic motion sensor member disposed in the structure, and a seismic motion sensor member attached to the sensor member. A control device is connected thereto to control the fluid pressurizing force of the pressurizing device in response to an earthquake motion detection signal from the pressurizing device.

(作用) 本発明は前記したように構成されているので、地震発生
時に滑り支承体に固着された凹型の滑り支承板における
凹部と、前記基礎との間に形成されたシール空間に、前
記流体加圧装置によって加圧流体を急速に圧入し、同圧
力流体の圧力によって構造物の重量の一部、若しくは大
部分を支持し、構造物に対する地震力を低減するもので
ある。
(Function) Since the present invention is configured as described above, when an earthquake occurs, the fluid flows into the seal space formed between the recess in the concave sliding support plate fixed to the sliding support and the foundation. Pressurized fluid is rapidly injected by a pressurizing device, and the pressure of the pressurized fluid supports part or most of the weight of the structure, thereby reducing seismic force on the structure.

また地震の継続時間中に、地震の規模や振動方向に応じ
て、前記流体加圧装置による流体圧力を制御して、滑り
支承体の摩擦力による減衰力及び同支承体が滑動する方
向や変位を制御するものである。
In addition, during the duration of the earthquake, the fluid pressure by the fluid pressurizing device is controlled depending on the scale of the earthquake and the direction of vibration, and the damping force due to the frictional force of the sliding support and the sliding direction and displacement of the sliding support are controlled. It controls the

(実施例) 以下本発明を第1図に示す実施例について説明する。(Example) The present invention will be described below with reference to an embodiment shown in FIG.

建物の柱脚(1)と基礎(2)との間に、下面が開口し
た凹型の滑り支承板(3a)が固着された滑り支承体(
3)が介装され、基礎(2)のE面に層着されたステン
レス鋼板(4)Eに、滑り支承板(3a)の下面に層着
された弗素樹脂板(テフロン板)(5)が滑動自在に載
架され、また建物の梁(6)と地中梁(7)との間に、
積層ゴムより構成された水平反力機構(8)が介装され
ている。
A sliding support plate (3a) with a concave opening at the bottom is fixed between the column base (1) and the foundation (2) of a building.
3) is interposed, and a stainless steel plate (4) is layered on the E surface of the foundation (2). A fluororesin plate (Teflon plate) (5) is layered on the lower surface of the sliding support plate (3a) on E. is slidably mounted, and between the building beam (6) and the underground beam (7),
A horizontal reaction force mechanism (8) made of laminated rubber is interposed.

図中(9)は柱、0il)は床である。In the figure, (9) is a column, and (0il) is a floor.

而して前記滑り支承板(3a)における凹部を囲繞する
外周部との間をシール材(11)でシールし、同シール
材(11)によって前記滑り支承板(3a)の凹部と基
礎(2)との間に形成されたシール空間02)に、コン
プレッサー等の流体加圧装置面を導管Oaを介し、で接
続する。
A sealing material (11) is used to seal between the sliding support plate (3a) and the outer periphery surrounding the recess, and the sealing material (11) connects the sliding support plate (3a) to the foundation (2). ) A fluid pressurizing device such as a compressor is connected to the seal space 02) formed between the pipe Oa and the sealing space 02) via a conduit Oa.

更に前記柱脚(1)には加速度計θつ及び変位計00が
、また基礎(2)には加速度計0′I)が夫々取付けら
れ、更に滑り支承板(3a)における凹部に臨む位置に
圧力計側が取付けられている。前記各加速度計00面、
変位計06)及び圧力計08)が前記地震動センサー部
材を構成するものである。
Further, an accelerometer θ and a displacement meter 00 are attached to the column base (1), and an accelerometer 0'I) is attached to the foundation (2), and furthermore, an accelerometer θ and a displacement meter 00 are attached to the base (2), and furthermore, at a position facing the recess in the sliding support plate (3a). The pressure gauge side is attached. 00 plane of each of the above-mentioned accelerometers,
The displacement gauge 06) and the pressure gauge 08) constitute the seismic motion sensor member.

同地震動センサー部材の地震動検知信号は制御装置09
)に送られ、同制御装置0つによって前記加圧装置0ツ
の流体加圧力が制御されるようになっている。
The seismic motion detection signal of the seismic motion sensor member is sent to the control device 09.
), and the fluid pressurizing force of the pressurizing device 0 is controlled by the control device 0.

図示の実施例は前記したように構成されているので、地
震動を前記各加速度計面07)、変位計00及び圧力計
00で検知し、検知信号を制御装置0!llに送り、同
制御装置09)で入力信号を演算処理して最も適切な油
圧となるように流体加圧装置面を構成するコンプレッサ
ーを制御して、加圧された油を前記シール空間0りに封
入し、同空間021内の加圧された油によって建物重量
の一部を支持し、滑り支承の接触面に作用する力を軽減
し地震力を低減する。
Since the illustrated embodiment is configured as described above, seismic motion is detected by each of the accelerometers 07), displacement gauges 00, and pressure gauges 00, and detection signals are sent to the control device 0! The control device 09) processes the input signal and controls the compressor that constitutes the fluid pressurizing device to obtain the most appropriate oil pressure, and the pressurized oil is sent to the seal space 0. The pressurized oil in the same space 021 supports part of the weight of the building, reducing the force acting on the contact surface of the sliding bearing and reducing seismic force.

また地震の継続中に各支承における前記シール空間0り
内の油圧を調整することによって各支承の接触面に作用
する力を調整し、滑りの大きさ、方向を制御し、過大な
変位や残留変位を回避し7、ねじれ変位を防止しうるも
のである。
In addition, by adjusting the hydraulic pressure in the seal space of each bearing during an earthquake, the force acting on the contact surface of each bearing can be adjusted, controlling the magnitude and direction of slippage, and preventing excessive displacement and residual Displacement 7 can be avoided and torsional displacement can be prevented.

なお前記実施例においては、加圧流体として油が使用さ
れているが、空気または水等の他の液体でもよい。
In the above embodiments, oil is used as the pressurized fluid, but other liquids such as air or water may be used.

また常時は加圧せず、加速度計01で地震動を感知する
と、エアバッグに用いられる火薬等を使用した加圧装置
面によって急激に前記シール空間0り内を加圧するよう
にしてもよい。
Alternatively, the seal space 01 may not be pressurized all the time, but when seismic motion is detected by the accelerometer 01, the inside of the sealed space 01 may be suddenly pressurized by a pressurizing device surface using explosives or the like used in airbags.

次に本発明の適用例を挙げる。Next, examples of application of the present invention will be given.

柱1本毎に滑り支承が設けられており、1個所当りの荷
重は1501f前後である。直径70C11の支承を用
いると接触面の圧力は150 xlO3/(35x35
X x)  =39.0kgf /c−となる。
A sliding bearing is provided for each pillar, and the load per position is approximately 1501f. When using a bearing with a diameter of 70C11, the pressure on the contact surface is 150 x lO3/(35 x 35
X x )=39.0 kgf/c-.

支承板の凹部の直径@50cmとすると、全荷重の3/
4を前記シール空間内の油圧で受けるために必要な油圧
は150 XIOコx 3 / 4 /(25x25X
π)= 57 、3 kg f / c−となる。
If the diameter of the concave part of the support plate is 50 cm, 3/ of the total load is
The hydraulic pressure required to receive 4 with the hydraulic pressure in the seal space is 150 XIO x 3 / 4 / (25 x 25
π) = 57, 3 kg f/c-.

これは油圧を用いて十分に実現できる圧力である。This is a pressure that can be fully achieved using hydraulic pressure.

前記の例によれば建物に作用する地震力は(建物重量)
 X l /4 Xo、1即ち建物重量の0.025倍
に軽減される。
According to the above example, the seismic force acting on the building is (building weight)
It is reduced to X l /4 Xo, 1, that is, 0.025 times the building weight.

(発明の効果) 本発明によれば前記したように、滑り支承体に固着され
た下面が開口した凹型の滑り支承板と、基礎との周囲を
シールして、同基礎と前記滑り支承板の凹部との間に形
成されたシール空間に、急速に圧力流体を封入する流体
加圧装置を接続したことによって、前記シール空間内の
流体圧によって構造物重量を支持することが可能となり
、構造物に対する地震力が低減される。
(Effects of the Invention) According to the present invention, as described above, the periphery of the foundation and the concave sliding support plate with an open lower surface fixed to the sliding support body is sealed, and the area between the foundation and the sliding support plate is sealed. By connecting a fluid pressurizing device that rapidly seals pressure fluid into the seal space formed between the recess, it becomes possible to support the weight of the structure by the fluid pressure in the seal space, and the structure The seismic force against is reduced.

また地震の継続時間中に、地震の規模や振動方向に応じ
て、前記流体加圧装置による前記シール空間内の流体圧
力を制御することによって、滑り支承体の摩擦力による
減衰力及び同支承体が滑動する方向や変位を制御し、構
造物の過大な変位や残留変位を回避しうるとともに、ね
じれ変位を防止することができる。
In addition, during the duration of an earthquake, the fluid pressure in the seal space by the fluid pressurizing device is controlled depending on the magnitude and vibration direction of the earthquake, thereby reducing the damping force due to the frictional force of the sliding bearing and the sliding bearing. By controlling the sliding direction and displacement of the structure, excessive displacement and residual displacement of the structure can be avoided, and torsional displacement can be prevented.

また本発明の免震、制置装置によれば、下面が開口した
凹型の滑り支承板を予め滑り支承体の下面に取付け、同
滑り支承板と基礎との間をシールして、前記滑り支承板
と基礎との間に圧力流体が封入されるシール空間が構成
されるようにしたことによって構成を簡略化し、施工を
容易ならしめることができる。
Further, according to the seismic isolation and restraint device of the present invention, a concave sliding support plate with an open bottom is attached to the lower surface of the sliding support in advance, and a seal is established between the sliding support plate and the foundation, so that the sliding bearing By configuring a seal space in which pressure fluid is sealed between the plate and the foundation, the configuration can be simplified and construction can be facilitated.

請求項2の発明は構造物に配設された地震動のセンサー
部材と、同センサー部材の地震動検知信号を受けて前記
加圧装置の流体加圧力を制御する制御装置とを設けるこ
とによって、地震時に自動的に前記支承部における滑り
支承板の凹部と基礎との間に形成されたシール空間に圧
力流体を封入するとともに、地震の規模、振動方向に応
じて前記圧力流体の加圧力を自動的に制御しうるように
したものである。
The invention according to claim 2 provides a seismic motion sensor member disposed in a structure, and a control device that receives a seismic motion detection signal from the sensor member and controls the fluid pressurizing force of the pressurizing device. Pressure fluid is automatically sealed in the seal space formed between the recess of the sliding support plate and the foundation in the bearing part, and the pressurizing force of the pressure fluid is automatically applied depending on the magnitude of the earthquake and the direction of vibration. It is designed to be controllable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る免震、制置装置の一実施例を示す
縦断面図、第2図は従来の免震、制置装置の縦断面図で
ある。 (])−一柱脚、 (3)−・−滑り支承体、 (8)−一水千反力機構、 02)−シール空間、 051−−一加速度計、 07)−m−加速度計、 01−・・制御装置。 代理人 弁理士 岡 本 重 文 外2名 (2)−・−基礎、 (3a)・−滑り支承板、 01)−シール材、 031−流体加圧装置、 0θ−変位計、 08)−一圧力計、
FIG. 1 is a vertical cross-sectional view showing an embodiment of a seismic isolation and restraint device according to the present invention, and FIG. 2 is a vertical cross-sectional view of a conventional seismic isolation and restraint device. (]) - one pillar base, (3) - - sliding support, (8) - one water reaction force mechanism, 02) - seal space, 051 - one accelerometer, 07) - m - accelerometer, 01--Control device. Agent Patent attorney Shige Okamoto Two other people (2) - Foundation, (3a) - Sliding support plate, 01) - Seal material, 031 - Fluid pressurization device, 0θ - Displacement meter, 08) -1 pressure gauge,

Claims (2)

【特許請求の範囲】[Claims] (1)柱脚と基礎との間に滑り支承体及び反力機構が介
装された構造物の免震、制震構造において、柱脚と基礎
との間に、下面が開口した凹型の滑り支承板が固着され
た滑り支承体を設置するとともに、前記滑り支承板と前
記基礎の周囲をシールし、同滑り支承板の凹部と基礎と
の間に形成されたシール空間に圧力流体を封入する流体
加圧装置を接続してなることを特徴とする免震、制震装
置。
(1) In seismic isolation and damping structures for structures in which a sliding support and a reaction force mechanism are interposed between the column base and the foundation, a concave sliding structure with an open bottom is installed between the column base and the foundation. A sliding support to which a support plate is fixed is installed, and the area around the sliding support plate and the foundation is sealed, and a pressurized fluid is sealed in the seal space formed between the recess of the sliding support plate and the foundation. A seismic isolation and damping device characterized by being connected to a fluid pressurization device.
(2)前記構造物に地震動のセンサー部材を配設すると
ともに、同センサー部材に、同部材による地震動検知信
号を受けて前記加圧装置の流体加圧力を制御する制御装
置を接続してなる請求項1記載の免震、制震装置。
(2) A claim in which a seismic motion sensor member is disposed in the structure, and a control device is connected to the sensor member for receiving a seismic motion detection signal from the member and controlling the fluid pressurizing force of the pressurizing device. Seismic isolation and damping device described in Section 1.
JP63307046A 1988-12-06 1988-12-06 Seismic isolation device Expired - Lifetime JP2791778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63307046A JP2791778B2 (en) 1988-12-06 1988-12-06 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63307046A JP2791778B2 (en) 1988-12-06 1988-12-06 Seismic isolation device

Publications (2)

Publication Number Publication Date
JPH02153140A true JPH02153140A (en) 1990-06-12
JP2791778B2 JP2791778B2 (en) 1998-08-27

Family

ID=17964397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63307046A Expired - Lifetime JP2791778B2 (en) 1988-12-06 1988-12-06 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP2791778B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179621A (en) * 1998-12-14 2000-06-27 Toyo Tire & Rubber Co Ltd Base isolation device
JP2000193022A (en) * 1998-12-24 2000-07-14 Toyo Tire & Rubber Co Ltd Base isolation device, for light weight structure
JP2013217427A (en) * 2012-04-06 2013-10-24 Tokkyokiki Corp Base isolation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841163A (en) * 1981-09-07 1983-03-10 株式会社東芝 Earthquake-proof house

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841163A (en) * 1981-09-07 1983-03-10 株式会社東芝 Earthquake-proof house

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179621A (en) * 1998-12-14 2000-06-27 Toyo Tire & Rubber Co Ltd Base isolation device
JP2000193022A (en) * 1998-12-24 2000-07-14 Toyo Tire & Rubber Co Ltd Base isolation device, for light weight structure
JP2013217427A (en) * 2012-04-06 2013-10-24 Tokkyokiki Corp Base isolation device

Also Published As

Publication number Publication date
JP2791778B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
JPH02153140A (en) Vibration-proof, vibration-controlling device
JPH0522028B2 (en)
JP3324251B2 (en) Seismic isolation device
JPH0561427B2 (en)
JPH02153139A (en) Vibration-proof, vibration-controlling device
JP3772499B2 (en) Lock mechanism for seismic isolation bearing and seismic isolation support device using the same
JPH02153138A (en) Vibration-proof, vibration-controlling device
JPH07173954A (en) Base isolation device
JP2706366B2 (en) Seismic isolation device using liquefaction characteristics of sand
JP3190409B2 (en) Structure damping device
JP4545563B2 (en) Seismic isolation structure of building
JP3002480B2 (en) Vibration isolation test equipment
JPH0563580B2 (en)
JP3038170B2 (en) Seismic isolation device
JP4066490B2 (en) Hydraulic support device
JPH01275866A (en) Active type vibration control device
JP3171989B2 (en) Structure damping device
JP2002106632A (en) Base isolation device and base isolation structure
JP3757383B2 (en) Seismic reinforcement system
JPH05256046A (en) Structure preventing propagation of earthquake motion
JPS62268478A (en) Earthquakeproof method of building
JP4294919B2 (en) Seismic isolation support device and seismic isolation support method
JPH0565775A (en) Active damping device for structure
JPH01304223A (en) Anti-vibration pile foundation construction
JPH06323035A (en) Vibration damping device for structure