JPH0215172A - Method of reforming base material surface - Google Patents

Method of reforming base material surface

Info

Publication number
JPH0215172A
JPH0215172A JP6996189A JP6996189A JPH0215172A JP H0215172 A JPH0215172 A JP H0215172A JP 6996189 A JP6996189 A JP 6996189A JP 6996189 A JP6996189 A JP 6996189A JP H0215172 A JPH0215172 A JP H0215172A
Authority
JP
Japan
Prior art keywords
base material
discharge
fluorine
compd
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6996189A
Other languages
Japanese (ja)
Other versions
JPH0776425B2 (en
Inventor
Sachiko Okazaki
幸子 岡崎
Masuhiro Kokoma
益弘 小駒
Teruhisa Kondo
照久 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP6996189A priority Critical patent/JPH0776425B2/en
Publication of JPH0215172A publication Critical patent/JPH0215172A/en
Publication of JPH0776425B2 publication Critical patent/JPH0776425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin compd. film of a fluorine-carbon bond which is uniform and secure and has an excellent adhesive property on the surface of a base material by bringing the gaseous plasma generated by electric discharge under a low pressure into contact with the base material in the presence of a gaseous mixture contg. a hydrocarbon compd. and fluorinated nitrogen compd. CONSTITUTION:The thin film having the fluorine-carbon bond is formed on the surface of the base material consisting of metals, ceramics, plastics, etc. The gaseous plasma generated by the electric discharge under the low pressure is brought into contact with the base material in the presence of the gaseous mixture composed of the hydrocarbon compd. and the fluorinated nitrogen compd. in this case. The plasma discharge is executed by a device having, for example, a carrier gas supplying path 1, a high-frequency power source 2, a plasma reaction system 3, a discharge electrode 4, and a discharge path 5. The thin compd. film of the fluorine-carbon bond which is uniform and secure and has the excellent adhesive property is formed on the surface of the base material in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属、金属酸化物、セラミックス、プラスチ
ックス等からなる基材に、フッ素−炭素結合を含む化合
物薄膜を形成させることによる基材表面の改質方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to improving the surface of a substrate made of metals, metal oxides, ceramics, plastics, etc. by forming a thin film of a compound containing a fluorine-carbon bond on the substrate. Regarding modification methods.

従来の技術及びその問題点 金属、金属酸化物、セラミックス、プラスチックス等か
らなる基材表面に、含フツ素化合物の薄膜を形成させて
、耐薬品性、疎水性、耐摩耗性、潤滑性等を付与する方
法は公知である。このような方法としては、一般に、テ
トラフルオロエチレンを湿式塗布する方法が広く行なわ
れているが、テトラフルオロエチレンは高価であり、ま
た金属、セラミックス等の物質上では、テトラフルオロ
エチレン自体が低表面エネルギーであるために密着性に
優れた被膜を形成させることが困難であり、使用中に剥
離流出して、その機能が低下するという問題がある。
Conventional technology and its problems A thin film of a fluorine-containing compound is formed on the surface of a base material made of metal, metal oxide, ceramics, plastics, etc. to improve chemical resistance, hydrophobicity, abrasion resistance, lubricity, etc. Methods for providing this are well known. Generally, wet coating of tetrafluoroethylene is widely used as such a method, but tetrafluoroethylene is expensive, and tetrafluoroethylene itself has a low surface area on materials such as metals and ceramics. Since it uses energy, it is difficult to form a film with excellent adhesion, and there is a problem that it peels off and flows out during use, reducing its functionality.

また、フッ素気体中での化学的処理方法により、金属表
面上にフッ化炭素を形成する方法も研究されているが、
フッ素気体が危険であることに加えて、処理条件も複雑
であり、実用には適さない。
Research is also being conducted on methods of forming fluorocarbons on metal surfaces using chemical treatment methods in fluorine gas.
In addition to the danger of fluorine gas, the processing conditions are complex, making it unsuitable for practical use.

また、金属、セラミックス等を直接合フッ素プラズマガ
スによって処理する場合には、金属やセラミックスは、
炭素を微量しか含有しないため、フッ化炭素化合物を形
成させることはできず、特に金属を直接合フッ素プラズ
マガスで処理する場合には、金属の表面は、フッ化金属
となって親水性てもろ(なり、金属を保護するという役
割をはだすことはできない。
In addition, when metals, ceramics, etc. are directly treated with fluorine plasma gas, the metals and ceramics are
Since it contains only a trace amount of carbon, it is not possible to form a fluorocarbon compound. Especially when a metal is directly treated with a fluorine plasma gas, the surface of the metal becomes a fluoride metal and becomes hydrophilic and brittle. (It cannot fulfill its role of protecting the metal.

問題点を解決するための手段 本発明者は、金属、セラミックス、プラスチックス等の
表面にフッ素−炭素結合を有する化合物の強固な薄膜を
形成させて、疎水性、潤滑性、耐摩耗性、耐薬品性等を
付与することを目的に鋭意研究を重ねた結果、炭化水素
化合物とフッ化窒素化合物とを含有する混合気体を放電
して発生ずるプラズマガスを金属、セラミックス、プラ
スチックス等の基祠に接触させることによって基板」二
に、均一かつ強固にフッ素−炭素結合を有する化合物の
薄膜を形成できることを見出した。本発明は、このよう
な知見に基くものである。
Means for Solving the Problems The present inventor formed a strong thin film of a compound having a fluorine-carbon bond on the surface of metals, ceramics, plastics, etc. to improve hydrophobicity, lubricity, abrasion resistance, and As a result of intensive research with the aim of imparting chemical properties, we have found that plasma gas generated by discharging a gas mixture containing hydrocarbon compounds and fluorinated nitrogen compounds can be applied to metals, ceramics, plastics, etc. It has been found that a thin film of a compound having a fluorine-carbon bond can be uniformly and firmly formed on a substrate by contacting the fluorine-carbon bond with the substrate. The present invention is based on such knowledge.

即ち本発明は、炭化水素化合物及びフッ化窒素化合物を
含む混合気体の存在下において、低圧下で放電して発生
するプラズマガスを基材に接触させることを特徴とする
基材表面の改質方法に係る。
That is, the present invention provides a method for modifying the surface of a substrate, which comprises bringing plasma gas generated by discharge under low pressure into contact with the substrate in the presence of a mixed gas containing a hydrocarbon compound and a nitrogen fluoride compound. Pertains to.

本発明では、炭化水素化合物とフッ化窒素化合物とを含
む混合気体の存在下において、放電により発生するプラ
ズマガスを暴利に直接接触させることによって基板上に
フッ素−炭素結合を存する化合物による薄膜を形成させ
ることができる。本発明方法において使用できる炭化水
素化合物としては、例えば、CH4、C2H4、C9H
6、C3H8・C4H,0・C6H6等を例示できる。
In the present invention, in the presence of a mixed gas containing a hydrocarbon compound and a fluorinated nitrogen compound, a thin film of a compound having a fluorine-carbon bond is formed on a substrate by bringing plasma gas generated by discharge into direct contact with the gaseous material. can be done. Hydrocarbon compounds that can be used in the method of the present invention include, for example, CH4, C2H4, C9H
6, C3H8, C4H, 0, C6H6, etc. can be exemplified.

フッ化窒素化合物としては、常温で気体、あるいは放電
処理時の温度で気体化するフッ化窒素化合物であればい
ずれも使用でき、例えばNF3等を用いればよい。これ
らは、単独または併用してもよい。炭化水素化合物とフ
ッ化窒素化合物の混合比や処理条件は、要求される薄膜
の性状に応じて適宜決定すれはよい。
As the fluorinated nitrogen compound, any fluorinated nitrogen compound that is gaseous at room temperature or gasified at the temperature during discharge treatment can be used; for example, NF3 or the like may be used. These may be used alone or in combination. The mixing ratio of the hydrocarbon compound and the nitrogen fluoride compound and the processing conditions may be determined as appropriate depending on the required properties of the thin film.

この混合気体には、必要に応じて、N2、He等のガス
を添加して放電電圧等の調整を行なうこともできるし、
また形成膜の性能、基材との接合づ 性能等をあげるため水素や酸素などを混合してもよい。
If necessary, gases such as N2 and He can be added to this mixed gas to adjust the discharge voltage, etc.
Further, hydrogen, oxygen, etc. may be mixed in order to improve the performance of the formed film, the bonding performance with the base material, etc.

本発明方法では、従来の放電プラズマ法によるフッ化黒
鉛の製造において、フッ素原料として使用されている取
扱いに危険を伴うフッ素分子気体を使用しないので安全
性の点において有利である。
The method of the present invention is advantageous in terms of safety because it does not use fluorine molecular gas, which is dangerous to handle and is used as a fluorine raw material in the production of fluorinated graphite by the conventional discharge plasma method.

本発明で用いられるプラズマ発生方法としては、■内部
電極方式による直流グロー放電又は低周波放電、■内部
電極方式、外部電極方式又はコイル型方式による高周波
放電、■導波管型方式によるマイクロ波放電、■電子サ
イクロトロン共鳴放電(ECR放電)■電極を使用しな
い誘導コイル型高周波放電、等を挙げることができるが
、これらに限定されず、放電によってプラズマを発生で
きる方法であればいずれの方法でもよい。
The plasma generation methods used in the present invention include: ■ DC glow discharge or low frequency discharge using an internal electrode method; ■ High frequency discharge using an internal electrode method, external electrode method or coil type method; ■ Microwave discharge using a waveguide type method. , ■ Electron cyclotron resonance discharge (ECR discharge) ■ Induction coil type high-frequency discharge that does not use electrodes, etc., but is not limited to these, and any method that can generate plasma by discharge may be used. .

処理条件としては、例えば混合気体全圧力100〜10
−3ト一ル程度、流量0.1〜500mu/min程度
(N、 T、  P、 )で、放電電力10〜300W
程度で放電を行なえばよい。大型装置を用いる場合には
、これを上回る流儀、及び電力で処理を行なうこともで
きる。炭化水素化合物とフッ化窒素化合物との比率は、
炭化水素化合物中のC数とフッ化窒素化合物中のF数と
が0.01≦C/F≦5程度となる様にすればよい。基
板は、常温又は加熱状態でよい。
As a treatment condition, for example, the total pressure of the mixed gas is 100 to 10
-3 torr, flow rate of about 0.1 to 500 mu/min (N, T, P, ), discharge power of 10 to 300 W
It is sufficient to discharge at a certain level. When using a large-scale device, processing can be performed in a manner exceeding this amount and using more power. The ratio of hydrocarbon compounds to fluorinated nitrogen compounds is
The number of C in the hydrocarbon compound and the number of F in the fluorinated nitrogen compound may be set to about 0.01≦C/F≦5. The substrate may be at room temperature or heated.

本発明では、基材としては、特に制限はないが、例えば
金属、金属酸化物、セラミックス、プラスチックス等を
用いることができる。これらの基材の種類は、特に限定
されるものではないが、金属としては、例えば銅、鉄、
ニッケル、アルミニウム、クロム、タングステン、錫、
亜鉛、ケイ素、マンガン、チタン、インジウム等を含む
金属単体全般、これらの合金等を挙げることができる。
In the present invention, the base material is not particularly limited, but for example, metals, metal oxides, ceramics, plastics, etc. can be used. The types of these base materials are not particularly limited, but examples of metals include copper, iron,
Nickel, aluminum, chromium, tungsten, tin,
Examples include all metals including zinc, silicon, manganese, titanium, indium, etc., and alloys thereof.

金属酸化物としては、上記金属の酸化物を例示できる。Examples of the metal oxide include oxides of the above metals.

また、セラミックスとしては、ケイ酸塩ガラス、石英ガ
ラス、ホウ酸塩ガラス、リン酸塩ガラス等のガラス類、
アルミナセメント、ポルトランドセメント、マグネンア
セメント等のセメント類、マグネシア、ジルコン、アル
ミナ、酸化チタン、炭化珪素、チッ化珪素等を挙けるこ
とができる。
Ceramics include glasses such as silicate glass, quartz glass, borate glass, and phosphate glass;
Examples include cements such as alumina cement, portland cement, and magnear cement, magnesia, zircon, alumina, titanium oxide, silicon carbide, and silicon nitride.

プラスチックスとしても特に制限はなく、広く各種のも
のか使用でき、例えば、ポリエチレン樹脂、ポリプロピ
レン樹脂、ポリアセタール樹脂、アクリル樹脂、ナイロ
ン樹脂、セルロース樹脂、ポリカーボネート樹脂、フェ
ノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ジ
アリルフタレート樹脂、フェノールホルムアルデヒド樹
脂、尿素樹脂、メラミン・アルデヒド樹脂、エポキシ樹
脂、フラン樹脂、キシレン樹脂、シリコーン樹脂、ポリ
スチレン樹脂、ビニール樹脂、アルキド樹脂、塩素化ポ
リエーテル樹脂等を挙げることができる。
There are no particular restrictions on plastics, and a wide variety of materials can be used, such as polyethylene resin, polypropylene resin, polyacetal resin, acrylic resin, nylon resin, cellulose resin, polycarbonate resin, phenoxy resin, polyester resin, polyurethane resin, diallyl resin, etc. Examples include phthalate resins, phenol formaldehyde resins, urea resins, melamine aldehyde resins, epoxy resins, furan resins, xylene resins, silicone resins, polystyrene resins, vinyl resins, alkyd resins, and chlorinated polyether resins.

基材の形状は、特に限定されず、丸棒状、角柱状、板状
等の任意の形状とすることができる。
The shape of the base material is not particularly limited, and can be any shape such as a round rod shape, a prismatic shape, or a plate shape.

本発明で放電装置内に置く基材の位置は、プラズマを発
生させる電場内であってもよく、また含フツ素化合物の
プラズマを通過するガスが活性な状態で達する範囲内で
あれば電場外であってもよい。特に基材として、プラス
チックスを使用する場合には、例えば、基材を電場中に
おいてマイクロ波による放電を行なえば、プラスチック
スが溶けることがあるので、このような場合には、電場
中に基材をおかずに、電場外であって、プラズマを通過
した活性なガスが達する範囲内に基材をおくことが必要
になる。
In the present invention, the position of the base material placed in the discharge device may be within the electric field that generates plasma, or outside the electric field as long as it is within the range that the gas passing through the plasma of the fluorine-containing compound reaches in an active state. It may be. Particularly when using plastic as a base material, for example, if the base material is subjected to microwave discharge in an electric field, the plastic may melt. It is necessary to place the base material outside the electric field and within the reach of the active gas that has passed through the plasma.

また、電場中に基材をおいて放電させる場合には、基材
表面がエツチングされながら、フッ素炭素結合を有する
化合物の薄膜が形成されることがあり、要求する基材の
表面性状に応じて処理条件を決定することが必要になる
Furthermore, when a substrate is placed in an electric field and discharged, a thin film of a compound having fluorocarbon bonds may be formed while the surface of the substrate is etched. It will be necessary to determine the processing conditions.

フッ素−炭素結合を有する化合物薄膜の好ましい厚さは
、目的によって一様ではないので特に限定されないが、
通常0.01〜10μm程度の厚さで基材表面の改質の
目的を達成できる。
The preferred thickness of the thin film of a compound having a fluorine-carbon bond is not particularly limited as it varies depending on the purpose;
Usually, the purpose of modifying the surface of the base material can be achieved with a thickness of about 0.01 to 10 μm.

本発明方法によれは、試料気体の種類、混合比、圧力、
放電の方法、例えば交流、直流、高周波などの方法、放
電時間、電極間距離、基板温度、放電のON、OFFの
繰り返しなど諸条件を調節することによって、炭素含有
膜のフッ素化程度をコントロールすることができ、基材
表面の疎水性能等を調整することが可能である。フッ素
化程度は、X線光電子スペクトル(ESCAスペクトル
)分析により計算されたF/Cの割合によって定量的に
測定できる。
Depending on the method of the present invention, the type of sample gas, mixing ratio, pressure,
The degree of fluorination of the carbon-containing film is controlled by adjusting various conditions such as the discharge method, such as alternating current, direct current, or high frequency, discharge time, distance between electrodes, substrate temperature, and repetition of ON and OFF discharges. It is possible to adjust the hydrophobic performance etc. of the surface of the base material. The degree of fluorination can be quantitatively measured by the F/C ratio calculated by X-ray photoelectron spectrum (ESCA spectrum) analysis.

発明の効果 本発明方法によれは、見料の種類を問わず、基材表面に
、均一かつ強固な、密着性に優れたフッ素−炭素結合を
有する化合物の薄膜を形成させることができる。また、
本発明方法は、フッ素原料としてフッ素分子気体を使用
しないので、安全性に優れた方法である。また、本発明
方法によれば、化学的処理方法などに比べて、極めて短
時間で目的物が得られるという大きな利点がある。
Effects of the Invention According to the method of the present invention, a uniform and strong thin film of a compound having a fluorine-carbon bond with excellent adhesion can be formed on the surface of a substrate regardless of the type of specimen. Also,
The method of the present invention is a method with excellent safety because it does not use fluorine molecular gas as a fluorine raw material. Furthermore, the method of the present invention has the great advantage that the target product can be obtained in an extremely short time compared to chemical treatment methods.

更に、本発明方法では、ポリテ)・ラフルオロエチレン
よりも疎水性に優れたフッ素−炭素結合を有する化合物
の薄膜を形成させることが可能であり、本発明方法によ
って処理した基材は、耐薬品性、疎水性、耐摩耗性、潤
滑性等に優れたものとなる。
Furthermore, with the method of the present invention, it is possible to form a thin film of a compound having a fluorine-carbon bond that is more hydrophobic than polytetrafluoroethylene, and the substrate treated with the method of the present invention has chemical resistance. It has excellent properties such as hardness, hydrophobicity, wear resistance, and lubricity.

本発明方法によって処理した基材は、例えば、プラスチ
ックスの場合には、磁気テープ、精密機械用防湿フィル
ム、人工血管、血液バックなどに有用であり、セラミッ
クスの場合には、人工骨、瓦等として有効に使用でき、
金属の場合には、液体中で使用する機械の材料、摺動材
などとして用いることができるなど、広範囲な用途を有
するものである。
Substrates treated by the method of the present invention are useful for, for example, magnetic tapes, moisture-proof films for precision machines, artificial blood vessels, blood bags, etc. in the case of plastics, and artificial bones, roof tiles, etc. in the case of ceramics. It can be effectively used as
Metals have a wide range of uses, such as being used as materials for machines used in liquids, sliding materials, etc.

実施例 以下、実施例を示して本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail with reference to Examples.

尚、実施例におけるガスの流速は、大気圧下で測定した
値である。
Note that the gas flow rate in the examples is a value measured under atmospheric pressure.

実施例1 プラズマ放電装置として第1図に示す高周波放電による
プラズマ放電装置を使用した。第1図に示すプラズマ放
電装置は、原料、キャリアガス供給路1、高周波電源2
、プラズマ反応系3、放電電極4及び排気路5から基本
的に構成されるものである。
Example 1 A plasma discharge device using high frequency discharge shown in FIG. 1 was used as a plasma discharge device. The plasma discharge apparatus shown in FIG. 1 includes a raw material, a carrier gas supply path 1, a high frequency power source 2
, a plasma reaction system 3, a discharge electrode 4, and an exhaust path 5.

0.5トールのArガス中でスパッタリング法で5分間
前処理をした5US304ステンレス薄板を試料とし、
上記プラズマ放電装置の放電電極上に該試料を置き、放
電電極内を充分に排気減圧した後、全圧0.2トールの
CH,−NF3混合ガス(モル比7:13)を15m!
Q/minの流速で流しながら、30W、13.56M
Hzの高周波電力(ラジオ波)を電極に印加してプラズ
マを発生させ、3分間放電を行なった。この処理によっ
て、試料表面は、著しく疎水化され、水の接触角が0度
であったものが約90度になった。
A 5US304 stainless steel thin plate pretreated for 5 minutes by sputtering in 0.5 Torr Ar gas was used as a sample.
The sample was placed on the discharge electrode of the plasma discharge device, and after sufficiently exhausting and reducing the pressure inside the discharge electrode, 15 m of CH, -NF3 mixed gas (molar ratio 7:13) with a total pressure of 0.2 Torr was poured into the discharge electrode.
30W, 13.56M while flowing at a flow rate of Q/min.
Plasma was generated by applying Hz high frequency power (radio waves) to the electrodes, and discharge was performed for 3 minutes. As a result of this treatment, the sample surface was significantly hydrophobicized, and the contact angle of water increased from 0 degrees to approximately 90 degrees.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で使用したプラズマ放電装置の概略
図である。 図において、(1)は原料、キャリアガス供給路、(2
)は高周波電源、(3)はプラズマ反応系、(4)は放
電電極、(5)は排気路である。 (以   」二)
FIG. 1 is a schematic diagram of a plasma discharge device used in Example 1. In the figure, (1) is the raw material, carrier gas supply path, (2
) is a high frequency power source, (3) is a plasma reaction system, (4) is a discharge electrode, and (5) is an exhaust path. (hereinafter '2)

Claims (1)

【特許請求の範囲】[Claims] (1)化水素化合物及びフッ化窒素化合物を含む混合気
体の存在下において、低圧下で放電して発生するプラズ
マガスを基材に接触させることを特徴とする基材表面の
改質方法。
(1) A method for modifying the surface of a substrate, which comprises bringing plasma gas generated by discharging under low pressure into contact with the substrate in the presence of a mixed gas containing a hydrogen compound and a nitrogen fluoride compound.
JP6996189A 1989-03-22 1989-03-22 Substrate surface modification method Expired - Lifetime JPH0776425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6996189A JPH0776425B2 (en) 1989-03-22 1989-03-22 Substrate surface modification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6996189A JPH0776425B2 (en) 1989-03-22 1989-03-22 Substrate surface modification method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23048686A Division JPH0229749B2 (en) 1986-09-29 1986-09-29 KIZAIHYOMENNOKAISHITSUHOHO

Publications (2)

Publication Number Publication Date
JPH0215172A true JPH0215172A (en) 1990-01-18
JPH0776425B2 JPH0776425B2 (en) 1995-08-16

Family

ID=13417760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6996189A Expired - Lifetime JPH0776425B2 (en) 1989-03-22 1989-03-22 Substrate surface modification method

Country Status (1)

Country Link
JP (1) JPH0776425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001281A (en) * 1999-06-03 2001-01-05 전위성 Dumbbell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001281A (en) * 1999-06-03 2001-01-05 전위성 Dumbbell

Also Published As

Publication number Publication date
JPH0776425B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
JP3488458B2 (en) Protective film and method for articles
US20070148463A1 (en) Method of coating the surface of an inorganic substrate with an organic material and the product obtained
CN101052742A (en) Remote chamber methods for removing surface deposits
Morra et al. The effect of plasma‐deposited siloxane coatings on the barrier properties of HDPE
Chen et al. Plasma polymerization of hexafluoropropylene: Film deposition and structure
JPH02213474A (en) Manufacture of thin molybdenum sulfide film, manufacture of molybdenum sulfide film and self-lubricating layer, electro-optical layer, and catalytically acting layer
JPH0215172A (en) Method of reforming base material surface
Matienzo et al. Polymer oxidation downstream from oxygen microwave plasmas
JPH0362792B2 (en)
JPS6386871A (en) Reforming method for base material surface
JPH03241739A (en) Atmospheric pressure plasma reaction method
Sawada et al. A new approach to the copper/epoxy joint using atmospheric pressure glow discharge
KR100336622B1 (en) Plasma polymerization on surface of material and polymer material manufactured by the same
Tanigawa et al. Adhesion of vacuum-deposited thin cobalt metal film to poly (ethylene terephthalate) pretreated with RF plasma
JPS6379973A (en) Method for modifying surface of base material
JPH02182880A (en) Coating film made of carbon or having carbon as main component via buffer layer and production thereof
Konstadinidis et al. X-ray photoelectron study of chemical interactions at Ti/polymer interfaces
WO2001061069A2 (en) Plasma polymerized primers for metal pretreatment
Moffitt et al. XPS analysis of the aging of thin, adhesion promoting, fluorocarbon treatments of DC plasma polymers
JP3194513B2 (en) Fluoropolymer gradient film
Ohkubo et al. Influences of the system pressure and the substrate temperature on plasma polymers
JPH0343282B2 (en)
Garbassi et al. The use of XPS valence band spectra in the study of plasma‐deposited polymeric films of tetramethyldisiloxane or hydroxyethylmethacrylate
JPH03134034A (en) Method for making solid surface water-and oil-repellent
Tsuji et al. Surface Property of Plasma Deposited Copolymer Films Using Chlorofluorocarbon with Ethylene Monomer