JPH0343282B2 - - Google Patents

Info

Publication number
JPH0343282B2
JPH0343282B2 JP57063497A JP6349782A JPH0343282B2 JP H0343282 B2 JPH0343282 B2 JP H0343282B2 JP 57063497 A JP57063497 A JP 57063497A JP 6349782 A JP6349782 A JP 6349782A JP H0343282 B2 JPH0343282 B2 JP H0343282B2
Authority
JP
Japan
Prior art keywords
gas
film
plasma
polymerization
mixed monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57063497A
Other languages
Japanese (ja)
Other versions
JPS58180503A (en
Inventor
Kenji Yanagihara
Mitsuo Kimura
Kozo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP6349782A priority Critical patent/JPS58180503A/en
Publication of JPS58180503A publication Critical patent/JPS58180503A/en
Publication of JPH0343282B2 publication Critical patent/JPH0343282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Polymerisation Methods In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、重合速度が早く、ち密な重合膜を作
ることができるプラズマ重合による薄膜作成法に
関するものである。 炭化水素をモノマーとしてプラズマ重合によつ
て作成した薄膜は、架橋密度が高く、力学的強度
が大きい高分子構造を持つており、通常、その比
重は1〜1.5、ガス透過率は10-10〜10-11(cm3
(STP)・cm・cm-2・S-1・cmHg-1)である。特
に、メタンをモノマーとするプラズマ重合は、ち
密な薄膜が得られることで知られているが、重合
速度が遅いため生産性が低く、比重2以上のもの
が得られないため、ち密さが不十分であり、工業
上の応用範囲が狭いという欠点があつた。 本発明は、これらの欠点を改良したプラズマ重
合による薄膜作成法を提供することを目的とする
もので、その要旨は、ハロゲン化炭化水素ガス
(A)、炭化水素ガス(B)、水素ガス(C)およびハロゲン
ガス(D)から選ばれて構成された(A)+(B)混合モノマ
ーガス、(A)+(C)混合モノマーガス、(A)+(B)+(C)混
合モノマーガスおよび(B)+(D)混合モノマーガスか
ら選ばれた1種以上の混合モノマーガスを用いて
プラズマ重合反応を行わせて薄膜を作成する方法
において、プラズマ重合が行われている場所の電
子温度を30000〓〜90000〓とし、該混合モノマー
ガス中のハロゲン原子と水素原子の数の比を1:
2〜5:1にしてプラズマ重合し、それによつ
て、重合速度が早く、ち密な薄膜を作成すること
にある。 本発明で使用するプラズマ重合装置は、プラズ
マ重合が行なわれている場所の電子温度が30000
〓〜90000〓、好ましくは35000〓〜80000〓であ
る。30000〓未満ではち密な膜が形成されず、
90000〓をこえると極めて重合速度が遅いので好
ましくない。 電子温度の測定は、例えば特開昭54−135574に
開示された高温に加熱した探針を用いて行なわれ
る。 装置の到達真空度は10-5Torr以上で、プラズ
マ重合時の真空度が10-3〜1Torrの範囲にあるこ
とが望ましい。また、プラズマ放電形式は、たと
えば、直流放電、低周波放電、高周波放電、マイ
クロ波放電のどの形式でもよく、電極やコイルの
形状、キヤビテイやアンテナの構造も任意であつ
てよく、これらは重合の結果に影響を及ぼさな
い。 炭化水素ガスは、上記真空中でガス化できるも
のであれば、その種類は問わない。飽和炭化水
素、特にメタンが好ましい。 ハロゲンガスは、フツ素、塩素、臭素、ヨウ素
を用いることができ、そのうち特に、フツ素と塩
素が好ましい。 ハロゲン化炭化水素は、炭化水素の水素が少な
くとも1つハロゲン原子で置換されているもので
あり、3フツ化メタン、4フツ化メタン、6フツ
化エタン、4フツ化エチレン、あるいは、これら
のフツ素原子が塩素原子で置換された化合物など
である。本発明においては、4フツ化メタン、6
フツ化エタンが好ましく、特に4フツ化メタンが
好ましい。 本発明において、ハロゲン化炭化水素ガス(A)+
炭化水素ガス(B)混合モノマーガス、ハロゲン化炭
化水素ガス(A)+水素ガス(C)混合モノマーガス、ハ
ロゲン化炭化水素ガス(A)+炭化水素ガス(B)+水素
ガス(C)混合モノマーガスおよび炭化水素ガス(B)+
ハロゲンガス(D)混合モノマーガスから選ばれた1
種以上の混合モノマーガスが使用される。 上記ガスのプラズマ重合装置への流入量は、ガ
スの中に含まれるハロゲン原子数と水素原子数の
比が1:2〜5:1の範囲になければならない。
ハロゲン原子数が水素原子数の5倍を超えると、
膜成長速度が小さくなり、高い電子温度の場合は
エツチングが起る。逆に、ハロゲン原子数が水素
原子数の1/2未満であると、ハロゲン原子を多量
含んだ疎な重合膜が形成される。従つて、ち密な
重合膜を作るためには、上記の範囲に入つていな
ければならない。たとえば、4フツ化メタンとメ
タン、4フツ化エチレンとメタンガスの場合、流
入量の標準状態での体積比は1:2〜5:1であ
り、6フツ化エタンとメタンの場合は1:3〜
10:3が適当である。すなわち、プラズマ重合反
応容器内に流入するモノマーガス中のハロゲン原
子数と水素原子数の比が1:2〜5:1であれば
よい。 上記方法によつてプラズマ重合を行なつた結
果、プラズマ重合速度または重合膜生成速度はメ
タンのみをモノマーとした場合の3倍以上であ
り、重合膜の比重は2.0以上で、ハロゲン原子や
水素原子の含有率が炭素含有率に比してきわめて
小さく、その結果、ガス透過係数がきわめて低
く、ち密な膜が形成され、重合膜の硬度は、ビツ
カース硬度で1Kg/cm2以上であつた。 本発明の方法によつて得られたち密で硬い薄膜
は、任意の基板の上に接着性良く付着させ得ると
いうプラズマ重合法の特長と酸・アルカリ・有機
溶媒に強いというプラズマ重合膜の化学的安定性
と相まつて、きわめて広い応用が考えられる。 本発明方法で得られる薄膜は、低いガス透過性
が要求されるプラスチツク真空容器の表面コーテ
イング膜として、金属をきらう真空系の内面コー
テイング膜として有用である。また硬さが要求さ
れる摩擦面のコーテイング、特に酸・アルカリ・
有機溶媒の雰囲気中で使うゴム、プラスチツク、
金属等の摩擦面コーテイング膜として有用であ
る。たとえばメタルコーテイングテープあるいは
蒸着テープ等の磁気テープの表面保護膜あるいは
録音用ヘツドの摩擦面コーテイングとして有用で
ある。又工具の刃先や電子顕微鏡の試料作成用ナ
イフの刃先のコーテイング、プラスチツクレンズ
のコーテイングにも有用である。 これらの有用性は、工業的に見て生産性すなわ
ち大きい膜成長速度と大量生産すなわち大面積処
理が可能となることによつて実用となる。前者は
本発明の重要な要素の一つであり、従来のメタン
のみをモノマーとした場合の例えば4倍以上の生
産性(膜成長速度)が可能になつた。(実施例1
と比較例1を参照)後者は、プラズマ重合法の特
長の一つである。すなわち、基板がプラズマ中を
通過しさえすればコーテイングされるので、蒸着
法やイオン・分子を使つたビーム法(イオンビー
ム法、分子ビーム法)による指向性を持つ膜生成
法に比較して、きわめて容易に大面積化や大量生
産が可能になる。又プラズマ重合法はドライプロ
セスであり、前処理も後処理も不要であるという
点も重要である。 以下に、本発明の実施例を示すが、本発明の要
旨を越えない限り本発明は実施例のみに限定され
るものではない。 第1図は、本実施例に使用したプラズマ重合装
置の1例を示し、1は反応容器、2はプラズマ発
生用電極、3はプラズマ励起用電源、4は圧力
計、5,6はガスボンベ、7はガス流量調節バル
ブ、8は真空排気口、9は基板を示す。 ガスボンベ5,6からモノマーガスをガス流量
調節バルブ7によつて反応器1内に適当な流量比
で導入し、プラズマ発生用電極2によつてプラズ
マを発生し、重合反応を行なわせ、電極間に置い
た基板9表面上に薄膜を形成させた。圧力計4
は、反応器内の真空度が、所定の値であることを
確認するためのものである。 実施例 1 メタン(CH4)ガスと4フツ化メタン(CF4
ガスを分子数混合比で1:1.5となるように混合
してガスモノマーとし、これを用いてプラズマ重
合を行なつた。ガスの流量は、メタンガスを100
cm3/min、フレオンガスを150cm3/minとし、真
空度は排気口8よりの排気量を調節して50m
Torrに保つた。 10KHzの交流をプラズマ発生用電極2間に加
え、100Wの電力を与え、電子温度を電極間中心
付近で4.5×104〓とした。 基板9として、シリコンウエハー、多孔質膜
(ミリポア タイプVS)を用い、その表面に重合
膜を形成させた。重合は30分間行なつた。また、
ESCA(X線照射による電子分光法)によつて測
定した膜中のフツ素と炭素の原子数の比F/Cは
0.02であつた。 比較例 1 実施例1において、モノマーガスとしてメタン
ガスのみを用い、その流量を250cm3/minとした
点を除いて、他は同一条件で重合を行なつた。 実施例 2 第1図の装置を用い、4フツ化メタンの流量を
100c.c.(STP)/min、水素ガスの流量を100c.c.
(STP)/minとし、真空度を30mTorrとした。
10KHzの交流をプラズマ発生用の2つの電極に加
え、70Wの電力を供給し電子温度を3.5×104〓と
した。重合を30分間行うことにより厚み1800Å、
比重2.2、膜中の原子数比F/C=0.2を得た。酸
素ガス透過率は1.2×10-15(cm3(STP)・cm・cm
-2・S-1・cmHg-1)であつた。 実施例 3 同じく第1図の装置を用いたエタンガスの流量
を70c.c.(STP)/min、フツ素ガスの流量を280
c.c.(STP)/minとし、真空度を100mTorrに保
つた。10KHzの交流80Wをプラズマ励起用電極に
加え、電子温度を4.2×104〓とした。重合を30分
間行うことにより厚み2200Å、膜の比重2.1、膜
中の原子比F/C=0.2を得た。酸素ガス透過率
は2.2×10-15(cm3(STP)・cm・cm-2・S-1・cm
Hg-1)であつた。 比較例 2 実施例1において、流量300cm3/minのメタン
ガスと流量100cm3/minの4フツ化メタンガスの
混合ガスをモノマーガスに使用した点を除いて、
他は同一条件で重合を行なつた。この場合、
ESCAによつて測定した膜中の原子比F/Cは約
0.7であつた。 このようにして得た実施例1、実施例2、実実
例3、比較例1及び比較例2の各重合膜の厚みと
比重及び酸素ガス透過率を測定した。その結果を
表−1に示す。
The present invention relates to a method for forming a thin film by plasma polymerization, which has a high polymerization rate and can form a dense polymer film. Thin films created by plasma polymerization using hydrocarbons as monomers have a polymer structure with high crosslink density and high mechanical strength, and typically have a specific gravity of 1 to 1.5 and a gas permeability of 10 -10 to 1.5. 10 -11 ( cm3
(STP)・cm・cm -2・S -1・cmHg -1 ). In particular, plasma polymerization using methane as a monomer is known to produce dense thin films, but the polymerization rate is slow, resulting in low productivity and the inability to obtain specific gravity of 2 or more, resulting in poor density. However, the drawback was that the scope of industrial application was narrow. The purpose of the present invention is to provide a method for forming a thin film by plasma polymerization that improves these drawbacks.
(A), (A) + (B) mixed monomer gas, (A) + (C) mixed monomer gas selected from hydrocarbon gas (B), hydrogen gas (C) and halogen gas (D) , (A) + (B) + (C) mixed monomer gas and (B) + (D) mixed monomer gas to perform a plasma polymerization reaction using one or more mixed monomer gases to create a thin film. In this method, the electron temperature at the location where plasma polymerization is performed is set to 30,000 to 90,000, and the ratio of the number of halogen atoms to hydrogen atoms in the mixed monomer gas is 1:
The purpose is to perform plasma polymerization at a ratio of 2 to 5:1, thereby producing a dense thin film with a high polymerization rate. The plasma polymerization apparatus used in the present invention has an electron temperature of 30,000 at the location where plasma polymerization is performed.
〓~90000〓, preferably 35000〓~80000〓. If it is less than 30,000〓, a dense film will not be formed.
If it exceeds 90,000〓, the polymerization rate will be extremely slow, which is not preferable. Measurement of electron temperature is carried out using, for example, a probe heated to a high temperature as disclosed in JP-A-54-135574. The ultimate degree of vacuum of the apparatus is 10 -5 Torr or more, and it is desirable that the degree of vacuum during plasma polymerization is in the range of 10 -3 to 1 Torr. Furthermore, the plasma discharge format may be any type, such as direct current discharge, low frequency discharge, high frequency discharge, or microwave discharge, and the shape of the electrodes and coils, and the structure of the cavity and antenna may also be arbitrary, and these may be used for polymerization. Does not affect results. The hydrocarbon gas may be of any type as long as it can be gasified in the vacuum described above. Saturated hydrocarbons are preferred, especially methane. Fluorine, chlorine, bromine, and iodine can be used as the halogen gas, and among these, fluorine and chlorine are particularly preferred. Halogenated hydrocarbons are hydrocarbons in which at least one hydrogen atom has been replaced with a halogen atom, and include trifluoromethane, tetrafluoromethane, hexafluoroethane, tetrafluoroethylene, or these hydrogen atoms. These include compounds in which elementary atoms are replaced with chlorine atoms. In the present invention, methane tetrafluoride, 6
Ethane fluoride is preferred, and methane tetrafluoride is particularly preferred. In the present invention, halogenated hydrocarbon gas (A) +
Hydrocarbon gas (B) mixed monomer gas, halogenated hydrocarbon gas (A) + hydrogen gas (C) mixed monomer gas, halogenated hydrocarbon gas (A) + hydrocarbon gas (B) + hydrogen gas (C) mixed Monomer gas and hydrocarbon gas (B)+
1 selected from halogen gas (D) mixed monomer gas
A mixture of more than one monomer gas is used. The amount of the gas flowing into the plasma polymerization apparatus must be such that the ratio of the number of halogen atoms to the number of hydrogen atoms contained in the gas is in the range of 1:2 to 5:1.
When the number of halogen atoms exceeds five times the number of hydrogen atoms,
The film growth rate is reduced and etching occurs at high electron temperatures. Conversely, when the number of halogen atoms is less than 1/2 of the number of hydrogen atoms, a sparse polymer film containing a large amount of halogen atoms is formed. Therefore, in order to make a dense polymer film, the content must be within the above range. For example, in the case of tetrafluoromethane and methane, and tetrafluoroethylene and methane gas, the volume ratio of inflow amounts under standard conditions is 1:2 to 5:1, and in the case of hexafluoroethane and methane, it is 1:3. ~
10:3 is appropriate. That is, it is sufficient that the ratio of the number of halogen atoms to the number of hydrogen atoms in the monomer gas flowing into the plasma polymerization reaction vessel is 1:2 to 5:1. As a result of plasma polymerization performed by the above method, the plasma polymerization rate or polymer film formation rate was more than three times that of when methane was the only monomer, the specific gravity of the polymer film was 2.0 or more, and there were no halogen atoms or hydrogen atoms. As a result, a dense film with an extremely low gas permeability coefficient was formed, and the hardness of the polymer film was 1 Kg/cm 2 or more in terms of Vickers hardness. The dense and hard thin film obtained by the method of the present invention has the advantage of the plasma polymerization method that it can be adhered to any substrate with good adhesion, and the chemical property of the plasma polymerization film that it is resistant to acids, alkalis, and organic solvents. Combined with its stability, it has a wide range of applications. The thin film obtained by the method of the present invention is useful as a surface coating film for plastic vacuum vessels that require low gas permeability, and as an inner coating film for vacuum systems that avoid metals. Also, coatings on friction surfaces that require hardness, especially acids, alkalis, etc.
Rubber, plastic, etc. used in an organic solvent atmosphere.
It is useful as a coating film for friction surfaces of metals, etc. For example, it is useful as a surface protective film for magnetic tapes such as metal coating tapes or vapor-deposited tapes, or as a friction surface coating for recording heads. It is also useful for coating the cutting edge of tools, the cutting edge of knives for preparing specimens in electron microscopes, and the coating of plastic lenses. From an industrial perspective, their usefulness is realized by the productivity, ie, high film growth rate, and the possibility of mass production, ie, large-area processing. The former is one of the important elements of the present invention, and it has become possible to achieve productivity (film growth rate) that is, for example, 4 times or more compared to the conventional case where only methane is used as a monomer. (Example 1
and Comparative Example 1) The latter is one of the features of the plasma polymerization method. In other words, since the substrate is coated just by passing through the plasma, compared to directional film formation methods such as vapor deposition methods and beam methods using ions and molecules (ion beam method, molecular beam method), Large-area expansion and mass production are extremely easy. Another important point is that the plasma polymerization method is a dry process and requires no pre-treatment or post-treatment. Examples of the present invention are shown below, but the present invention is not limited to the examples unless the gist of the invention is exceeded. FIG. 1 shows an example of the plasma polymerization apparatus used in this example, in which 1 is a reaction vessel, 2 is an electrode for plasma generation, 3 is a power source for plasma excitation, 4 is a pressure gauge, 5 and 6 are gas cylinders, 7 is a gas flow rate control valve, 8 is a vacuum exhaust port, and 9 is a substrate. Monomer gas is introduced into the reactor 1 from the gas cylinders 5 and 6 at an appropriate flow rate through the gas flow rate control valve 7, plasma is generated through the plasma generation electrode 2, a polymerization reaction is carried out, and the gap between the electrodes is A thin film was formed on the surface of the substrate 9 placed on the substrate. Pressure gauge 4
This is to confirm that the degree of vacuum in the reactor is at a predetermined value. Example 1 Methane (CH 4 ) gas and tetrafluoromethane (CF 4 )
The gases were mixed at a molecular mixing ratio of 1:1.5 to obtain a gas monomer, which was used to perform plasma polymerization. Gas flow rate is 100% methane gas
cm 3 /min, Freon gas is 150cm 3 /min, and the degree of vacuum is 50m by adjusting the exhaust volume from exhaust port 8.
I kept it to Torr. A 10KHz alternating current was applied between the two plasma generation electrodes, giving a power of 100W, and the electron temperature was set at 4.5×10 4 near the center between the electrodes. A silicon wafer and a porous film (Millipore type VS) were used as the substrate 9, and a polymer film was formed on the surface thereof. Polymerization was carried out for 30 minutes. Also,
The ratio F/C of the number of fluorine and carbon atoms in the film measured by ESCA (electron spectroscopy using X-ray irradiation) is
It was 0.02. Comparative Example 1 Polymerization was carried out under the same conditions as in Example 1 except that only methane gas was used as the monomer gas and the flow rate was 250 cm 3 /min. Example 2 Using the apparatus shown in Figure 1, the flow rate of tetrafluoromethane was
100c.c. (STP)/min, hydrogen gas flow rate 100c.c.
(STP)/min, and the degree of vacuum was 30 mTorr.
A 10KHz alternating current was applied to the two electrodes for plasma generation, and 70W of power was supplied, making the electron temperature 3.5×10 4 〓. By polymerizing for 30 minutes, the thickness was 1800Å.
A specific gravity of 2.2 and an atomic ratio F/C in the film of 0.2 were obtained. Oxygen gas permeability is 1.2×10 -15 (cm 3 (STP)・cm・cm
-2・S -1・cmHg -1 ). Example 3 Using the same apparatus shown in Figure 1, the flow rate of ethane gas was 70 c.c. (STP)/min, and the flow rate of fluorine gas was 280 c.c. (STP)/min.
cc (STP)/min, and the degree of vacuum was maintained at 100 mTorr. A 10KHz AC 80W was applied to the plasma excitation electrode, and the electron temperature was set to 4.2×10 4 〓. By carrying out polymerization for 30 minutes, a thickness of 2200 Å, a specific gravity of the film of 2.1, and an atomic ratio of F/C in the film of 0.2 were obtained. Oxygen gas permeability is 2.2×10 -15 (cm 3 (STP) cm cm -2 S -1 cm
Hg -1 ). Comparative Example 2 In Example 1, except that a mixed gas of methane gas with a flow rate of 300 cm 3 /min and tetrafluoride methane gas with a flow rate of 100 cm 3 /min was used as the monomer gas.
Other than that, polymerization was carried out under the same conditions. in this case,
The atomic ratio F/C in the film measured by ESCA is approximately
It was 0.7. The thickness, specific gravity, and oxygen gas permeability of each of the polymer films of Example 1, Example 2, Practical Example 3, Comparative Example 1, and Comparative Example 2 thus obtained were measured. The results are shown in Table-1.

【表】【table】

【表】 なお、厚みは光学的に測定され、比重は重量膜
厚を基板重量の増加から求め、その重量膜厚を光
学膜厚で割り算することによつて得た。 実施例 4 実施例1、比較例1及び比較例2のプラズマ重
合を膜の厚みが、約1μmになるまで継続して行
なつたのち、その重合膜のビツカース硬度を測定
した。その結果を表−2に示す。
[Table] The thickness was measured optically, and the specific gravity was obtained by calculating the weight film thickness from the increase in the weight of the substrate, and dividing the weight film thickness by the optical film thickness. Example 4 The plasma polymerization of Example 1, Comparative Example 1, and Comparative Example 2 was continued until the film thickness reached approximately 1 μm, and then the Vickers hardness of the polymerized film was measured. The results are shown in Table-2.

【表】 実施例 5 メタン(CH4)ガスと4フツ化メタン(CF4
ガスと水素(H2)ガスを分子数混合比で0.5:
1.5:1となるように混合してガスモノマーとし、
これを用いてプラズマ重合を行なつた。ガスの流
量は、メタンガスを50cm3/min、フレオンガスを
150cm3/min、水素ガスを100cm3/minとし、真空
度は排気口8よりの排気量を調節して50mTorr
に保つた。 10KHzの交流をプラズマ発生用電極2間に加
え、150Wの電力を与え、電子温度を電極間中心
付近で7×104〓とした。 基板9として、シリコンウエハー、多孔質膜
(ミリポア タイプVS)を用い、その表面に重合
膜を形成させた。重合は30分間行なつた。また、
ESCA(X線照射による電子分光法)によつて測
定した膜中のフツ素と炭素の原子数の比F/Cは
0.08であつた。 比較例 3 実施例1において、プラズマ励起用電力として
40Wを加え、電極間中心付近での電子温度を2.1
×104〓とし、その他の条件は同じとした。重合
膜中のフツ素と炭素の原子数の比F/CをESCA
で測定したところ、0.9であつた。 比較例 4 実施例1において、プラズマ励起用電力として
300Wを加え、電極間中心付近での電子温度を95
×104〓とした。その他の条件は同じである。こ
の場合、重合膜はほとんどデポジツトせず、光学
的厚みは50Å以下であつた。 比較例 5 実施例2において、プラズマ励起用電力として
30Wを加え、電極間中心付近での電子温度を1.9
×104〓とした。その他の条件は同じである。基
板上にデポジツトした膜の厚みは200Å、膜中の
原子比F/Cは1.8であつた。膜が薄いため比重
の値は得られなかつた。 比較例 6 実施例2において、プラズマ励起用電力を
300Wとし、電極間中心付近の電子温度を9.7×
104〓とした。他の条件は同じであつた。この場
合、シリコンウエハー基板はエツチングされた。 上記実施例5、比較例3〜6の各重合膜の厚み
と比重及び酸素ガス透過率を測定し、表−1に示
した。 比較例 7 特開昭56−60447号公報に記載されているプラ
ズマ重合装置と同様の第2図に示す装置を用い
て、以下の実験を行つた。ここで、反応管は直径
3cmの石英管を用い、上流からはアルゴンあるい
は水素を流し、下流部からメタンとテトラフロロ
メタンを流した。マイクロ波は、2.25GHzを用い
た。基板は多孔質(ミリポア VS)を用い、第
2図のA,B,Cの各点に設置した。A点はマイ
クロ波キヤビテイー端面より5cm、B点は同10
cm、C点は同15cmである。表−3のプラズマ条件
にて膜を作成し、膜中の原子比F/Cと酸素ガス
透過率を測定した結果を表−4に示す。また、反
応中の電子温度をA,B,Cの各点で測定した。
[Table] Example 5 Methane (CH 4 ) gas and tetrafluoromethane (CF 4 )
Gas and hydrogen (H 2 ) gas at a molecular number mixing ratio of 0.5:
Mix it in a ratio of 1.5:1 to make a gas monomer,
Plasma polymerization was performed using this. The gas flow rate is 50cm 3 /min for methane gas and 50cm 3 /min for freon gas.
150cm 3 /min, hydrogen gas 100cm 3 /min, and the degree of vacuum was 50mTorr by adjusting the exhaust volume from exhaust port 8.
I kept it. A 10 KHz alternating current was applied between the two plasma generation electrodes, giving a power of 150 W, and the electron temperature was set to 7×10 4 〓 near the center between the electrodes. A silicon wafer and a porous film (Millipore type VS) were used as the substrate 9, and a polymer film was formed on the surface thereof. Polymerization was carried out for 30 minutes. Also,
The ratio F/C of the number of fluorine and carbon atoms in the film measured by ESCA (electron spectroscopy using X-ray irradiation) is
It was 0.08. Comparative Example 3 In Example 1, as plasma excitation power
Add 40W to increase the electron temperature near the center between the electrodes to 2.1
×10 4 〓, and other conditions were kept the same. ESCA the ratio F/C of the number of fluorine and carbon atoms in the polymer film
When measured, it was 0.9. Comparative Example 4 In Example 1, as plasma excitation power
Apply 300W and increase the electron temperature near the center between the electrodes to 95
×10 4 〓. Other conditions are the same. In this case, almost no polymer film was deposited, and the optical thickness was less than 50 Å. Comparative Example 5 In Example 2, as plasma excitation power
Add 30W to increase the electron temperature near the center between the electrodes to 1.9
×10 4 〓. Other conditions are the same. The thickness of the film deposited on the substrate was 200 Å, and the atomic ratio F/C in the film was 1.8. Because the membrane was thin, specific gravity values could not be obtained. Comparative Example 6 In Example 2, the plasma excitation power was
300W, and the electron temperature near the center between the electrodes is 9.7×
10 4 〓. Other conditions were the same. In this case, a silicon wafer substrate was etched. The thickness, specific gravity, and oxygen gas permeability of each of the polymer films of Example 5 and Comparative Examples 3 to 6 were measured and shown in Table 1. Comparative Example 7 The following experiment was conducted using the apparatus shown in FIG. 2, which is similar to the plasma polymerization apparatus described in JP-A-56-60447. Here, a quartz tube with a diameter of 3 cm was used as the reaction tube, and argon or hydrogen was flowed from the upstream portion, and methane and tetrafluoromethane were flowed from the downstream portion. The microwave used was 2.25GHz. A porous substrate (Millipore VS) was used, and it was installed at each point A, B, and C in Figure 2. Point A is 5 cm from the end surface of the microwave cavity, and point B is 10 cm from the end surface of the microwave cavity.
cm, point C is 15 cm. A film was prepared under the plasma conditions shown in Table 3, and the atomic ratio F/C and oxygen gas permeability in the film were measured. Table 4 shows the results. Further, the electron temperature during the reaction was measured at each point A, B, and C.

【表】 〓−〓は、 イオン密度が低すぎて電子温度の測定
が不能であることを意味する。
[Table] 〓−〓 means that the ion density is too low to measure the electron temperature.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いたプラズマ重合
装置の概念的立面図である。第2図は、比較例7
において用いたプラズマ重合装置の概念的立断面
図である。 1…反応容器、2…プラズマ発生用電極、3…
プラズマ励起用電源、4…圧力計、5,6…ガス
ボンベ、7…ガス流量調節バルブ、8…真空排気
口、9…基板、10…マイクロ波キヤビテイー、
11…石英反応管、12…導波管、13…マイク
ロ波電源、14…プラズマ領域、15…圧力計、
16…調節バルブ、17…流量調節バルブ、18
…アルゴンガス、19…水素ガス、20…メタン
ガス、21…4フツ化メタンガス。
FIG. 1 is a conceptual elevational view of a plasma polymerization apparatus used in Examples of the present invention. Figure 2 shows comparative example 7.
1 is a conceptual elevational cross-sectional view of a plasma polymerization apparatus used in FIG. 1... Reaction container, 2... Plasma generation electrode, 3...
Plasma excitation power source, 4...pressure gauge, 5, 6...gas cylinder, 7...gas flow rate adjustment valve, 8...vacuum exhaust port, 9...substrate, 10...microwave cavity,
DESCRIPTION OF SYMBOLS 11... Quartz reaction tube, 12... Waveguide, 13... Microwave power supply, 14... Plasma region, 15... Pressure gauge,
16...Adjustment valve, 17...Flow rate adjustment valve, 18
...Argon gas, 19...Hydrogen gas, 20...Methane gas, 21...Tetrafluoromethane gas.

Claims (1)

【特許請求の範囲】[Claims] 1 ハロゲン化炭化水素ガス(A)、炭化水素ガス
(B)、水素ガス(C)およびハロゲンガス(D)から選ばれ
て構成された(A)+(B)混合モノマーガス、(A)+(C)混
合モノマーガス、(A)+(B)混合モノマーガス、(A)+
(B)+(C)混合モノマーガスおよび(B)+(D)混合モノマ
ーガスから選ばれ、かつ、ハロゲン原子数と水素
原子数の比が1:2〜5:1である混合モノマー
ガスをプラズマ化することによつてプラズマ重合
に供し、プラズマ重合が行われている場所の電子
温度を30000〓〜90000〓として、該場所の真空度
を10-3Torr以上、1Torr未満としてプラズマ重合
を行なうことを特徴とする薄膜作成法。
1 Halogenated hydrocarbon gas (A), hydrocarbon gas
(B), (A) + (B) mixed monomer gas selected from hydrogen gas (C) and halogen gas (D), (A) + (C) mixed monomer gas, (A) + (B) ) Mixed monomer gas, (A)+
A mixed monomer gas selected from (B) + (C) mixed monomer gas and (B) + (D) mixed monomer gas, and in which the ratio of the number of halogen atoms to the number of hydrogen atoms is 1:2 to 5:1. Plasma polymerization is performed by converting into plasma, and the electron temperature at the location where plasma polymerization is being performed is set to 30,000 to 90,000, and the degree of vacuum at the location is set to 10 -3 Torr or more and less than 1 Torr. A thin film production method characterized by:
JP6349782A 1982-04-16 1982-04-16 Preparation of thin film Granted JPS58180503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6349782A JPS58180503A (en) 1982-04-16 1982-04-16 Preparation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6349782A JPS58180503A (en) 1982-04-16 1982-04-16 Preparation of thin film

Publications (2)

Publication Number Publication Date
JPS58180503A JPS58180503A (en) 1983-10-22
JPH0343282B2 true JPH0343282B2 (en) 1991-07-02

Family

ID=13230934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6349782A Granted JPS58180503A (en) 1982-04-16 1982-04-16 Preparation of thin film

Country Status (1)

Country Link
JP (1) JPS58180503A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176636B1 (en) * 1984-09-28 1990-05-09 Japan Synthetic Rubber Co., Ltd. Polymeric thin film and products containing the same
JPS61159426A (en) * 1984-12-28 1986-07-19 Stanley Electric Co Ltd Formation of plasma polymer film
JPS61190525A (en) * 1985-02-20 1986-08-25 Japan Synthetic Rubber Co Ltd Metallic product covered with plasma-polymerized film
JPS61190526A (en) * 1985-02-20 1986-08-25 Japan Synthetic Rubber Co Ltd Metallic product covered with plasma-polymerized film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660447A (en) * 1979-10-23 1981-05-25 Toshiba Corp Forming method of organic photoconductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660447A (en) * 1979-10-23 1981-05-25 Toshiba Corp Forming method of organic photoconductive film

Also Published As

Publication number Publication date
JPS58180503A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
JP3274669B2 (en) Fluorine resin with excellent wettability surface
Biederman et al. Plasma polymer films and their future prospects
JPH0748715A (en) Method for plasma polymerization and surface modification of inside hollow micro-base material and article manufactured by this method
AU9745001A (en) Method of treatment with a microwave plasma
JPS60137417A (en) Gas separating member and its preparation
Rice et al. Glow discharge polymerization of tetrafluoroethylene, 1, 1 difluoroethylene, and chlorotrifluoroethylene
KR101809653B1 (en) Water and oil repellent polymer thin layer and preparation method thereof
Kleines et al. Enhancing the separation properties of plasma polymerized membranes on polydimethylsiloxane substrates by adjusting the auxiliary gas in the PECVD processes
JPH0343282B2 (en)
Poll et al. Optical properties of plasma polymer films
JPH02213474A (en) Manufacture of thin molybdenum sulfide film, manufacture of molybdenum sulfide film and self-lubricating layer, electro-optical layer, and catalytically acting layer
JPH0215171A (en) Method and device for atmospheric plasma reaction
JPH058722B2 (en)
Clark et al. Plasma polymerization. IV. A systematic investigation of the inductively coupled RF plasma polymerization of pentafluorobenzene.
JP4794028B2 (en) Functional polytetrafluoroethylene resin and method for producing the same
JPH06508648A (en) Method for attaching fluoropolymer film to object to be treated
Biederman Deposition of polymer films in low pressure reactive plasmas
Kravets et al. Formation of Superhydrophobic Coatings on the Track-Etched Membrane Surface by the Method of Electron-Beam Deposition of Polymers in Vacuum
JPS6386871A (en) Reforming method for base material surface
JP2008062561A (en) Method of manufacturing article equipped with hydrophilic laminated film, and article equipped with hydrophilic laminated film
JP2006131938A (en) Method and device for producing super-water repellent film and product thereby
JPH03134034A (en) Method for making solid surface water-and oil-repellent
Kim et al. Preparation of CHF 3 plasma polymeric composite membrane and characteristics of surface modification
Clark et al. Plasma polymerization. IX. A systematic investigation of materials synthesized in inductively coupled plasmas excited in perfluoropyridine
JPH0362792B2 (en)