JPH0215012B2 - - Google Patents

Info

Publication number
JPH0215012B2
JPH0215012B2 JP57110197A JP11019782A JPH0215012B2 JP H0215012 B2 JPH0215012 B2 JP H0215012B2 JP 57110197 A JP57110197 A JP 57110197A JP 11019782 A JP11019782 A JP 11019782A JP H0215012 B2 JPH0215012 B2 JP H0215012B2
Authority
JP
Japan
Prior art keywords
memory
drive
pixel
image reading
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57110197A
Other languages
Japanese (ja)
Other versions
JPS58225344A (en
Inventor
Toyotaro Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP57110197A priority Critical patent/JPS58225344A/en
Publication of JPS58225344A publication Critical patent/JPS58225344A/en
Publication of JPH0215012B2 publication Critical patent/JPH0215012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N21/5911Densitometers of the scanning type

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、体液中成分などの各種物質の濃度を
測定するための濃度自動分析装置、詳しくは各種
物質をこれと特異的に反応する物質と反応させ、
各反応物質によつて生ずるパターンを光学的濃度
として読み取り、各種物質の濃度を測定するよう
にした濃度自動分析装置に関するものである。 〔従来の技術〕 従来、免疫電気泳動などにより得られる抗原、
抗体反応によつて生ずる沈降線の濃度、または各
種反応によつて得られるパターンの光学的な濃度
などによつて、試料に含まれる各種成分濃度を測
定する画像読取り方法および装置が知られてい
る。 〔発明が解決しようとする課題〕 しかし、画像読取り装置として、一般市販の撮
像管または半導体化されたイメージセンサと称す
るものを用いた場合、各画素を構成する光電変換
素子のバラツキが多いという欠点があつた。とく
に各素子における出力が各種成分濃度に関与する
場合において、各素子間の暗電流の差、感度曲線
の差、飽和曲線の差がそのまま出力の差となつて
現われるために、測定結果に誤差を与えるという
欠点があつた。したがつて自動分析装置に用いら
れる光学的読取り装置に使用される光電変換素子
の集合体は、各素子間においてバラツキが生じな
い厳選されたものを必要とし、自ずと1個当りの
単価が高くついてしまうという欠点があつた。 本発明は上記の欠点を解消するためになされた
もので、光学的読取りのための撮像装置の各撮像
素子の特性を求め、測定の際の読取り誤差を軽減
せしめ、市販の一般的な画像センサを用いた場合
でも、高精度の画像濃度読取り機能を備えた濃度
自動分析装置を提供することを目的とするもので
ある。 〔課題を解決するための手段〕 上記の目的を達成するために、本発明の濃度自
動分析装置は、第1図に示すように、被測定対象
物を載せてX軸、Y軸方向に移動するXY駆動台
1と、このXY駆動台を制御するXY駆動装置2
と、XY駆動台の上方にレンズ3を介して配置さ
れた画像読取り装置4と、この画像読取り装置の
出力信号をデイジタル信号に変換するAD変換回
路5と、このAD変換回路に接続されAD変換回
路からの信号を記憶させる第1メモリ6と、この
第1メモリおよび前記XY駆動装置2に接続され
た演算装置7と、この演算装置に接続され演算処
理のための補正に関するパラメータを記憶させる
第2メモリ8、演算処理後の補正されたデータを
記憶させる第3メモリ9および記録装置10とを
包含し、各画素の感度曲線を全画素の平均の感度
曲線に合わすために、光強度x対補正量yの2次
曲線を求め、各画素に対応する2次曲線の各係数
を記憶し、各画素によつて得られる出力を前記2
次曲線によつて補正演算するようにしてなること
を特徴とするものである。 〔作用〕 各画素の感度曲線を全画素の平均の感度曲線に
合わすために、光強度x対補正量yの2次曲線を
求め、各画素に対応する2次曲線の各係数を記憶
し、各画素によつて得られる出力を前記2次曲線
によつて補正演算する(詳細については、実施例
で説明)。 〔実施例〕 以下、本発明の実施例を図面に基づいて説明す
る。第1図は本発明の濃度自動分析装置の構成例
を示している。本発明の装置は、被測定対象物を
載せてX軸、Y軸方向に移動するXY駆動台1
と、このXY駆動台1を制御するXY駆動装置2
と、XY駆動台1の上方にレンズ3を介して配置
された画像読取り装置4と、この画像読取り装置
4の出力信号をデイジタル信号に変換するAD変
換回路5と、このAD変換回路5からの信号を記
憶する第1メモリ6と、この第1メモリ6および
前記XY駆動装置2に接続された演算装置7と、
この演算装置7に接続された第2メモリ8、第3
メモリ9および記録装置10とからなり、各画素
の感度曲線を全画素の平均の感度曲線に合わすた
めに、光強度x対補正量yの2次曲線を求め、各
画素に対応する2次曲線の各係数を記憶し、各画
素によつて得られる出力を前記2次曲線によつて
補正演算するように構成されている。 第1メモリ6には、画像読取り装置4からの生
のデータが書き込まれ、一方、第3メモリ9には
演算処理後の補正されたデータが書き込まれる。
第2メモリ8には演算処理のための補正に関する
パラメータが書き込まれる。測定に先立ち、補正
に関するパラメータを得るために以下の処理を行
う。 まず画像読取り装置4がN個の素子で構成され
ている場合、XY駆動台1上にすりガラスなどの
均一な反射体を置き、光量を段階的に変化させ、
各段階でN個の素子についてのそれぞれの出力を
得る。これを順次第1メモリ6に記憶させる。な
お光量にn段階に変化させる。ついで信頼性を向
上させすりガラスなどの不均一性や、ごみや傷に
よる誤差を取り除くために、XY駆動台1を少し
移動させ、前述の光量を段階的に変化させN個の
素子についてのそれぞれの出力を得るという処理
を行い、それぞれの段階の光量と各素子に対応す
る第1メモリ6内の番地に出力を加算していく。
以上のXY駆動台1の移動を所定の回数(m回と
する)行い、第1メモリ6内の所定の番地に記憶
されたm回にわたる出力の合計Isum(i、j)
(ただしi=1、2、…N、j=1、2、…n)
から、一回あたりの出力I(i、j)を式I(i、
j)=Isum(i、j)/mにより求め、さらにN
個の素子についてのj番目の時点における平均値
Mean(j)を式Mean(j)=Ni=1 I(i、j)/N(ただ
しj=1、2、…n)から求める。 ここで、yi(j)、xi(j)を、 yi(j)=I(i、j)−Mean(j) xi(j)=I(i、j) と定義し、たとえばi番目の素子についてxi(j)に
対するyi(j)の関係をグルフ化して曲線を求め、こ
の曲線に対応する方程式を求める。一般には2次
式として近似するだけで十分な結果が得られるの
で、 yi(j)=A1,i+A2,ixi(j) +A3,i{xi(j)}2(i=1、2、…N) とし、i番目における2次式の係数A1,i、A2,i
A3,iが求められる。特定のi番目の素子について
のみ注目したときには、上式はxi(j)、yi(j)をそれ
ぞれ連続変数x、yで表わし、簡単にy=A1
A2x+A3x 2と書き直すことができる。iを1から
Nまで行い、この係数値を第2メモリ8に記憶さ
せる。 第2図は第88番目(i=88)の素子についての
特性を示すグラフであり、第3図は第98番目(i
=89)の素子、第4図は第90番目(i=90)の素
子についての特性を示すグラフである。すなわち
第2図〜第4図のグラフの横軸は光強度xを示
し、縦軸はその素子の素子全体の平均値からのい
ずれyを示すものであり、光度を変えていくと素
子全体の平均的な曲度に対して、それぞれの素子
が感度のずれを生じていることが3つのグラフか
ら理解できる。 以上のようにして、1〜N番目の素子について
の各A1、A2、A3の値が、次表のように第2メモ
リ8内に記憶させ、補正に関するパラメータにつ
いての処理が終わる。
[Industrial Application Field] The present invention relates to an automatic concentration analyzer for measuring the concentration of various substances such as components in body fluids, and more specifically, to an automatic concentration analyzer for measuring the concentration of various substances such as components in body fluids.
The present invention relates to an automatic concentration analyzer that measures the concentrations of various substances by reading patterns generated by each reactant as optical densities. [Conventional technology] Conventionally, antigens obtained by immunoelectrophoresis, etc.
Image reading methods and devices are known that measure the concentration of various components contained in a sample based on the concentration of sedimentation lines generated by antibody reactions or the optical density of patterns obtained by various reactions. . [Problems to be Solved by the Invention] However, when a commercially available image pickup tube or a semiconductor image sensor is used as an image reading device, there is a drawback that there are many variations in the photoelectric conversion elements that constitute each pixel. It was hot. Particularly when the output of each element is related to the concentration of various components, differences in dark current, sensitivity curves, and saturation curves between each element appear as output differences, which can cause errors in measurement results. I had the disadvantage of giving. Therefore, the assembly of photoelectric conversion elements used in the optical reading device used in automatic analyzers must be carefully selected so that there is no variation among the elements, which naturally results in a high unit price. It had the disadvantage of being stored away. The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is possible to determine the characteristics of each image sensor of an image sensor for optical reading, reduce reading errors during measurement, and to reduce the reading error during measurement. It is an object of the present invention to provide an automatic concentration analyzer having a highly accurate image density reading function even when using the present invention. [Means for Solving the Problems] In order to achieve the above object, the automatic concentration analyzer of the present invention, as shown in FIG. An XY drive unit 1 that controls the XY drive unit and an XY drive unit 2 that controls this XY drive unit.
, an image reading device 4 disposed above the XY drive base through a lens 3, an AD conversion circuit 5 that converts the output signal of this image reading device into a digital signal, and an AD conversion circuit connected to this AD conversion circuit. A first memory 6 that stores signals from the circuit; an arithmetic device 7 connected to this first memory and the XY drive device 2; and a first memory 6 that is connected to this arithmetic device and stores parameters related to correction for arithmetic processing. 2 memory 8, a third memory 9 for storing corrected data after arithmetic processing, and a recording device 10. Find the quadratic curve of the correction amount y, store each coefficient of the quadratic curve corresponding to each pixel, and calculate the output obtained by each pixel by
This is characterized in that correction calculations are performed using the following curves. [Operation] In order to match the sensitivity curve of each pixel to the average sensitivity curve of all pixels, find a quadratic curve of light intensity x versus correction amount y, store each coefficient of the quadratic curve corresponding to each pixel, The output obtained by each pixel is corrected using the quadratic curve (details will be explained in the embodiment). [Example] Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 shows an example of the configuration of an automatic concentration analyzer according to the present invention. The apparatus of the present invention includes an XY drive platform 1 that carries an object to be measured and moves in the
and an XY drive device 2 that controls this XY drive platform 1.
, an image reading device 4 disposed above the XY drive base 1 through a lens 3, an AD conversion circuit 5 that converts the output signal of the image reading device 4 into a digital signal, and an AD conversion circuit 5 that converts the output signal of the image reading device 4 into a digital signal. a first memory 6 for storing signals; an arithmetic device 7 connected to the first memory 6 and the XY drive device 2;
A second memory 8 and a third memory connected to this arithmetic device 7
Consisting of a memory 9 and a recording device 10, in order to match the sensitivity curve of each pixel to the average sensitivity curve of all pixels, a quadratic curve of light intensity x versus correction amount y is determined, and a quadratic curve corresponding to each pixel is calculated. It is configured to store each coefficient of , and perform a correction calculation on the output obtained by each pixel using the quadratic curve. Raw data from the image reading device 4 is written into the first memory 6, while corrected data after arithmetic processing is written into the third memory 9.
Parameters related to correction for arithmetic processing are written in the second memory 8. Prior to measurement, the following processing is performed to obtain parameters related to correction. First, when the image reading device 4 is composed of N elements, a uniform reflector such as ground glass is placed on the XY drive platform 1, and the amount of light is changed in stages.
At each stage, respective outputs for N elements are obtained. These are sequentially stored in one memory 6. Note that the light amount is changed in n steps. Next, in order to improve reliability and eliminate errors caused by non-uniformity such as frosted glass, dirt, and scratches, the XY drive platform 1 is moved a little, and the above-mentioned light intensity is changed in stages, and the light intensity for each of the N elements is changed. A process of obtaining the output is performed, and the output is added to the address in the first memory 6 corresponding to the amount of light at each stage and each element.
The above movement of the XY drive base 1 is performed a predetermined number of times (assumed to be m times), and the total output over m times is stored at a predetermined address in the first memory 6, Isum (i, j).
(However, i=1, 2,...N, j=1, 2,...n)
From, the output I(i, j) per time is expressed as the formula I(i,
j) = Isum (i, j)/m, and further N
the average value at the j-th time point for the elements
Mean(j) is determined from the formula Mean(j)= Ni=1 I(i, j)/N (where j=1, 2,...n). Here, y i (j) and x i (j) are defined as y i (j)=I(i, j)−Mean(j) x i (j)=I(i, j), and for example, For the i-th element, the relationship between x i (j) and y i (j) is graphed to obtain a curve, and an equation corresponding to this curve is obtained. In general, a sufficient result can be obtained by approximating it as a quadratic equation, so y i (j)=A 1,i +A 2,i x i (j) +A 3,i {x i (j)} 2 ( i=1, 2,...N), and the coefficients of the quadratic equation at the i-th are A 1,i , A 2,i ,
A 3,i is required. When focusing only on a specific i-th element, the above equation represents x i (j) and y i (j) as continuous variables x and y, respectively, and simply becomes y = A 1 +
It can be rewritten as A 2x + A 3x 2 . i from 1 to N, and this coefficient value is stored in the second memory 8. Figure 2 is a graph showing the characteristics of the 88th element (i = 88), and Figure 3 is a graph showing the characteristics of the 88th element (i = 88).
Figure 4 is a graph showing the characteristics of the 90th (i=90) element. In other words, the horizontal axis of the graphs in Figures 2 to 4 shows the light intensity x, and the vertical axis shows the deviation y from the average value of the whole element, and as the light intensity is changed, the light intensity of the whole element changes. It can be understood from the three graphs that each element has a difference in sensitivity with respect to the average curvature. As described above, the values of A 1 , A 2 , and A 3 for the 1st to Nth elements are stored in the second memory 8 as shown in the following table, and the processing for parameters related to correction is completed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の濃度自動分析装
置は、各素子の感度バラツキを単純に均一化する
だけでなく、感度曲線そのものを平均化させるも
ので、すなわち各画素の感度曲線を全画素の平均
の感度曲線に合わすことにより、測定精度が高く
なり、また補正量も平均値からのずれを補正し、
平均値に近づけるものであるために、それ程の大
きな補正は必要とせず補正量は少なくてすむなど
の種々の優れた効果を有している。なお以上の補
正は、光電素子が一列に並べられた1次元の画像
センサにも、2次元の面でとらえる画像センサに
も適用することができる。
As explained above, the automatic concentration analyzer of the present invention not only simply equalizes the sensitivity variations of each element, but also averages the sensitivity curve itself, that is, the sensitivity curve of each pixel is By matching the average sensitivity curve, measurement accuracy is increased, and the correction amount also corrects deviations from the average value.
Since the value can be approximated to the average value, it has various excellent effects such as not requiring such a large correction and requiring only a small amount of correction. Note that the above correction can be applied to both a one-dimensional image sensor in which photoelectric elements are arranged in a row, and an image sensor that captures images in a two-dimensional plane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の濃度自動分析装置の一実施例
を示す系統的説明図、第2図〜第4図は画像読取
り装置を構成する素子についての特性の一例を示
すグラフ、第5図は補正前の生の出力をプリント
アウトした例を示す図、第6図は補正後の出力を
プリントアウトした例を示す図である。 1……XY駆動台、2……XY駆動装置、3…
…レンズ、4……画像読取り装置、5……AD変
換回路、6……第1メモリ、7……演算装置、8
……第2メモリ、9……第3メモリ、10……記
憶装置。
FIG. 1 is a systematic explanatory diagram showing one embodiment of the automatic concentration analyzer of the present invention, FIGS. 2 to 4 are graphs showing an example of characteristics of elements constituting the image reading device, and FIG. FIG. 6 is a diagram showing an example of printing out the raw output before correction, and FIG. 6 is a diagram showing an example of printing out the output after correction. 1...XY drive stand, 2...XY drive device, 3...
... Lens, 4 ... Image reading device, 5 ... AD conversion circuit, 6 ... First memory, 7 ... Arithmetic device, 8
...Second memory, 9...Third memory, 10...Storage device.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定対象物を載せてX軸、Y軸方向に移動
するXY駆動台1と、このXY駆動台を制御する
XY駆動装置2と、XY駆動台の上方にレンズ3
を介して配置された画像読取り装置4と、この画
像読取り装置の出力信号をデイジタル信号に変換
するAD変換回路5と、このAD変換回路に接続
されAD変換回路からの信号を記憶させる第1メ
モリ6と、この第1メモリおよび前記XY駆動装
置2に接続された演算装置7と、この演算装置に
接続され演算処理のための補正に関するパラメー
タを記憶させる第2メモリ8、演算処理後の補正
されたデータを記憶させる第3メモリ9および記
録装置10とを包含し、各画素の感度曲線を全画
素の平均の感度曲線に合わすために、光強度x対
補正量yの2次曲線を求め、各画素に対応する2
次曲線の各係数を記憶し、各画素によつて得られ
る出力を前記2次曲線によつて補正演算するよう
にしてなることを特徴とする濃度自動分析装置。
1 XY drive stand 1 that carries the object to be measured and moves in the X- and Y-axis directions, and controls this XY drive stand
XY drive device 2 and lens 3 above the XY drive base
an image reading device 4 disposed through the image reading device, an AD conversion circuit 5 that converts the output signal of the image reading device into a digital signal, and a first memory connected to the AD conversion circuit and storing the signal from the AD conversion circuit. 6, an arithmetic device 7 connected to the first memory and the XY drive device 2, a second memory 8 connected to this arithmetic device and for storing parameters related to correction for arithmetic processing, In order to match the sensitivity curve of each pixel to the average sensitivity curve of all pixels, a quadratic curve of light intensity x versus correction amount y is determined. 2 corresponding to each pixel
An automatic concentration analyzer characterized in that each coefficient of a quadratic curve is stored, and an output obtained by each pixel is corrected using the quadratic curve.
JP57110197A 1982-06-25 1982-06-25 Automatic analytical apparatus Granted JPS58225344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110197A JPS58225344A (en) 1982-06-25 1982-06-25 Automatic analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110197A JPS58225344A (en) 1982-06-25 1982-06-25 Automatic analytical apparatus

Publications (2)

Publication Number Publication Date
JPS58225344A JPS58225344A (en) 1983-12-27
JPH0215012B2 true JPH0215012B2 (en) 1990-04-10

Family

ID=14529504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110197A Granted JPS58225344A (en) 1982-06-25 1982-06-25 Automatic analytical apparatus

Country Status (1)

Country Link
JP (1) JPS58225344A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621863B2 (en) * 1984-08-24 1994-03-23 株式会社島津製作所 Densitometer
FR2591389B1 (en) * 1985-12-05 1988-08-12 Elf Aquitaine ION SELECTIVE FIELD EFFECT TRANSISTOR AND MANUFACTURING METHOD
JP2006090864A (en) * 2004-09-24 2006-04-06 Denka Seiken Co Ltd Method for calculating content of specific component in vaccine

Also Published As

Publication number Publication date
JPS58225344A (en) 1983-12-27

Similar Documents

Publication Publication Date Title
US4559603A (en) Apparatus for inspecting a circuit pattern drawn on a photomask used in manufacturing large scale integrated circuits
US4523229A (en) Shading correction device
EP0919803A1 (en) Method and compact system for inspecting a reticle with high accuracy
JPH0215012B2 (en)
JP4234703B2 (en) Defect inspection equipment
GB2064102A (en) Improvements in electro- optical dimension measurement
JPH0765331A (en) Measuring method of quantity of magnetic head floated
JP5684628B2 (en) Pattern inspection apparatus and pattern inspection method
JPH0629705B2 (en) Plate inspection method
JPH04138325A (en) Sensitivity correcting device for array detector
JP2768872B2 (en) Image reading method and apparatus
JPS5861436A (en) Photodetector of projection type mtf measuring instrument
JPS5879146A (en) Automatic sensitivity correction mechanism for surface flaw inspection device
JPH0735703A (en) Image processing method
JPH01242906A (en) Linearizing method by light cutting method
JP3281986B2 (en) Image measurement device
JPS60135025A (en) Measurement of refractive power of eye
JPH073558B2 (en) Image information detection processing method
JPS5927379A (en) Pattern video signal processing system
JP2642569B2 (en) Image reading method and apparatus
JPS61225604A (en) Dimension measurement apparatus
JPH04285802A (en) Inspecting apparatus for external appearance
JPS6346744A (en) Position detector
JPH1026528A (en) Shape-measuring apparatus and image-input device used therefor
JP3190061B2 (en) Method and apparatus for processing electrical output of a photoelectric conversion device having pixels