JPH0214885A - Jointing of beta-alumina bag tube and alpha-alumina ring - Google Patents

Jointing of beta-alumina bag tube and alpha-alumina ring

Info

Publication number
JPH0214885A
JPH0214885A JP63139033A JP13903388A JPH0214885A JP H0214885 A JPH0214885 A JP H0214885A JP 63139033 A JP63139033 A JP 63139033A JP 13903388 A JP13903388 A JP 13903388A JP H0214885 A JPH0214885 A JP H0214885A
Authority
JP
Japan
Prior art keywords
alumina
temperature
bag tube
glass composition
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63139033A
Other languages
Japanese (ja)
Other versions
JPH052629B2 (en
Inventor
Mikio Nakagawa
幹夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63139033A priority Critical patent/JPH0214885A/en
Publication of JPH0214885A publication Critical patent/JPH0214885A/en
Publication of JPH052629B2 publication Critical patent/JPH052629B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide the title jointing method so designed that in the above jointing in a sodium-sulfur battery, calcining temperature conditions are specified, thereby accomplishing improvement in the bond strength, heat shock resistance and the deterioration or He leakage characteristics during service at elevated temperatures. CONSTITUTION:A bonding glass composition is applied on the jointing surfaces of a beta-alumina bag tube 4 and alpha-alumina ring 2 followed by drying to ensure bond strength durable to furnace-packing operation. The resultant joint is then locally heated using an electric furnace in the normal atmosphere. During the heating and melting process from normal temperature to a maximum temperature (e.g., 1000 deg.C) in this calcination process, said joint is retained at a specified temperature for a specified time (e.g., at 300 deg.C for 60min and at 500 deg.C for 10min), thereby accomplishing perfect combustion of the organic matter in the adhesive aid. Thence, during the cooling process from the maximum temperature, said joint is kept at temperatures about the transition temperature of the above-mentioned glass composition for 10-20min to free said glass composition from strain followed by cooling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はナトリウム−硫黄電池のβ−アルミナ袋管とα
−アルミナリングの接合方法に係わり、さらに詳しくは
β−アルミナ袋管とα−アルミナリングの接合強度、耐
熱衝撃性及び高温状態での劣化特性を向上することがで
きるβ−アルミナ袋管とα−アルミナリングの接合方法
に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a β-alumina bag tube and an α-sulfur battery for sodium-sulfur batteries.
- Concerning the method of joining alumina rings, more specifically, β-alumina bag tubes and α-alumina rings that can improve the bonding strength, thermal shock resistance, and deterioration characteristics under high temperature conditions. This invention relates to a method for joining alumina rings.

(従来の技術) 最近、電気自動車用、夜間電力貯蔵用の二次電池として
性能面及び経済面の両面において優れ、300〜350
℃で作動する高温型のナトリウム−硫黄電池の研究開発
が進められている。
(Prior art) Recently, as a secondary battery for electric vehicles and nighttime power storage, it has been developed to be excellent in both performance and economical aspects.
Research and development is progressing on high-temperature sodium-sulfur batteries that operate at ℃.

このすトリウム−硫黄電池として、従来、第4図に示す
ように陽極活物質である溶融硫黄Sを含浸したカーボン
マント等の陽極用導電材Mを収納する円筒状の陽極容器
1と、該陽極容器1の上端部に対し、α−アルミナリン
グ2を介して連結され、かつ溶融金属ナトリウムNaを
貯留する陰極容器3と、前記α−アルミナリング2の内
周部に固着され、かつ陰極活物質であるナトリウムイオ
ンNa+を選択的に透過させる機能を有した下方へ延び
る円筒状の多結晶β−アルミナ袋管4とからなっている
As shown in FIG. 4, this thorium-sulfur battery conventionally includes a cylindrical anode container 1 that houses a conductive material M for the anode, such as a carbon cloak impregnated with molten sulfur S, which is an anode active material, and A cathode container 3 is connected to the upper end of the container 1 via an α-alumina ring 2 and stores molten metal Na, and a cathode active material is fixed to the inner circumference of the α-alumina ring 2. It consists of a cylindrical polycrystalline β-alumina bag tube 4 extending downward and having a function of selectively transmitting sodium ions Na+.

又、陰極容器3の上部蓋の中央部には、該陰極容器3を
貫通してβ−アルミナ袋管4底部まで延びた細長い陰極
管5が貫通支持されている。
Further, an elongated cathode tube 5 is supported through the center of the upper lid of the cathode container 3, and extends through the cathode container 3 to the bottom of the β-alumina bag tube 4.

そして、放電時には次のような反応によってナトリウム
イオンがβ−アルミナ袋管4を透過して陽極容器1内の
硫黄Sと反応し、多硫化すl−IJウムを生成する。
During discharge, sodium ions pass through the β-alumina bag tube 4 and react with the sulfur S in the anode container 1 through the following reaction, producing l-IJium polysulfide.

2Na+XS→Na2 Sx 又、充電時には放電時とは逆の反応が起こり、ナトリウ
ムNaび硫黄Sが生成される。
2Na+XS→Na2Sx Also, during charging, a reaction opposite to that during discharging occurs, and sodium Na and sulfur S are generated.

上記のように構成されたナトリウム−硫黄電池のβ−ア
ルミナ袋管4は、α−アルミナリングと無機質のガラス
により接合固定され、その接合強度及び気密性を向上す
るようにしていた。
The β-alumina bag tube 4 of the sodium-sulfur battery configured as described above is bonded and fixed to the α-alumina ring and inorganic glass to improve the bonding strength and airtightness.

(発明が解決しようとする課題) ところが、上記従来のガラス接着方法においては、最高
温度に加熱してガラスを溶融してから冷却しながら凝固
する過程において、軟化温度とほぼ同温度の600°C
で15分間程度保持し、以降300°C/ h rで冷
却しているため、第2図に示ず熱膨脂曲線より示される
軟化温度600℃から室温までのガラスとα−アルミナ
やβ−アルミナとの間の熱膨張差により残留応力が発生
すると考えられる。従って、冷却過程において、ガラス
内部に残留する応力が大きくなり、β−アルミナ袋管と
α−アルミナリングの接合強度を低下し、ナトリウム−
硫黄電池の作動に伴う昇降温時に、βアルミナ袋管のガ
ラス接合端部に作用する片持ち曲げ応用によって、β−
アルミナ袋管が破損することが多かった。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional glass bonding method, in the process of heating the glass to the highest temperature to melt it and then solidifying it while cooling, the temperature is 600°C, which is approximately the same temperature as the softening temperature.
It was held for about 15 minutes and then cooled at 300°C/hr, so that the glass, α-alumina, and β- It is thought that residual stress is generated due to the difference in thermal expansion with alumina. Therefore, during the cooling process, the stress remaining inside the glass increases, reducing the bonding strength between the β-alumina bag tube and the α-alumina ring, and
When the temperature rises and falls associated with the operation of a sulfur battery, the β-
Alumina bag tubes were often damaged.

本発明の目的はβ−アルミナ袋管とα−アルミナリング
の接合強度を向上することができるとともに、耐熱衝撃
性及び高温使用状態での劣化特性や・\リウムリーク特
性を向上することができるとともに、ナトリウム−硫黄
電池の作動に伴う昇降温時のβ−アルミナ袋管のガラス
接合端の破損を防止することができるナトリウム−硫黄
電池におけるβ−アルミナ袋管とα−アルミナリングと
の接合方法を提供することにある。
The purpose of the present invention is to improve the bonding strength between a β-alumina bag tube and an α-alumina ring, as well as improve thermal shock resistance, deterioration characteristics under high-temperature usage conditions, and \lium leak characteristics. Provided is a method for joining a β-alumina bag tube and an α-alumina ring in a sodium-sulfur battery that can prevent damage to the glass joint end of the β-alumina bag tube during temperature increases and decreases associated with the operation of a sodium-sulfur battery. It's about doing.

(課題を解決するための手段) 請求項1記載のナトリウム−硫黄電池のβ−アルミナ袋
管とα−アルミナリングの接合方法は、上記目的を達成
するため、β−アルミナ袋管とα−アルミナリングとの
接合面に好ましくはペースト状のガラス組成物を介在さ
せた状態で、前記接合面を加熱し、常温から最高温度ま
での加熱溶融過程において所定温度に一定時間保持し、
最高温度から冷却過程において前記ガラス組成物の転移
温度とほぼ同温度に10〜20分間保持し、その後冷却
するという方法を採用している。
(Means for Solving the Problems) In order to achieve the above object, a method for joining a β-alumina bag tube and an α-alumina ring of a sodium-sulfur battery according to claim 1 is provided. Heating the bonding surface with preferably a paste-like glass composition interposed on the bonding surface with the ring, and maintaining it at a predetermined temperature for a certain period of time during the heating and melting process from room temperature to the maximum temperature,
In the cooling process from the maximum temperature, a method is adopted in which the glass composition is held at approximately the same temperature as the transition temperature for 10 to 20 minutes, and then cooled.

(作用) 請求項1記載のナトリウム−硫黄電池のβ−アルミナ袋
管とα−アルミナリングの接着方法は、接着用ガラスの
加熱溶融状態から冷却凝固過程において、ガラス組成物
の熱膨脂率が転移温度ではα−アルミナに近く、β−ア
ルミナとの差も大きくないので、転移温度付近での所定
時間の除歪によりガラス内部の残留応力が減少し、接合
強度が向上するとともに、耐熱衝撃性、高温状態での劣
化特性及び電池としての昇降温時の片持ち曲げ応力に対
する耐性が向上することが確認された。
(Function) The method for bonding a β-alumina bag tube and an α-alumina ring of a sodium-sulfur battery according to claim 1 is such that the coefficient of thermal expansion of the glass composition is increased in the process of cooling and solidifying the bonding glass from a heated molten state. The transition temperature is close to α-alumina and the difference from β-alumina is not large, so removing strain for a specified period of time near the transition temperature reduces residual stress inside the glass, improving bonding strength and improving thermal shock resistance. It was confirmed that the deterioration characteristics at high temperatures and the resistance to cantilever bending stress during temperature rise and fall as a battery were improved.

(実施例) 次に、本発明のナトリウム−硫黄電池のβ−アルミナ袋
管4とα−アルミナリング2の接合方法の一実施例につ
いて説明する。
(Example) Next, an example of a method for joining the β-alumina bag tube 4 and the α-alumina ring 2 of the sodium-sulfur battery of the present invention will be described.

最初に、例えば58〜67重量部の5i02と、8〜1
7重量部のAg2O3と、8〜17重量部の8203 
と、8〜15重量部のN a ?0とからなる粉末状の
ガラス組成物を例えば5g秤量する。
First, for example, 58-67 parts by weight of 5i02 and 8-1
7 parts by weight of Ag2O3 and 8-17 parts by weight of 8203
and 8 to 15 parts by weight of N a ? For example, 5 g of a powdered glass composition consisting of 0 and 0 is weighed.

次に、接着助剤を含む有機溶剤5gに前記粉末状のガラ
ス組成物を加え、アルミナ製乳鉢内で混合し、ガラスペ
ーストを作製する。
Next, the powdered glass composition is added to 5 g of an organic solvent containing an adhesive aid and mixed in an alumina mortar to prepare a glass paste.

次に、前記ベースト状のガラス組成物をβ−アルミナ袋
管4及びα−アルミナリング2の接合面に刷毛等で塗布
する。そして、室温で30分以上乾燥し、窯詰め作業に
耐え得る接着強度にする。
Next, the base-like glass composition is applied to the joint surfaces of the β-alumina bag tube 4 and the α-alumina ring 2 with a brush or the like. Then, dry at room temperature for 30 minutes or more to obtain adhesive strength that can withstand kiln filling.

さらに、大気雰囲気中でガラスシール電気炉によりβ−
アルミナ袋管4とα−アルミナリング2の接合部を局所
加熱する。この局所加熱は温度を急速に昇降させるため
である。又、ガラス溶融〜冷却時の結晶析出による接合
強度が低下するのを防止するためでもある。
Furthermore, β-
The joint between the alumina bag tube 4 and the α-alumina ring 2 is locally heated. This local heating causes the temperature to rise and fall rapidly. This is also to prevent the bonding strength from decreasing due to crystal precipitation during glass melting and cooling.

第3図は前記電気炉の一実施例の断面を示すものである
。この電気炉は炉床台11上に立設されるβ−アルミナ
袋管4を挿入する加熱空間を形成した断熱体12の内周
面近傍にヒーター13を埋設し、該断熱体12の上面に
は炉蓋14を載置している。又、前記β−アルミナ袋管
4は炉床台11上に係止されたα−アルミナリング2に
嵌合立設されている。
FIG. 3 shows a cross section of one embodiment of the electric furnace. In this electric furnace, a heater 13 is buried near the inner circumferential surface of a heat insulating body 12 that forms a heating space into which a β-alumina bag tube 4 is inserted, which is set upright on a hearth stand 11. The furnace lid 14 is placed on the furnace lid 14. Further, the β-alumina bag tube 4 is fitted into an α-alumina ring 2 which is fixed on the hearth stand 11 and stands upright.

上記焼成工程における時間−温度のグラフを第1図に示
す。このグラフにおいて、常温から1000℃の最高温
度まで加熱して乾燥状態のガラス組成物を溶融する過程
で、300°Cで60分間と500℃で10分間それぞ
れ一定温度に保持するのは、接着助剤の有機物を完全燃
焼させるためである。又、1000℃の最高温度を15
分間保持するのはガラス組成物を完全に溶融させるため
である。さらに、冷却過程の500℃の保持はガラス組
成物を除歪(アニール)処理するためである。
FIG. 1 shows a time-temperature graph in the above firing process. In this graph, in the process of melting the dry glass composition by heating from room temperature to the maximum temperature of 1000°C, holding the temperature constant at 300°C for 60 minutes and 500°C for 10 minutes is an adhesion aid. This is to completely burn out the organic matter in the agent. Also, the maximum temperature of 1000℃ is 15
The purpose of holding the glass composition for 1 minute is to completely melt the glass composition. Further, the temperature is maintained at 500° C. during the cooling process to remove strain (anneal) the glass composition.

さらに詳しくは第2図に示すようにβ−アルミナとα−
アルミナの熱膨張率は加熱温度が上昇するに従いほぼ正
比例して増加するが、ガラス組成物の熱膨張率は、50
0°Cにおいてα−アルミナの熱膨張率を上回り、60
0℃で軟化し、それ以」二となると、熱膨張率は急減す
るという特性を有しているため、本願発明者等は実験に
より前記転移温度の500°Cで10〜20分間保持し
て除歪したところ、後述するようにβ−アルミナ袋管と
α−アルミナリングの接合強度が向上したのである。
More specifically, as shown in Figure 2, β-alumina and α-
The coefficient of thermal expansion of alumina increases in almost direct proportion as the heating temperature increases, but the coefficient of thermal expansion of a glass composition increases by 50
It exceeds the coefficient of thermal expansion of α-alumina at 0°C, 60
Since it has the characteristic that it softens at 0°C and then rapidly decreases its coefficient of thermal expansion, the inventors of the present application conducted experiments to hold it at the transition temperature of 500°C for 10 to 20 minutes. When the strain was removed, the bonding strength between the β-alumina bag tube and the α-alumina ring was improved, as will be described later.

このようにして、β−アルミナ袋管4とα−ア″ルミナ
リング2はガラス組成物により接合される。
In this way, the β-alumina bag tube 4 and the α-alumina ring 2 are joined by the glass composition.

なお、表1は接合ガラスの冷却過程における除歪条件と
接合強度との関係を調べたものであり、従来法のように
ガラスの軟化温度付近での除歪よりも本発明のようにガ
ラスの転移温度付近での除歪条件の方が、機械的接合強
度が高いことが判る。
Table 1 examines the relationship between strain removal conditions and bonding strength during the cooling process of bonded glass. It can be seen that the mechanical bonding strength is higher when the strain is removed near the transition temperature.

表1 又、表2はガラスが転位する温度から、軟化溶融するま
での温度域の昇降温速度とガラス接合強度及びガラス中
の結晶の有無の関係を確認したものである。
Table 1 Table 2 also confirms the relationship between the temperature increase/decrease rate in the temperature range from the temperature at which the glass undergoes dislocation to the point at which it softens and melts, the glass bonding strength, and the presence or absence of crystals in the glass.

表2 この表2のデータから明らかなように、上記温度域の昇
降温速度が600℃/ h r以上であると接合強度が
強くなり、かつガラス中の結晶も無くなるごとがわかる
。しかし、あまり昇降温速度を速くしてもそれほど接合
強度は向上せず、1000℃/ h rが望ましいとい
える。
Table 2 As is clear from the data in Table 2, it can be seen that when the temperature increase/decrease rate in the above temperature range is 600°C/hr or more, the bonding strength becomes stronger and crystals in the glass disappear. However, even if the temperature increase/decrease rate is increased too much, the bonding strength does not improve much, and 1000° C./hr is desirable.

(発明の効果) 以上詳述したように、請求項1記載のナトリウム−硫黄
電池のβ−アルミナ袋管とα−アルミナリングの接合方
法は、加熱溶融状態から冷却凝固過程において、ガラス
組成物の転移温度とほぼ同温度に一定時間保持するので
、ガラス中に発生する残留応力を減少し、機械的強度を
向上することができ、さらに、耐熱衝撃性、ヘリウムリ
ーク特性及び高温での耐久性を向上することができる効
果がある。
(Effects of the Invention) As described in detail above, the method for joining the β-alumina bag tube and the α-alumina ring of the sodium-sulfur battery according to claim 1 is such that the glass composition is Since the temperature is maintained at approximately the same temperature as the transition temperature for a certain period of time, it is possible to reduce the residual stress generated in the glass and improve mechanical strength.It also improves thermal shock resistance, helium leak characteristics, and durability at high temperatures. There are effects that can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のβ−アルミナ袋管とα−アルミナリン
グとのガラス接合方法の焼成温度線を示すグラフ、第2
図は各材料の温度と熱膨脂率との関係を示すグラフ、第
3図は焼成用の電気炉を示す中央部縦断面図、第4図は
ナトリウム−硫黄電池の一例を示す中央部縦断面図であ
る。 1・・・陽極容器、2・・・α−アルミナリング、3・
・・陰極容器、4・・・β−アルミナ袋管、5・・・陰
極管、6・・・接着用ガラス。 特 許 出 願 人 中 川 幹 夫 代 理 人
Fig. 1 is a graph showing the firing temperature line of the glass bonding method of the β-alumina bag tube and α-alumina ring of the present invention;
The figure is a graph showing the relationship between temperature and coefficient of thermal expansion of each material, Figure 3 is a longitudinal cross-sectional view of the center showing an electric furnace for firing, and Figure 4 is a longitudinal cross-section of the center showing an example of a sodium-sulfur battery. It is a front view. 1...Anode container, 2...α-alumina ring, 3.
...Cathode container, 4...β-alumina bag tube, 5...Cathode tube, 6...Glass for adhesion. Patent applicant Mikio Nakagawa representative

Claims (1)

【特許請求の範囲】 1、β−アルミナ袋管とα−アルミナリングとの接合面
にガラス組成物を介在させた状態で、前記接合面を加熱
し、常温から最高温度までの加熱溶融過程において所定
温度に一定時間保持し、最高温度から冷却過程において
前記ガラス組成物の転移温度とほぼ同温度に10〜20
分間保持し、その後冷却することを特徴とするβ−アル
ミナ袋管とα−アルミナリングとの接合方法。 2、請求項1記載のβ−アルミナ袋管とα−アルミナリ
ングとの接合方法において、ガラスが転移する温度から
軟化溶融するまでの温度域の昇降温速度を600℃/h
r以上とするβ−アルミナ袋管とα−アルミナリングと
の接合方法。
[Claims] 1. With a glass composition interposed between the joint surface of the β-alumina bag tube and the α-alumina ring, the joint surface is heated, and in a heating melting process from room temperature to the highest temperature. The temperature is maintained at a predetermined temperature for a certain period of time, and from the maximum temperature to approximately the same temperature as the transition temperature of the glass composition during the cooling process, the temperature is reduced to approximately the same temperature as the transition temperature of the glass composition for 10 to 20 minutes.
A method for joining a β-alumina bag tube and an α-alumina ring, the method comprising holding the β-alumina bag tube for a minute and then cooling it. 2. In the method for joining a β-alumina bag tube and an α-alumina ring according to claim 1, the temperature increase/decrease rate in the temperature range from the temperature at which the glass transitions to the point at which it softens and melts is 600°C/h.
A method for joining a β-alumina bag tube and an α-alumina ring to a diameter of r or more.
JP63139033A 1988-06-06 1988-06-06 Jointing of beta-alumina bag tube and alpha-alumina ring Granted JPH0214885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139033A JPH0214885A (en) 1988-06-06 1988-06-06 Jointing of beta-alumina bag tube and alpha-alumina ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139033A JPH0214885A (en) 1988-06-06 1988-06-06 Jointing of beta-alumina bag tube and alpha-alumina ring

Publications (2)

Publication Number Publication Date
JPH0214885A true JPH0214885A (en) 1990-01-18
JPH052629B2 JPH052629B2 (en) 1993-01-12

Family

ID=15235896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139033A Granted JPH0214885A (en) 1988-06-06 1988-06-06 Jointing of beta-alumina bag tube and alpha-alumina ring

Country Status (1)

Country Link
JP (1) JPH0214885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426565A (en) * 1990-05-18 1992-01-29 Ngk Insulators Ltd Glass joining body and production thereof
JPH04187571A (en) * 1990-11-22 1992-07-06 Ngk Insulators Ltd Glass joining body and production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942711A (en) * 1972-09-01 1974-04-22
JPS55140732A (en) * 1979-04-19 1980-11-04 Chloride Silent Power Ltd Sealing glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942711A (en) * 1972-09-01 1974-04-22
JPS55140732A (en) * 1979-04-19 1980-11-04 Chloride Silent Power Ltd Sealing glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426565A (en) * 1990-05-18 1992-01-29 Ngk Insulators Ltd Glass joining body and production thereof
JPH04187571A (en) * 1990-11-22 1992-07-06 Ngk Insulators Ltd Glass joining body and production thereof

Also Published As

Publication number Publication date
JPH052629B2 (en) 1993-01-12

Similar Documents

Publication Publication Date Title
CN103402941B (en) Glass, especially glass solder or melten glass
US4047292A (en) Process for forming an electrically insulating seal between a metal lead and a metal cover
JPS5916282A (en) Manufacture of sodium-sulfur battery
CA1300677C (en) Method of forming glass bonded joint of beta-alumina and other ceramic and joint formed thereby
JPH0214885A (en) Jointing of beta-alumina bag tube and alpha-alumina ring
JP2527844B2 (en) Glass bonded body and manufacturing method thereof
US3467510A (en) Sealing technique for producing glass to metal seals
US3849200A (en) Sealed sodium-iodine battery
JP2693264B2 (en) Sodium-sulfur battery
JP2545153B2 (en) Glass bonded body and manufacturing method thereof
JPS62295368A (en) Sodium-sulphur cell and its manufacture
JPH09326261A (en) Glass material for high temperature secondary battery and glass junction body
JPS5829563Y2 (en) Sodium - Sulfur Denthi
JPH03203171A (en) Sodium-sulfur battery
JPS6362165A (en) Manufacture of sodium-sulfur battery
JP2613264B2 (en) Bag tube for Na / S secondary battery, method for producing the same, and Na / S secondary battery using the same
CN202534703U (en) Sodium-sulfur cell
JPH02132775A (en) Assembling method for sodium-sulphur battery
JP3292994B2 (en) Sodium-sulfur battery
JP2001176543A (en) Method of manufacturing sodium-sulfur battery
JPH02257576A (en) Sodium-sulfur cell
JP3024884U (en) Radiant tube heater
JPH0355768A (en) Joint glass to form sodium-sulfur battery and joint of cylindrical solid electrolyte with bottom to insulation ring using same
JPH10106623A (en) Sodium secondary battery
JP2614908B2 (en) Sodium-sulfur battery and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 16